1
|
Qi L, Wang J, Yan J, Jiang W, Ge W, Fang X, Wang X, Shen SG, Liu L, Zhang L. Engineered extracellular vesicles with sequential cell recruitment and osteogenic functions to effectively promote senescent bone repair. J Nanobiotechnology 2025; 23:107. [PMID: 39939879 PMCID: PMC11823168 DOI: 10.1186/s12951-025-03168-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/25/2025] [Indexed: 02/14/2025] Open
Abstract
Senescent mandibular bone repair poses a formidable challenge without a completely satisfactory strategy. Endogenous cell recruitment and osteogenic differentiation are two sequential stages in bone regeneration, and disruptions in these two processes present significant obstacles to senescent bone repair. To address these issues, engineered extracellular vesicles (EV) with sequential stem cell recruitment and osteogenic functions were developed. This study demonstrated that Apt19s-engineered extracellular vesicles (Apt19s-EV) recognize and recruit bone marrow mesenchymal stem cells derived from old rats (O-BMSCs) specifically and effectively. MiR-376b-5p, identified by RNA sequencing and transfection, was significantly decreased in O-BMSCs, and it was selected to construct miR-376b-5p-engineered extracellular vesicles (376b-EV). 376b-EV could promote osteogenesis and alleviate senescence of O-BMSCs by targeting Camsap1. To combine the advantages of Apt19s and miR-376b-5p, dual engineered extracellular vesicles (Apt-376b-EV) comprising both Apt19s and miR-376b-5p modifications were constructed. To further validate its function, Gelatin methacryloyl (GelMA) hydrogel was used as a carrier to construct the Apt-376b-EV@GelMA delivery system. The in vitro results have demonstrated that Apt-376b-EV@GelMA could recruit O-BMSCs, alleviate senescence and promote osteogenic differentiation sequentially. Notably, the in vivo study also showed that Apt-376b-EV@GelMA could sequentially recruit endogenous stem cells and enhance new bone formation in senescent bone fracture and critical-sized defect models. In summary, the dual engineered extracellular vesicles, Apt-376b-EV, offer an appealing solution for recruiting endogenous stem cells and promoting bone repair sequentially in the senescent microenvironment, which may broaden the clinical applications of engineered EV and provide valuable strategies for treating senescent bone-related diseases in the future clinical work.
Collapse
Affiliation(s)
- Lei Qi
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai, 200011, PR China
| | - Jing Wang
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai, 200011, PR China
| | - Jinge Yan
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai, 200011, PR China
| | - Weidong Jiang
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai, 200011, PR China
| | - Weiwen Ge
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai, 200011, PR China
| | - Xin Fang
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai, 200011, PR China
| | - Xudong Wang
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai, 200011, PR China
| | - Steve Gf Shen
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai, 200011, PR China.
| | - Lu Liu
- Department of Orthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai, 200011, PR China.
| | - Lei Zhang
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai, 200011, PR China.
| |
Collapse
|
2
|
Li J, Zhang G, Li G, Zhang J, Yang Z, Yang L, Jiang S, Wang J. Harnessing nanoparticles for reshaping tumor immune microenvironment of hepatocellular carcinoma. Discov Oncol 2025; 16:121. [PMID: 39909958 PMCID: PMC11799483 DOI: 10.1007/s12672-025-01897-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/03/2025] [Indexed: 02/07/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent cancers, characterized by high morbidity and mortality rates. Recently, immunotherapy has emerged as a crucial treatment modality for HCC, following surgery, locoregional therapies, and targeted therapies. This approach harnesses the body's immune system to target and eliminate cancer cells, potentially resulting in durable antitumor responses. However, acquired resistance and the tumor immunosuppressive microenvironment (TIME) significantly hinder its clinical application. Recently, advancements in nanotechnology, coupled with a deeper understanding of cancer biology and nano-biological interactions, have led to the development of various nanoparticles aimed at enhancing therapeutic efficacy through specific targeting of tumor tissues. These nanoparticles increase the accumulation of immunotherapeutic drugs within the tumor microenvironment, thereby transforming the TIME. In this review, we provide a concise overview of the fundamental principles governing the TIME landscape in HCC and discuss the rationale for and applications of nanoparticles in this context. Additionally, we highlight existing challenges and potential opportunities for the clinical translation of cancer nanomedicines.
Collapse
Affiliation(s)
- JinSong Li
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - GuanBo Zhang
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - Gang Li
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - Jie Zhang
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - Zhi Yang
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - Lin Yang
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - ShiJie Jiang
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - JiaXing Wang
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
3
|
He Y, Luo Z, Nie X, Du Y, Sun R, Sun J, Lin Z, Wan R, Chen W, Feng X, Li F, Liu X, Chen S, Qiu J, Li J, Zhao Z. An injectable multi-functional composite bioactive hydrogel for bone regeneration via immunoregulatory and osteogenesis effects. ADVANCED COMPOSITES AND HYBRID MATERIALS 2025; 8:128. [DOI: 10.1007/s42114-025-01213-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/19/2024] [Accepted: 01/02/2025] [Indexed: 03/02/2025]
|
4
|
Stellpflug A, Caron J, Fasciano S, Wang B, Wang S. Bone-derived nanoparticles (BNPs) enhance osteogenic differentiation via Notch signaling. NANOSCALE ADVANCES 2025; 7:735-747. [PMID: 39823045 PMCID: PMC11734751 DOI: 10.1039/d4na00797b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/26/2024] [Indexed: 01/19/2025]
Abstract
Mesenchymal stem cell (MSC)-based bone tissue regeneration has gained significant attention due to the excellent differentiation capacity and immunomodulatory activity of MSCs. Enhancing osteogenesis regulation is crucial for improving the therapeutic efficacy of MSC-based regeneration. By utilizing the regenerative capacity of bone ECM and the functionality of nanoparticles, we recently engineered bone-based nanoparticles (BNPs) from decellularized porcine bones. The effects of internalization of BNPs on MSC viability, proliferation, and osteogenic differentiation were first investigated and compared at different time points. The phenotypic behaviors, including cell number, proliferation, and differentiation were characterized and compared. By incorporating a LNA/DNA nanobiosensor and MSC live cell imaging, we monitored and compared Notch ligand delta-like 4 (Dll4) expression dynamics in the cytoplasm and nucleus during osteogenic differentiation. Pharmacological interventions are used to inhibit Notch signaling to examine the mechanisms involved. The results suggest that Notch inhibition mediates the osteogenic process, with reduced expression of early and late stage differentiation markers (ALP and calcium mineralization). The internalization of BNPs led to an increase in Dll4 expression, exhibiting a time-dependent pattern that aligned with enhanced cell proliferation and differentiation. Our findings indicate that the observed changes in BNP-treated cells during osteogenic differentiation could be associated with elevated levels of Dll4 mRNA expression. In summary, this study provides new insights into MSC osteogenic differentiation and the molecular mechanisms through which BNPs stimulate this process. The results indicate that BNPs influence osteogenesis by modulating Notch ligand Dll4 expression, demonstrating a potential link between Notch signaling and the proteins present in BNPs.
Collapse
Affiliation(s)
- Austin Stellpflug
- Joint Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin Milwaukee WI 53226 USA
| | - Justin Caron
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven West Haven CT 06516 USA
| | - Samantha Fasciano
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven West Haven CT 06516 USA
| | - Bo Wang
- Joint Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin Milwaukee WI 53226 USA
| | - Shue Wang
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven West Haven CT 06516 USA
| |
Collapse
|
5
|
Veg E, Hashmi K, Raza S, Joshi S, Rahman Khan A, Khan T. The Role of Nanomaterials in Diagnosis and Targeted Drug Delivery. Chem Biodivers 2025; 22:e202401581. [PMID: 39313849 DOI: 10.1002/cbdv.202401581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 09/25/2024]
Abstract
Nanomaterials have evolved into the most useful resources in all spheres of life. Their small size imparts them with unique properties and they can also be designed and engineered according to the specific need. The use of nanoparticles (NPs) in medicine is particularly quite revolutionary as it has opened new therapeutic avenues to diagnose, treat and manage diseases in an efficient and timely manner. The review article presents the biomedical applications of nanomaterials including bioimaging, magnetic hypothermia and photoablation therapy, with a particular focus on disease diagnosis and targeted drug delivery. Nanobiosensors are highly specific and can be delivered into cells to investigate important biomarkers. They are also used for targeted drug delivery and deliver theranostic agents to specific sites of interest. Other than these factors, the review also explores the role of nano-based drug delivery systems for the management and treatment of nervous system disorders, tuberculosis and orthopaedics. The nano-capsulated drugs can be transported by blood to the targeted site for a sustained release over a prolonged period. Some other applications like their role in invasive surgery, photodynamic therapy and quantum dot imaging have also been explored. Despite that, the safety concerns related to nanomedicine are also pertinent to comprehend as well as the biodistribution of NPs in the body and the mechanistic insight.
Collapse
Affiliation(s)
- Ekhlakh Veg
- Department of Chemistry, Integral University, Lucknow, 226026, U.P., India
- Department of Chemistry, Isabella Thoburn College, Lucknow, 226007, U.P., India
| | - Kulsum Hashmi
- Department of Chemistry, Isabella Thoburn College, Lucknow, 226007, U.P., India
| | - Saman Raza
- Department of Chemistry, Isabella Thoburn College, Lucknow, 226007, U.P., India
| | - Seema Joshi
- Department of Chemistry, Isabella Thoburn College, Lucknow, 226007, U.P., India
| | - Abdul Rahman Khan
- Department of Chemistry, Integral University, Lucknow, 226026, U.P., India
| | - Tahmeena Khan
- Department of Chemistry, Integral University, Lucknow, 226026, U.P., India
| |
Collapse
|
6
|
Xing J, Liu S. Application of loaded graphene oxide biomaterials in the repair and treatment of bone defects. Bone Joint Res 2024; 13:725-740. [PMID: 39631429 PMCID: PMC11617066 DOI: 10.1302/2046-3758.1312.bjr-2024-0048.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Addressing bone defects is a complex medical challenge that involves dealing with various skeletal conditions, including fractures, osteoporosis (OP), bone tumours, and bone infection defects. Despite the availability of multiple conventional treatments for these skeletal conditions, numerous limitations and unresolved issues persist. As a solution, advancements in biomedical materials have recently resulted in novel therapeutic concepts. As an emerging biomaterial for bone defect treatment, graphene oxide (GO) in particular has gained substantial attention from researchers due to its potential applications and prospects. In other words, GO scaffolds have demonstrated remarkable potential for bone defect treatment. Furthermore, GO-loaded biomaterials can promote osteoblast adhesion, proliferation, and differentiation while stimulating bone matrix deposition and formation. Given their favourable biocompatibility and osteoinductive capabilities, these materials offer a novel therapeutic avenue for bone tissue regeneration and repair. This comprehensive review systematically outlines GO scaffolds' diverse roles and potential applications in bone defect treatment.
Collapse
Affiliation(s)
- Jinyi Xing
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Shuzhong Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Jha G, Malasani S, Barakat A, Sola SC, Gera K, Gupta G. Innovative Nanotechnological Approaches in Trauma and Orthopaedic Surgery: A Comprehensive Review. Cureus 2024; 16:e72838. [PMID: 39552742 PMCID: PMC11568882 DOI: 10.7759/cureus.72838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2024] [Indexed: 11/19/2024] Open
Abstract
The application of nanotechnology to health has been one of the revolutionizing factors in the field of trauma and orthopaedic surgery over the last decade. Advances in nanomedicine, in comparison to conventional modes of treatment, have influenced immensely the approach towards trauma and orthopaedic surgery and provided some unique answers to some very complex problems like bone reconstruction, soft tissue repair, and prevention of infection. The current narrative review intends to underpin an extensive analysis of modern applications and recent advances in nanotechnology-driven therapies in orthopaedics. Having leveraged unique properties inherent in nanoparticles and nanoscale materials, novel interventions, such as nanostructured scaffolds, drug delivery systems, and bioactive coatings, have flourished into a variety of promising means to enhance osseointegration, accelerate the healing process, and reduce postoperative complications. This review at once acknowledges the huge potential of these technologies and some of the problems impeding their wide-range clinical application, including long-term safety, main regulatory hurdles, and scale-up issues. The following review aims to give orthopaedic surgeons, researchers, and biomedical engineers an overview of the present status and perspectives for the future regarding nanomedicine in trauma and orthopaedic surgery, pointing out the expectations of a much-improved outcome in patients and overall quality of life.
Collapse
Affiliation(s)
- Gaurav Jha
- Trauma and Orthopaedics, University Hospitals of Leicester NHS Trust, Leicester, GBR
- Trauma and Orthopaedics, Guy's and St Thomas' NHS Foundation Trust, London, GBR
| | - Surya Malasani
- Trauma and Orthopaedics, University Hospitals of Leicester NHS Trust, Leicester, GBR
| | - Ahmed Barakat
- Trauma and Orthopaedics, University Hospitals of Leicester NHS Trust, Leicester, GBR
| | - Siri Chandana Sola
- Geriatrics, University Hospitals of Leicester NHS Trust, Leicester, GBR
- Internal Medicine, University Hospitals of Leicester NHS Trust, Leicester, GBR
| | - Kashish Gera
- Trauma and Orthopaedics, University Hospitals of Leicester NHS Trust, Leicester, GBR
| | - Garima Gupta
- Cardiology, University Hospitals of Leicester NHS Trust, Leicester, GBR
| |
Collapse
|
8
|
Shi C, Yu Y, Wu H, Liu H, Guo M, Wang W, Wang D, Wei C, Zhai H, Yan G, Chen Z, Cai T, Li W. A graphene oxide-loaded processed pyritum composite hydrogel for accelerated bone regeneration via mediation of M2 macrophage polarization. Mater Today Bio 2023; 22:100753. [PMID: 37593216 PMCID: PMC10430169 DOI: 10.1016/j.mtbio.2023.100753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/27/2023] [Accepted: 07/28/2023] [Indexed: 08/19/2023] Open
Abstract
A coordinated interaction between osteogenesis and the osteoimmune microenvironment plays a vital role in regulating bone healing. However, disturbances in the pro- and anti-inflammatory balance hinder the therapeutic advantages of biomaterials. In this study, a novel composite hydrogel was successfully fabricated using graphene oxide (GO)-loaded processed pyritum (PP) in combination with poly(ethylene glycol) diacrylate (PEGDA) and carboxymethyl chitosan (CMC). Subsequently, the immunomodulatory effects and bone regenerative potential of PP/GO@PEGDA/CMC were investigated. The results demonstrated that the PP/GO@PEGDA/CMC hydrogel possessed excellent mechanical properties, swelling capacity, and stability. Moreover, PP/GO@PEGDA/CMC prominently promoted M2 polarization and increased the levels of anti-inflammatory factors (interleukin (IL)-4, IL-10, and transforming growth factor-β). These beneficial effects facilitated the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells in vitro. Additionally, the in vivo results further verified that the implantation of PP/GO@PEGDA/CMC markedly reduced local inflammation while enhancing bone regeneration at 8 weeks post-implantation. Therefore, the results of this study provide potential therapeutic strategies for bone tissue repair and regeneration by modulating the immune microenvironment.
Collapse
Affiliation(s)
- Changcan Shi
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yinting Yu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hongjuan Wu
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Department of Pulmonology, Jiangning Hospital of Traditional Chinese Medicine, Nanjing, 211100, China
| | - Huanjin Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Mengyu Guo
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wenxin Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Dan Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100089, China
| | - Chenxu Wei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hao Zhai
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Guojun Yan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhipeng Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ting Cai
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Weidong Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Key Laboratory of State Administration of TCM for Standardization of Chinese Medicine Processing, Nanjing, 210023, China
| |
Collapse
|
9
|
Wan T, Zhang M, Jiang HR, Zhang YC, Zhang XM, Wang YL, Zhang PX. Tissue-Engineered Nanomaterials Play Diverse Roles in Bone Injury Repair. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091449. [PMID: 37176994 PMCID: PMC10180507 DOI: 10.3390/nano13091449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/08/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023]
Abstract
Nanomaterials with bone-mimicking characteristics and easily internalized by the cell could create suitable microenvironments in which to regulate the therapeutic effects of bone regeneration. This review provides an overview of the current state-of-the-art research in developing and using nanomaterials for better bone injury repair. First, an overview of the hierarchical architecture from the macroscale to the nanoscale of natural bone is presented, as these bone tissue microstructures and compositions are the basis for constructing bone substitutes. Next, urgent clinical issues associated with bone injury that require resolution and the potential of nanomaterials to overcome them are discussed. Finally, nanomaterials are classified as inorganic or organic based on their chemical properties. Their basic characteristics and the results of related bone engineering studies are described. This review describes theoretical and technical bases for the development of innovative methods for repairing damaged bone and should inspire therapeutic strategies with potential for clinical applications.
Collapse
Affiliation(s)
- Teng Wan
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Meng Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Hao-Ran Jiang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Yi-Chong Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Xiao-Meng Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Yi-Lin Wang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Pei-Xun Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| |
Collapse
|
10
|
Dong C, Tan G, Zhang G, Lin W, Wang G. The function of immunomodulation and biomaterials for scaffold in the process of bone defect repair: A review. Front Bioeng Biotechnol 2023; 11:1133995. [PMID: 37064239 PMCID: PMC10090379 DOI: 10.3389/fbioe.2023.1133995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
The process of bone regeneration involves the interaction of the skeletal, blood, and immune systems. Bone provides a solid barrier for the origin and development of immune cells in the bone marrow. At the same time, immune cells secrete related factors to feedback on the remodeling of the skeletal system. Pathological or traumatic injury of bone tissue involves changes in blood supply, cell behavior, and cytokine expression. Immune cells and their factors play an essential role in repairing foreign bodies in bone injury or implantation of biomaterials, the clearance of dead cells, and the regeneration of bone tissue. This article reviews the bone regeneration application of the bone tissue repair microenvironment in bone cells and immune cells in the bone marrow and the interaction of materials and immune cells.
Collapse
Affiliation(s)
- Changchao Dong
- Trauma Medical Center, Department of Orthopedics Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Orthopedics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Gang Tan
- Department of Orthopedics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Guangyan Zhang
- Department of Respiratory Medicine, The 7th Hospital of Chengdu, Chengdu, Sichuan, China
| | - Wei Lin
- Department of Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Wei Lin, ; Guanglin Wang,
| | - Guanglin Wang
- Trauma Medical Center, Department of Orthopedics Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Orthopedics, West China Hospital, Orthopedics Research Institute, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Wei Lin, ; Guanglin Wang,
| |
Collapse
|
11
|
Yadav N, Kumar U, Roopmani P, Krishnan UM, Sethuraman S, Chauhan MK, Chauhan VS. Ultrashort Peptide-Based Hydrogel for the Healing of Critical Bone Defects in Rabbits. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54111-54126. [PMID: 36401830 DOI: 10.1021/acsami.2c18733] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The use of hydrogels as scaffolds for three-dimensional (3D) cell growth is an active area of research in tissue engineering. Herein, we report the self-assembly of an ultrashort peptide, a tetrapeptide, Asp-Leu-IIe-IIe, the shortest peptide sequence from a highly fibrillogenic protein TDP-43, into the hydrogel. The hydrogel was mechanically strong and highly stable, with storage modulus values in MPa ranges. The hydrogel supported the proliferation and successful differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) in its matrix as assessed by cell viability, calcium deposition, alkaline phosphatase (ALP) activity, and the expression of osteogenic marker gene studies. To check whether the hydrogel supports 3D growth and regeneration in in vivo conditions, a rabbit critical bone defect model was used. Micro-computed tomography (CT) and X-ray analysis demonstrated the formation of mineralized neobone in the defect areas, with significantly higher bone mineralization and relative bone densities in animals treated with the peptide hydrogel compared to nontreated and matrigel treatment groups. The ultrashort peptide-based hydrogel developed in this work holds great potential for its further development as tissue regeneration and/or engineering scaffolds.
Collapse
Affiliation(s)
- Nitin Yadav
- Molecular Medicine Group, International Centre for Genetic Engineering & Biotechnology, Aruna Asaf Ali Marg, New Delhi110067, India
- Delhi Institute of Pharmaceutical Sciences and Research, Mehrauli-Badarpur Road, Sector-3, Pushpvihar, New Delhi110017, India
| | - Utkarsh Kumar
- Molecular Medicine Group, International Centre for Genetic Engineering & Biotechnology, Aruna Asaf Ali Marg, New Delhi110067, India
| | - Purandhi Roopmani
- Centre for Nanotechnology & Advanced Biomaterials, SASTRA's Hub for Research & Innovation (SHRI), School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur613401, India
| | - Uma Maheswari Krishnan
- Centre for Nanotechnology & Advanced Biomaterials, SASTRA's Hub for Research & Innovation (SHRI), School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur613401, India
| | - Swaminathan Sethuraman
- Centre for Nanotechnology & Advanced Biomaterials, SASTRA's Hub for Research & Innovation (SHRI), School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur613401, India
| | - Meenakshi K Chauhan
- Delhi Institute of Pharmaceutical Sciences and Research, Mehrauli-Badarpur Road, Sector-3, Pushpvihar, New Delhi110017, India
| | - Virander S Chauhan
- Molecular Medicine Group, International Centre for Genetic Engineering & Biotechnology, Aruna Asaf Ali Marg, New Delhi110067, India
| |
Collapse
|
12
|
Application of Hydrogels as Sustained-Release Drug Carriers in Bone Defect Repair. Polymers (Basel) 2022; 14:polym14224906. [PMID: 36433033 PMCID: PMC9695274 DOI: 10.3390/polym14224906] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Large bone defects resulting from trauma, infection and tumors are usually difficult for the body's repair mechanisms to heal spontaneously. Generally, various types of bones and orthopedic implants are adopted to enhance bone repair and regeneration in the clinic. Due to the limitations of traditional treatments, bone defect repair is still a compelling challenge for orthopedic surgeons. In recent years, bone tissue engineering has become a potential option for bone repair and regeneration. Amidst the various scaffolds for bone tissue engineering applications, hydrogels are considered a new type of non-toxic, non-irritating and biocompatible materials, which are widely used in the biomedicine field currently. Some studies have demonstrated that hydrogels can provide a three-dimensional network structure similar to a natural extracellular matrix for tissue regeneration and can be used to transport cells, biofactors, nutrients and drugs. Therefore, hydrogels may have the potential to be multifunctional sustained-release drug carriers in the treatment of bone defects. The recent applications of different types of hydrogels in bone defect repair were briefly reviewed in this paper.
Collapse
|
13
|
Zhao Y, Peng X, Wang D, Zhang H, Xin Q, Wu M, Xu X, Sun F, Xing Z, Wang L, Yu P, Xie J, Li J, Tan H, Ding C, Li J. Chloroplast-inspired Scaffold for Infected Bone Defect Therapy: Towards Stable Photothermal Properties and Self-Defensive Functionality. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204535. [PMID: 36109177 PMCID: PMC9631053 DOI: 10.1002/advs.202204535] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Indexed: 06/02/2023]
Abstract
Bone implant-associated infections induced by bacteria frequently result in repair failure and threaten the health of patients. Although black phosphorus (BP) material with superior photothermal conversion ability is booming in the treatment of bone disease, the development of BP-based bone scaffolds with excellent photothermal stability and antibacterial properties simultaneously remains a challenge. In nature, chloroplasts cannot only convert light into chemical energy, but also hold a protective and defensive envelope membrane. Inspired by this, a self-defensive bone scaffold with stable photothermal property is developed for infected bone defect therapy. Similar to thylakoid and stroma lamella in chloroplasts, BP is integrated with chitosan and polycaprolactone fiber networks. The mussel-inspired polydopamine multifunctional "envelope membrane" wrapped above not only strengthens the photothermal stability of BP-based scaffolds, but also realizes the in situ anchoring of silver nanoparticles. Bacteria-triggered infection of femur defects in vivo can be commendably inhibited at the early stage via these chloroplast-inspired implants, which then effectively promotes endogenous repair of the defect area under mild hyperthermia induced by near-infrared irradiation. This chloroplast-inspired strategy shows outstanding performance for infected bone defect therapy and provides a reference for the functionality of other biomedical materials.
Collapse
Affiliation(s)
- Yao Zhao
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Xu Peng
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
- Experimental and Research Animal InstituteSichuan UniversityChengdu610065China
| | - Dingqian Wang
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Hongbo Zhang
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Qiangwei Xin
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Mingzhen Wu
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Xiaoyang Xu
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Fan Sun
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Zeyuan Xing
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Luning Wang
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Peng Yu
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Jing Xie
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Jiehua Li
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Hong Tan
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Chunmei Ding
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Jianshu Li
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologyMed‐X Center for MaterialsSichuan UniversityChengdu610041China
| |
Collapse
|
14
|
Shi R, Cai X, He G, Guan J, Liu Y, Lu H, Mao Z, Li Y, Guo H, Hai Y. Extrusion Printed Silk Fibroin Scaffolds with Post-mineralized Calcium Phosphate as a Bone Structural Material. Int J Bioprint 2022; 8:596. [PMID: 36483751 PMCID: PMC9723510 DOI: 10.18063/ijb.v8i4.596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/12/2022] [Indexed: 11/23/2022] Open
Abstract
Artificial bone materials are of high demand due to the frequent occurrence of bone damage from trauma, disease, and ageing. Three-dimensional (3D) printing can tailor-make structures and implants based on biomaterial inks, rendering personalized bone medicine possible. Herein, we extrusion-printed 3D silk fibroin (SF) scaffolds using mixed inks from SF and sodium alginate (SA), and post-mineralized various calcium phosphates to make hybrid SF scaffolds. The effects of printing conditions and mineralization conditions on the mechanical properties of SF scaffolds were investigated. The SF scaffolds from ~10 wt% SF ink exhibited a compressive modulus of 240 kPa, which was elevated to ~1600 kPa after mineralization, showing a significant reinforcement effect. Importantly, the mineralized SF 3D scaffolds exhibited excellent MC3T3-E1 cell viability and promoted osteogenesis. The work demonstrates a convenient strategy to fabricate SF-based hybrid 3D scaffolds with bone-mimetic components and desirable mechanical properties for bone tissue engineering.
Collapse
Affiliation(s)
- Ruya Shi
- School of Materials Science and Engineering, Beihang University, Beijing 100083, China
| | - Xingxing Cai
- School of Materials Science and Engineering, Beihang University, Beijing 100083, China
| | - Guanping He
- Department of Orthopedics, Capital Medical University Affiliated Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Juan Guan
- School of Materials Science and Engineering, Beihang University, Beijing 100083, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beijing 100083, China
| | - Yuzeng Liu
- Department of Orthopedics, Capital Medical University Affiliated Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Hongyi Lu
- Department of Orthopedics, Capital Medical University Affiliated Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Zhinan Mao
- School of Materials Science and Engineering, Beihang University, Beijing 100083, China
| | - Yan Li
- School of Materials Science and Engineering, Beihang University, Beijing 100083, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beijing 100083, China
| | - Hongbo Guo
- School of Materials Science and Engineering, Beihang University, Beijing 100083, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beijing 100083, China
| | - Yong Hai
- Department of Orthopedics, Capital Medical University Affiliated Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| |
Collapse
|
15
|
Recent advances in 3D-printed polylactide and polycaprolactone-based biomaterials for tissue engineering applications. Int J Biol Macromol 2022; 218:930-968. [PMID: 35896130 DOI: 10.1016/j.ijbiomac.2022.07.140] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 01/10/2023]
Abstract
The three-dimensional printing (3DP) also known as the additive manufacturing (AM), a novel and futuristic technology that facilitates the printing of multiscale, biomimetic, intricate cytoarchitecture, function-structure hierarchy, multi-cellular tissues in the complicated micro-environment, patient-specific scaffolds, and medical devices. There is an increasing demand for developing 3D-printed products that can be utilized for organ transplantations due to the organ shortage. Nowadays, the 3DP has gained considerable interest in the tissue engineering (TE) field. Polylactide (PLA) and polycaprolactone (PCL) are exemplary biomaterials with excellent physicochemical properties and biocompatibility, which have drawn notable attraction in tissue regeneration. Herein, the recent advancements in the PLA and PCL biodegradable polymer-based composites as well as their reinforcement with hydrogels and bio-ceramics scaffolds manufactured through 3DP are systematically summarized and the applications of bone, cardiac, neural, vascularized and skin tissue regeneration are thoroughly elucidated. The interaction between implanted biodegradable polymers, in-vivo and in-vitro testing models for possible evaluation of degradation and biological properties are also illustrated. The final section of this review incorporates the current challenges and future opportunities in the 3DP of PCL- and PLA-based composites that will prove helpful for biomedical engineers to fulfill the demands of the clinical field.
Collapse
|
16
|
Biomimetically synthesized Physalis minima fruit extract-based zinc oxide nanoparticles as eco-friendly biomaterials for biological applications. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Yang Z, Wu C, Shi H, Luo X, Sun H, Wang Q, Zhang D. Advances in Barrier Membranes for Guided Bone Regeneration Techniques. Front Bioeng Biotechnol 2022; 10:921576. [PMID: 35814003 PMCID: PMC9257033 DOI: 10.3389/fbioe.2022.921576] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Guided bone regeneration (GBR) is a widely used technique for alveolar bone augmentation. Among all the principal elements, barrier membrane is recognized as the key to the success of GBR. Ideal barrier membrane should have satisfactory biological and mechanical properties. According to their composition, barrier membranes can be divided into polymer membranes and non-polymer membranes. Polymer barrier membranes have become a research hotspot not only because they can control the physical and chemical characteristics of the membranes by regulating the synthesis conditions but also because their prices are relatively low. Still now the bone augment effect of barrier membrane used in clinical practice is more dependent on the body’s own growth potential and the osteogenic effect is difficult to predict. Therefore, scholars have carried out many researches to explore new barrier membranes in order to improve the success rate of bone enhancement. The aim of this study is to collect and compare recent studies on optimizing barrier membranes. The characteristics and research progress of different types of barrier membranes were also discussed in detail.
Collapse
Affiliation(s)
- Ze Yang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Chang Wu
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Huixin Shi
- Department of Plastic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xinyu Luo
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Hui Sun
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Qiang Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
- *Correspondence: Qiang Wang, ; Dan Zhang,
| | - Dan Zhang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
- *Correspondence: Qiang Wang, ; Dan Zhang,
| |
Collapse
|
18
|
Basanth A, Mayilswamy N, Kandasubramanian B. Bone regeneration by biodegradable polymers. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2022.2029886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Abina Basanth
- Biopolymer Science, Cipet: Ipt, Hil Colony, Kochi, India
| | - Neelaambhigai Mayilswamy
- Department Of Metallurgical And Materials Engineering, Diat(D.U.), Ministry Of Defence, Girinagar, Pune, India
| | | |
Collapse
|
19
|
Role of Implantable Drug Delivery Devices with Dual Platform Capabilities in the Prevention and Treatment of Bacterial Osteomyelitis. Bioengineering (Basel) 2022; 9:bioengineering9020065. [PMID: 35200418 PMCID: PMC8869141 DOI: 10.3390/bioengineering9020065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 11/26/2022] Open
Abstract
As medicine advances and physicians are able to provide patients with innovative solutions, including placement of temporary or permanent medical devices that drastically improve quality of life of the patient, there is the persistent, recurring problem of chronic bacterial infection, including osteomyelitis. Osteomyelitis can manifest as a result of traumatic or contaminated wounds or implant-associated infections. This bacterial infection can persist as a result of inadequate treatment regimens or the presence of biofilm on implanted medical devices. One strategy to mitigate these concerns is the use of implantable medical devices that simultaneously act as local drug delivery devices (DDDs). This classification of device has the potential to prevent or aid in clearing chronic bacterial infection by delivering effective doses of antibiotics to the area of interest and can be engineered to simultaneously aid in tissue regeneration. This review will provide a background on bacterial infection and current therapies as well as current and prospective implantable DDDs, with a particular emphasis on local DDDs to combat bacterial osteomyelitis.
Collapse
|
20
|
Wang W, Xiong Y, Zhao R, Li X, Jia W. A novel hierarchical biofunctionalized 3D-printed porous Ti6Al4V scaffold with enhanced osteoporotic osseointegration through osteoimmunomodulation. J Nanobiotechnology 2022; 20:68. [PMID: 35123501 PMCID: PMC8817481 DOI: 10.1186/s12951-022-01277-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/20/2022] [Indexed: 02/06/2023] Open
Abstract
Background Femoral stem of titanium alloy has been widely used for hip arthroplasty with considerable efficacy; however, the application of this implant in patients with osteoporosis is limited due to excessive bone resorption. Macrophages participate in the regulation of inflammatory response and have been a topic of increasing research interest in implant field. However, few study has explored the link between macrophage polarization and osteogenic–osteoclastic differentiation. The present study aims to develop a novel hierarchical biofunctionalized 3D-printed porous Ti6Al4V scaffold with enhanced osteoporotic osseointegration through immunotherapy. Method To improve the osteointegration under osteoporosis, we developed a hierarchical biofunctionalized 3D-printed porous Ti6Al4V scaffold (PT). Biomimetic extracellular matrix (ECM) was constructed inside the interconnected pores of PT in micro-scale. And in nano-scale, a drug cargo icariin@Mg-MOF-74 (ICA@MOF) was wrapped in ECM-like structure that can control release of icariin and Mg2+. Results In this novel hierarchical biofunctionalized 3D-printed porous Ti6Al4V scaffold, the macroporous structure provides mechanical support, the microporous structure facilitates cell adhesion and enhances biocompatibility, and the nanostructure plays a biological effect. We also demonstrate the formation of abundant new bone at peripheral and internal sites after intramedullary implantation of the biofunctionalized PT into the distal femur in osteoporotic rats. We further find that the controlled-release of icariin and Mg2+ from the biofunctionalized PT can significantly improve the polarization of M0 macrophages to M2-type by inhibiting notch1 signaling pathway and induce the secretion of anti-inflammatory cytokines; thus, it significantly ameliorates bone metabolism, which contributes to improving the osseointegration between the PT and osteoporotic bone. Conclusion The therapeutic potential of hierarchical PT implants containing controlled release system are effective in geriatric orthopaedic osseointegration. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01277-0.
Collapse
|
21
|
Hajipour MJ, Saei AA, Walker ED, Conley B, Omidi Y, Lee K, Mahmoudi M. Nanotechnology for Targeted Detection and Removal of Bacteria: Opportunities and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100556. [PMID: 34558234 PMCID: PMC8564466 DOI: 10.1002/advs.202100556] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 08/06/2021] [Indexed: 05/04/2023]
Abstract
The emergence of nanotechnology has created unprecedented hopes for addressing several unmet industrial and clinical issues, including the growing threat so-termed "antibiotic resistance" in medicine. Over the last decade, nanotechnologies have demonstrated promising applications in the identification, discrimination, and removal of a wide range of pathogens. Here, recent insights into the field of bacterial nanotechnology are examined that can substantially improve the fundamental understanding of nanoparticle and bacteria interactions. A wide range of developed nanotechnology-based approaches for bacterial detection and removal together with biofilm eradication are summarized. The challenging effects of nanotechnologies on beneficial bacteria in the human body and environment and the mechanisms of bacterial resistance to nanotherapeutics are also reviewed.
Collapse
Affiliation(s)
- Mohammad J. Hajipour
- Department of Radiology and Precision Health ProgramMichigan State UniversityEast LansingMI48824USA
| | - Amir Ata Saei
- Division of Physiological Chemistry IDepartment of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholm171 65Sweden
| | - Edward D. Walker
- Department of EntomologyMichigan State UniversityEast LansingMI48824USA
- Department of Microbiology and Molecular GeneticsMichigan State UniversityEast LansingMI48824USA
| | - Brian Conley
- Department of Chemistry and Chemical BiologyRutgersThe State University of New JerseyPiscatawayNJ08854USA
| | - Yadollah Omidi
- Department of Pharmaceutical SciencesCollege of PharmacyNova Southeastern UniversityFort LauderdaleFL33328USA
| | - Ki‐Bum Lee
- Department of Chemistry and Chemical BiologyRutgersThe State University of New JerseyPiscatawayNJ08854USA
| | - Morteza Mahmoudi
- Department of Radiology and Precision Health ProgramMichigan State UniversityEast LansingMI48824USA
| |
Collapse
|
22
|
Raja IS, Preeth DR, Vedhanayagam M, Hyon SH, Lim D, Kim B, Rajalakshmi S, Han DW. Polyphenols-loaded electrospun nanofibers in bone tissue engineering and regeneration. Biomater Res 2021; 25:29. [PMID: 34563260 PMCID: PMC8466400 DOI: 10.1186/s40824-021-00229-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/30/2021] [Indexed: 01/27/2023] Open
Abstract
Bone is a complex structure with unique cellular and molecular process in its formation. Bone tissue regeneration is a well-organized and routine process at the cellular and molecular level in humans through the activation of biochemical pathways and protein expression. Though many forms of biomaterials have been applied for bone tissue regeneration, electrospun nanofibrous scaffolds have attracted more attention among researchers with their physicochemical properties such as tensile strength, porosity, and biocompatibility. When drugs, antibiotics, or functional nanoparticles are taken as additives to the nanofiber, its efficacy towards the application gets increased. Polyphenol is a versatile green/phytochemical small molecule playing a vital role in several biomedical applications, including bone tissue regeneration. When polyphenols are incorporated as additives to the nanofibrous scaffold, their combined properties enhance cell attachment, proliferation, and differentiation in bone tissue defect. The present review describes bone biology encompassing the composition and function of bone tissue cells and exemplifies the series of biological processes associated with bone tissue regeneration. We have highlighted the molecular mechanism of bioactive polyphenols involved in bone tissue regeneration and specified the advantage of electrospun nanofiber as a wound healing scaffold. As the polyphenols contribute to wound healing with their antioxidant and antimicrobial properties, we have compiled a list of polyphenols studied, thus far, for bone tissue regeneration along with their in vitro and in vivo experimental biological results and salient observations. Finally, we have elaborated on the importance of polyphenol-loaded electrospun nanofiber in bone tissue regeneration and discussed the possible challenges and future directions in this field.
Collapse
Affiliation(s)
| | - Desingh Raj Preeth
- Chemical Biology and Nanobiotechnology Laboratory, AU-KBC Research Centre, Anna University, MIT Campus, Chromepet, Chennai, 600 044, India
| | | | | | - Dohyung Lim
- Department of Mechanical Engineering, Sejong University, Seoul, 05006, South Korea
| | - Bongju Kim
- Dental Life Science Research Institute / Innovation Research & Support Center for Dental Science, Seoul National University Dental Hospital, Seoul, 03080, South Korea.
| | - Subramaniyam Rajalakshmi
- Chemical Biology and Nanobiotechnology Laboratory, AU-KBC Research Centre, Anna University, MIT Campus, Chromepet, Chennai, 600 044, India.
| | - Dong-Wook Han
- BIO-IT Fusion Technology Research Institute, Pusan National University, Busan, 46241, South Korea. .,Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan, 46241, South Korea.
| |
Collapse
|
23
|
Li D, Fei X, Wang K, Xu L, Wang Y, Tian J, Li Y. A novel self-healing triple physical cross-linked hydrogel for antibacterial dressing. J Mater Chem B 2021; 9:6844-6855. [PMID: 34612333 DOI: 10.1039/d1tb01257f] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The poor mechanical properties of wound dressings have always been a challenge in their application as wound protective barriers. In particular, when the hydrogel dressing absorbs the tissue fluid, the mechanical properties of the hydrogel will decrease greatly due to the swelling effect. In this study, an original antibacterial hydrogel dressing was prepared by a one-step process with acrylic acid, 1-vinyl-3-butylimidazolium, COOH-modified gum arabic, and aluminium chloride. The mechanical properties of this hydrogel were improved after water absorption due to hydrophobic interactions, so the hydrogel dressing could maintain good mechanical properties after absorption of the tissue fluid. Furthermore, 1-vinyl-3-butylimidazolium as an ionic liquid was introduced into the polymer backbone of hydrogels via covalent bonds and could promote the self-healing of hydrogels by facilitating the migration of aluminum ions with charge. The obtained hydrogels showed good self-healing properties, with a strain self-healing rate of 98.2% and a stress self-healing rate of 92.3%. In addition, this hydrogel exhibited excellent antibacterial activity against E. coli, S. aureus, and C. albicans. The results of the study on rat wound closure indicated that this hydrogel effectively accelerated the healing of a full-thickness skin defect. Therefore, this novel hydrogel has a broad application prospect in the field of wound dressing.
Collapse
Affiliation(s)
- Dongrun Li
- Instrumental Analysis Center, Dalian Polytechnic University, 1# Qinggongyuan Road, Dalian 116034, China.
| | | | | | | | | | | | | |
Collapse
|
24
|
Zhang D, Zheng H, Geng K, Shen J, Feng X, Xu P, Duan Y, Li Y, Wu R, Gou Z, Gao C. Large fuzzy biodegradable polyester microspheres with dopamine deposition enhance cell adhesion and bone regeneration in vivo. Biomaterials 2021; 272:120783. [PMID: 33812215 DOI: 10.1016/j.biomaterials.2021.120783] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/06/2021] [Accepted: 03/21/2021] [Indexed: 12/28/2022]
Abstract
The biodegradable polymer microparticles with different surface morphology and chemical compositions may influence significantly the behaviors of cells, and thereby further the performance of tissue regeneration in vivo. In this study, multi-stage hierarchical textures of poly(D,L-lactic-co-glycolide) (PLGA)/PLGA-b-PEG (poly(ethylene glycol)) microspheres with a diameter as large as 50-100 μm are fabricated based on interfacial instability of an emulsion. The obtained fuzzy structures on the microspheres are sensitive to annealing, which are changed gradually to a smooth one after treatment at 37 °C for 6 d or 80 °C for 1 h. The surface microstructures that are chemically dominated by PEG can be stabilized against annealing by dopamine deposition. By the combination use of annealing and dopamine deposition, a series of microspheres with robust surface topologies are facilely prepared. The fuzzy microstructures and dopamine deposition show a synergetic role to enhance cell-material interaction, leading to a larger number of adherent bone marrow-derived mesenchymal stem cells (BMSCs), A549 and MC 3T3 cells. The fuzzy microspheres with dopamine deposition can significantly promote bone regeneration 12 w post surgery in vivo, as revealed by micro-CT, histological, western blotting and RT-PCR analyses.
Collapse
Affiliation(s)
- Deteng Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Honghao Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Keyu Geng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jianhua Shen
- Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou, 310058, China
| | - Xue Feng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Peifang Xu
- Department of Ophthalmology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, 310009, China
| | - Yiyuan Duan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yifan Li
- Department of Orthopedics, The First Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, 310003, China
| | - Ronghuan Wu
- Department of Orthopedics, The First Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, 310003, China
| | - Zhongru Gou
- Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou, 310058, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
25
|
Liu M, Shu M, Yan J, Liu X, Wang R, Hou Z, Lin J. Luminescent net-like inorganic scaffolds with europium-doped hydroxyapatite for enhanced bone reconstruction. NANOSCALE 2021; 13:1181-1194. [PMID: 33404034 DOI: 10.1039/d0nr05608a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bone reconstruction is an urgent problem during clinical treatment. In the past few decades, the construction of composite scaffolds has been a hot spot in the research field of bone tissue engineering (BTE). However, the disadvantages of composite materials raise our awareness to explore the potential application of hydroxyapatite (HAp) in bone substitutes due to the closest properties of HAp to natural bone tissue. In our study, we synthesized Eu3+-doped HAp (HAp:Eu3+) ultralong nanowires, which can be transformed to hydrophilic net-like scaffolds via a thiol-ene click reaction. The property of luminescence of HAp from Eu3+ is beneficial for identifying the relative position of materials and bone marrow mesenchymal stem cells (BMSCs). HAp:Eu3+ scaffolds with excellent cell biocompatibility could promote the expression of early bone formation markers (ALP and ARS) and enhance the expression of genes and proteins associated with osteogenesis (Runx 2, OCN, and OPN). In the end, the results of the in vivo osteogenesis experiment showed that pure HAp scaffolds presented different effects of bone tissue reconstruction compared with the composite scaffolds with HAp nanorods and polymer materials. The superior osteogenic effect could be observed in net-like pure HAp scaffold groups. Furthermore, the absorption of HAp:Eu3+ scaffolds could be monitored due to the luminescence property of Eu3+. This strategy based on ultralong HAp nanowires proved to be a new method for the construction of simple reticular scaffolds for potential osteogenic applications.
Collapse
Affiliation(s)
- Min Liu
- Department of Periodontology, Stomatological Hospital, Jilin University, Changchun 130021, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
26
|
Arai Y, Park H, Park S, Kim D, Baek I, Jeong L, Kim BJ, Park K, Lee D, Lee SH. Bile acid-based dual-functional prodrug nanoparticles for bone regeneration through hydrogen peroxide scavenging and osteogenic differentiation of mesenchymal stem cells. J Control Release 2020; 328:596-607. [PMID: 32946872 DOI: 10.1016/j.jconrel.2020.09.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/20/2020] [Accepted: 09/11/2020] [Indexed: 12/11/2022]
Abstract
A high level of reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) upregulates pro-inflammatory cytokines and inhibits the osteogenic differentiation of mesenchymal stem cells (MSCs), which are key factors in bone regeneration. Ursodeoxycholic acid (UDCA), a hydrophilic bile acid, has antioxidant and anti-inflammatory activities and also plays beneficial roles in bone regeneration by stimulating the osteogenic differentiation of MSCs while suppressing their adipogenic differentiation. Despite its remarkable capacity for bone regeneration, multiple injections of UDCA induce adverse side effects such as mechanical stress and contamination in bone defects. To fully exploit the beneficial roles of UDCA, a concept polymeric prodrug was developed based on the hypothesis that removal of overproduced H2O2 will potentiate the osteogenic functions of UDCA. In this work, we report bone regenerative nanoparticles (NPs) formulated from a polymeric prodrug of UDCA (PUDCA) with UDCA incorporated in its backbone through H2O2-responsive peroxalate linkages. The PUDCA NPs displayed potent antioxidant and anti-inflammatory activities in MSCs and induced osteogenic rather than adipogenic differentiation of the MSCs. In rat models of bone defect, the PUDCA NPs exhibited significantly better bone regeneration capacity and anti-inflammatory effects than equivalent amounts of UDCA. We anticipate that PUDCA NPs have tremendous translational potential as bone regenerative agents.
Collapse
Affiliation(s)
- Yoshie Arai
- Department of Medical Biotechnology, Dongguk University, 04620 Seoul, South Korea
| | - Hyoeun Park
- Department of Medical Biotechnology, Dongguk University, 04620 Seoul, South Korea
| | - Sunghyun Park
- Department of Biomedical Science, CHA University, CHA Biocomplex, 13488 Gyeonggi-do, South Korea
| | - Dohyun Kim
- Department of Medical Biotechnology, Dongguk University, 04620 Seoul, South Korea
| | - Inho Baek
- Department of Medical Biotechnology, Dongguk University, 04620 Seoul, South Korea
| | - Lipjeong Jeong
- Department of BIN Convergence Technology, Jeonbuk National University, 54896 Jeonbuk, South Korea
| | - Byoung Ju Kim
- Department of Medical Biotechnology, Dongguk University, 04620 Seoul, South Korea
| | - Kwideok Park
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), 02792 Seoul, South Korea
| | - Dongwon Lee
- Department of BIN Convergence Technology, Jeonbuk National University, 54896 Jeonbuk, South Korea.
| | - Soo-Hong Lee
- Department of Medical Biotechnology, Dongguk University, 04620 Seoul, South Korea.
| |
Collapse
|
27
|
Zhao Q, Shi M, Yin C, Zhao Z, Zhang J, Wang J, Shen K, Zhang L, Tang H, Xiao Y, Zhang Y. Dual-Wavelength Photosensitive Nano-in-Micro Scaffold Regulates Innate and Adaptive Immune Responses for Osteogenesis. NANO-MICRO LETTERS 2020; 13:28. [PMID: 34138183 PMCID: PMC8187671 DOI: 10.1007/s40820-020-00540-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/28/2020] [Indexed: 05/17/2023]
Abstract
The immune response of a biomaterial determines its osteoinductive effect. Although the mechanisms by which some immune cells promote regeneration have been revealed, the biomaterial-induced immune response is a dynamic process involving multiple cells. Currently, it is challenging to accurately regulate the innate and adaptive immune responses to promote osteoinduction in biomaterials. Herein, we investigated the roles of macrophages and dendritic cells (DCs) during the osteoinduction of biphasic calcium phosphate (BCP) scaffolds. We found that osteoinductive BCP directed M2 macrophage polarization and inhibited DC maturation, resulting in low T cell response and efficient osteogenesis. Accordingly, a dual-targeting nano-in-micro scaffold (BCP loaded with gold nanocage, BCP-GNC) was designed to regulate the immune responses of macrophages and DCs. Through a dual-wavelength photosensitive switch, BCP-GNC releases interleukin-4 in the early stage of osteoinduction to target M2 macrophages and then releases dexamethasone in the later stage to target immature DCs, creating a desirable inflammatory environment for osteogenesis. This study demonstrates that biomaterials developed to have specific regulatory capacities for immune cells can be used to control the early inflammatory responses of implanted materials and induce osteogenesis.
Collapse
Affiliation(s)
- Qin Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, People's Republic of China
| | - Miusi Shi
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, People's Republic of China
| | - Chengcheng Yin
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, People's Republic of China
| | - Zifan Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, People's Republic of China
| | - Jinglun Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, People's Republic of China
| | - Jinyang Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, People's Republic of China
| | - Kailun Shen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, People's Republic of China
| | - Lingling Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, People's Republic of China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Hua Tang
- Institute of Immunology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, People's Republic of China
| | - Yin Xiao
- Institute of Health and Biomedical Innovation & Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Kelvin Grove, 4059, QLD, Australia
| | - Yufeng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, People's Republic of China.
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, People's Republic of China.
| |
Collapse
|
28
|
Wang J, Zhan L, Zhang X, Wu R, Liao L, Wei J. Silver Nanoparticles Coated Poly(L-Lactide) Electrospun Membrane for Implant Associated Infections Prevention. Front Pharmacol 2020; 11:431. [PMID: 32322206 PMCID: PMC7158749 DOI: 10.3389/fphar.2020.00431] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/20/2020] [Indexed: 01/25/2023] Open
Abstract
Bacterial infection has been a critic problem for implant infections. Poly(L-lactide) (PLLA) membrane has great potential for Guided bone regeneration (GBR), however, PLLA lack antibacterial property and thus may face bacterial infections. In this work, a mussel inspired method was used to treat PLLA membrane with dopamine and formed polydopamine (PDA) coated PLLA (PLLA@PDA), and then silver Nanoparticles (AgNPs) was immobilized on the surface of PLLA via the reduction effect of PDA. The XPS results showed that the silver element contents may be tuned from 1.6% to 15.4%. The AgNPs coated PLLA (PLLA@Ag) showed good antibacterial property (98.3% bactericidal efficiency may be obtained) and good biocompatibility, implying that the PLLA@Ag membrane have potential application as antibacterial GBR membrane, which may enhance the application of PLLA.
Collapse
Affiliation(s)
- Jiaolong Wang
- School of Stomatology, Nanchang University, Nanchang, China.,The Key Laboratory of Oral Biomedicine, Nanchang, China
| | - Lilin Zhan
- School of Stomatology, Nanchang University, Nanchang, China.,The Key Laboratory of Oral Biomedicine, Nanchang, China
| | - Xianhua Zhang
- School of Stomatology, Nanchang University, Nanchang, China.,The Key Laboratory of Oral Biomedicine, Nanchang, China
| | - Runfa Wu
- School of Stomatology, Nanchang University, Nanchang, China.,The Key Laboratory of Oral Biomedicine, Nanchang, China
| | - Lan Liao
- School of Stomatology, Nanchang University, Nanchang, China.,The Key Laboratory of Oral Biomedicine, Nanchang, China
| | - Junchao Wei
- School of Stomatology, Nanchang University, Nanchang, China.,The Key Laboratory of Oral Biomedicine, Nanchang, China.,College of Chemistry, Nanchang University, Nanchang, China
| |
Collapse
|
29
|
Foster AL, Moriarty TF, Trampuz A, Jaiprakash A, Burch MA, Crawford R, Paterson DL, Metsemakers WJ, Schuetz M, Richards RG. Fracture-related infection: current methods for prevention and treatment. Expert Rev Anti Infect Ther 2020; 18:307-321. [DOI: 10.1080/14787210.2020.1729740] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Andrew L Foster
- AO Research Institute Davos, Davos, Switzerland
- Faculty of Science and Engineering, Queensland University of Technology (QUT), Brisbane, Australia
- Department of Orthopaedic Surgery, Royal Brisbane and Women’s Hospital, Queensland, Australia
- Jamieson Trauma Institute, Royal Brisbane and Women’s Hospital, Queensland, Australia
| | | | - Andrej Trampuz
- Center for Musculoskeletal Surgery, Septic Unit Charité-Universitätsmedizin, Berlin, Germany
| | - Anjali Jaiprakash
- Faculty of Science and Engineering, Queensland University of Technology (QUT), Brisbane, Australia
| | | | - Ross Crawford
- Faculty of Science and Engineering, Queensland University of Technology (QUT), Brisbane, Australia
| | - David L Paterson
- University of Queensland Centre of Clinical Research (UQCCR), Brisbane, Australia
| | - Willem-Jan Metsemakers
- Department of Trauma Surgery, University Hospitals Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, Belgium
| | - Michael Schuetz
- Faculty of Science and Engineering, Queensland University of Technology (QUT), Brisbane, Australia
- Department of Orthopaedic Surgery, Royal Brisbane and Women’s Hospital, Queensland, Australia
- Jamieson Trauma Institute, Royal Brisbane and Women’s Hospital, Queensland, Australia
| | | |
Collapse
|
30
|
Medina-Cruz D, Mostafavi E, Vernet-Crua A, Cheng J, Shah V, Cholula-Diaz JL, Guisbiers G, Tao J, García-Martín JM, Webster TJ. Green nanotechnology-based drug delivery systems for osteogenic disorders. Expert Opin Drug Deliv 2020; 17:341-356. [PMID: 32064959 DOI: 10.1080/17425247.2020.1727441] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Current treatments for osteogenic disorders are often successful, however they are not free of drawbacks, such as toxicity or side effects. Nanotechnology offers a platform for drug delivery in the treatment of bone disorders, which can overcome such limitations. Nevertheless, traditional synthesis of nanomaterials presents environmental and health concerns due to its production of toxic by-products, the need for extreme and harsh raw materials, and their lack of biocompatibility over time.Areas covered: This review article contains an overview of the current status of treating osteogenic disorders employing green nanotechnological approaches, showing some of the latest advances in the application of green nanomaterials, as drug delivery carriers, for the effective treatment of osteogenic disorders.Expert opinion: Green nanotechnology, as a potential solution, is understood as the use of living organisms, biomolecules and environmentally friendly processes for the production of nanomaterials. Nanomaterials derived from bacterial cultures or biomolecules isolated from living organisms, such as carbohydrates, proteins, and nucleic acids, have been proven to be effective composites. These nanomaterials introduce enhancements in the treatment and prevention of osteogenic disorders, compared to physiochemically-synthesized nanostructures, specifically in terms of their improved cell attachment and proliferation, as well as their ability to prevent bacterial adhesion.
Collapse
Affiliation(s)
- David Medina-Cruz
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Ebrahim Mostafavi
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Ada Vernet-Crua
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Junjiang Cheng
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Veer Shah
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | | | - Gregory Guisbiers
- Department of Physics and Astronomy, University of Arkansas at Little Rock, Little Rock, AR, USA
| | - Juan Tao
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | | | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
31
|
Yin C, Zhao Q, Li W, Zhao Z, Wang J, Deng T, Zhang P, Shen K, Li Z, Zhang Y. Biomimetic anti-inflammatory nano-capsule serves as a cytokine blocker and M2 polarization inducer for bone tissue repair. Acta Biomater 2020; 102:416-426. [PMID: 31760223 DOI: 10.1016/j.actbio.2019.11.025] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/29/2019] [Accepted: 11/11/2019] [Indexed: 02/02/2023]
Abstract
Controlling of pro-inflammation induced by pro-inflammatory cytokines and anti-inflammatory response induced by M2 macrophages is important for osteogenesis in the process of bone tissue repair. Thus, we fabricated biomimetic anti-inflammatory nano-capsule (BANC) that can block cytokines and promote M2 macrophage polarization, presenting a positive role for bone tissue repair. The BANC is a biomimic nanosystem, coated with lipopolysaccharide-treated macrophage cell membranes with cytokine receptors enveloping gold nanocage (AuNC) as "cytokine blocker", and loaded with resolvin D1 inside into AuNC as "M2 polarization inducer" whose controlled-release could be triggered under near-infrared laser irradiation in sequence, and these chronological events were consistent with the healing process of bone tissue repair. Moreover, in vivo application of femoral bone defects revealed that the BANC composite boron-containing mesoporous bioactive glass scaffolds improved the final effects of bone tissue repair through preventing inflammatory response, promoting M2 polarization in sequence in accord with the in vitro investigation. Hence, cytokine neutralization and M2 macrophage polarization enables the BANC to enhance the bone tissue repair as a biomimetic anti-inflammation effector. Therefore, this study provides potential therapeutic strategies for trauma-mediated or inflammation-related bone defects based on a biomimetic nanomaterial with weakened pro-inflammatory and enhanced anti-inflammatory effects. STATEMENT OF SIGNIFICANCE: Cell membrane-mimic nanomaterials have been popular for blocking natural cell responses for some infection diseases, yet their role in biological process of bone repair is unknown. Here, we fabricated Biomimetic Anti-inflammatory Nano-Capsule (BANC), coated with cell membrane with cytokines receptors on the surface which could neutralize the pro-inflammatory cytokine receptor to block activated pro-inflammation, loaded with Resolvin D1 inside which could be controllably released by NIR irradiation to promote M2 macrophage polarization for the following bone formation during the process of bone repair. Administration of BANC as cytokines blocker and M2 polarization inducer to enhance the bone regeneration, thus presenting a promising potential for the treatment of bone repair and regeneration.
Collapse
Affiliation(s)
- Chengcheng Yin
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Qin Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Wu Li
- School of life science, Wuchang University of Technology, Wuhan 430223, China
| | - Zifan Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Jinyang Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Tian Deng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Peng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Kailun Shen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zubing Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yufeng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
32
|
Chitosan-hybrid poss nanocomposites for bone regeneration: The effect of poss nanocage on surface, morphology, structure and in vitro bioactivity. Int J Biol Macromol 2020; 142:643-657. [DOI: 10.1016/j.ijbiomac.2019.10.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 09/18/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022]
|
33
|
Ansari M. Bone tissue regeneration: biology, strategies and interface studies. Prog Biomater 2019; 8:223-237. [PMID: 31768895 PMCID: PMC6930319 DOI: 10.1007/s40204-019-00125-z] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/15/2019] [Indexed: 12/11/2022] Open
Abstract
Nowadays, bone diseases and defects as a result of trauma, cancers, infections and degenerative and inflammatory conditions are increasing. Consequently, bone repair and replacement have been developed with improvement of orthopedic technologies and biomaterials of superior properties. This review paper is intended to sum up and discuss the most relevant studies performed in the field of bone biology and bone regeneration approaches. Therefore, the bone tissue regeneration was investigated by synthetic substitutes, scaffolds incorporating active molecules, nanomedicine, cell-based products, biomimetic fibrous and nonfibrous substitutes, biomaterial-based three-dimensional (3D) cell-printing substitutes, bioactive porous polymer/inorganic composites, magnetic field and nano-scaffolds with stem cells and bone-biomaterials interface studies.
Collapse
Affiliation(s)
- Mojtaba Ansari
- Department of Biomedical Engineering, Meybod University, Meybod, Iran.
| |
Collapse
|
34
|
J Hill M, Qi B, Bayaniahangar R, Araban V, Bakhtiary Z, Doschak M, Goh B, Shokouhimehr M, Vali H, Presley J, Zadpoor A, Harris M, Abadi P, Mahmoudi M. Nanomaterials for bone tissue regeneration: updates and future perspectives. Nanomedicine (Lond) 2019; 14:2987-3006. [DOI: 10.2217/nnm-2018-0445] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Joint replacement and bone reconstructive surgeries are on the rise globally. Current strategies for implants and bone regeneration are associated with poor integration and healing resulting in repeated surgeries. A multidisciplinary approach involving basic biological sciences, tissue engineering, regenerative medicine and clinical research is required to overcome this problem. Considering the nanostructured nature of bone, expertise and resources available through recent advancements in nanobiotechnology enable researchers to design and fabricate devices and drug delivery systems at the nanoscale to be more compatible with the bone tissue environment. The focus of this review is to present the recent progress made in the rationale and design of nanomaterials for tissue engineering and drug delivery relevant to bone regeneration.
Collapse
Affiliation(s)
- Michael J Hill
- Department of Mechanical Engineering – Engineering Mechanics, Michigan Technological University, Houghton, MI 49931, USA
| | - Baowen Qi
- Center for Nanomedicine & Department of Anesthesiology, Brigham & Women's Hospital Harvard Medical School, Boston, MA 02115, USA
| | - Rasoul Bayaniahangar
- Department of Mechanical Engineering – Engineering Mechanics, Michigan Technological University, Houghton, MI 49931, USA
| | - Vida Araban
- School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Zahra Bakhtiary
- Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Michael R Doschak
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Brian C Goh
- Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mohammadreza Shokouhimehr
- Department of Materials Science & Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hojatollah Vali
- Department of Anatomy & Cell Biology & Facility for Electron Microscopy Research, McGill University, Montreal, QC H3A 0G4, Canada
| | - John F Presley
- Department of Anatomy & Cell Biology & Facility for Electron Microscopy Research, McGill University, Montreal, QC H3A 0G4, Canada
| | - Amir A Zadpoor
- Department of Biomechanical Engineering, Delft University of Technology (TU Delft), Delft, The Netherlands
| | - Mitchel B Harris
- Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Parisa PSS Abadi
- Department of Mechanical Engineering – Engineering Mechanics, Michigan Technological University, Houghton, MI 49931, USA
| | - Morteza Mahmoudi
- Precision Health Program & Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
35
|
Temenoff J, Hastings R. Special issue on Drug Delivery for Musculoskeletal Applications. Acta Biomater 2019; 93:1. [PMID: 31284900 DOI: 10.1016/j.actbio.2019.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
36
|
Liu Y, Suo X, Peng H, Yan W, Li H, Yang X, Li Z, Zhang J, Liu D. Multifunctional Magnetic Nanoplatform Eliminates Cancer Stem Cells via Inhibiting the Secretion of Extracellular Heat Shock Protein 90. Adv Healthc Mater 2019; 8:e1900160. [PMID: 30969015 DOI: 10.1002/adhm.201900160] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/16/2019] [Indexed: 12/26/2022]
Abstract
Cancer stem cells (CSCs) are responsible for malignant tumor initiation, recurrences, and metastasis. Therefore, targeting CSCs is a promising strategy for the development of cancer therapies. A big challenge for CSC-based cancer therapy is the overexpression of therapeutic stress protein, heat shock protein 90 (Hsp90), which protects CSCs from further therapeutic-induced damage, leading to the failure of treatment. Thus, efficient strategies to target CSCs are urgently needed for cancer therapy. To this end, a multifunctional nanoparticle (MNP) for CSC-based combined thermotherapy and chemotherapy is reported. This strategy dramatically suppresses tumor growth in breast CSC xenograft-bearing mice. Furthermore, a new mechanism is present that the MNP exerts its striking effects on CSCs by inhibiting the secretion of extracellular Hsp90 (eHsp90), resulting in the interruption of several key signaling pathways. These findings open new perspectives on the use of an MNP for effective CSC-based cancer treatment by inhibiting the function of eHsp90.
Collapse
Affiliation(s)
- Yajing Liu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of EducationHebei University Baoding 071002 P. R. China
- College of Chemistry and Environmental ScienceChemical Biology Key Laboratory of Hebei ProvinceHebei University Baoding 071002 P. R. China
| | - Xiaomin Suo
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of EducationHebei University Baoding 071002 P. R. China
- College of Chemistry and Environmental ScienceChemical Biology Key Laboratory of Hebei ProvinceHebei University Baoding 071002 P. R. China
| | - Haotong Peng
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of EducationHebei University Baoding 071002 P. R. China
- College of Chemistry and Environmental ScienceChemical Biology Key Laboratory of Hebei ProvinceHebei University Baoding 071002 P. R. China
| | - Weixiao Yan
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of EducationHebei University Baoding 071002 P. R. China
- College of Chemistry and Environmental ScienceChemical Biology Key Laboratory of Hebei ProvinceHebei University Baoding 071002 P. R. China
| | - Hongjuan Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of EducationHebei University Baoding 071002 P. R. China
- College of Chemistry and Environmental ScienceChemical Biology Key Laboratory of Hebei ProvinceHebei University Baoding 071002 P. R. China
| | - Xinjian Yang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of EducationHebei University Baoding 071002 P. R. China
- College of Chemistry and Environmental ScienceChemical Biology Key Laboratory of Hebei ProvinceHebei University Baoding 071002 P. R. China
| | - Zhenhua Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of EducationHebei University Baoding 071002 P. R. China
- College of Chemistry and Environmental ScienceChemical Biology Key Laboratory of Hebei ProvinceHebei University Baoding 071002 P. R. China
| | - Jinchao Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of EducationHebei University Baoding 071002 P. R. China
- College of Chemistry and Environmental ScienceChemical Biology Key Laboratory of Hebei ProvinceHebei University Baoding 071002 P. R. China
| | - Dandan Liu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of EducationHebei University Baoding 071002 P. R. China
- College of Chemistry and Environmental ScienceChemical Biology Key Laboratory of Hebei ProvinceHebei University Baoding 071002 P. R. China
| |
Collapse
|
37
|
Kim MG, Kang TW, Park JY, Park SH, Ji YB, Ju HJ, Kwon DY, Kim YS, Kim SW, Lee B, Choi HS, Lee HB, Kim JH, Lee BY, Min BH, Kim MS. An injectable cationic hydrogel electrostatically interacted with BMP2 to enhance in vivo osteogenic differentiation of human turbinate mesenchymal stem cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109853. [PMID: 31349513 DOI: 10.1016/j.msec.2019.109853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 04/29/2019] [Accepted: 06/01/2019] [Indexed: 01/06/2023]
Abstract
We have designed and characterized an injectable, electrostatically bonded, in situ-forming hydrogel system consisting of a cationic polyelectrolyte [(methoxy)polyethylene glycol-b-(poly(ε-caprolactone)-ran-poly(L-lactic acid)] (MP) copolymer derivatized with an amine group (MP-NH2) and anionic BMP2. To the best of our knowledge, there have been hardly any studies that have investigated electrostatically bonded, in situ-forming hydrogel systems consisting of MP-NH2 and BMP2, with respect to how they promote in vivo osteogenic differentiation of human turbinate mesenchymal stem cells (hTMSCs). Injectable formulations almost immediately formed an electrostatically loaded hydrogel depot containing BMP2, upon injection into mice. The hydrogel features and stability of BMP2 inside the hydrogel were significantly affected by the electrostatic attraction between BMP2 and MP-NH2. Additionally, the time BMP2 spent inside the hydrogel depot was prolonged in vivo, as evidenced by in vivo near-infrared fluorescence imaging. Biocompatibility was demonstrated by the fact that hTMSCs survived in vivo, even after 8 weeks and even though relatively few macrophages were in the hydrogel depot. The osteogenic capacity of the electrostatically loaded hydrogel implants containing BMP2 was higher than that of a hydrogel that was simply loaded with BMP2, as evidenced by Alizarin Red S, von Kossa, and hematoxylin and eosin staining as well as osteonectin, osteopontin, osteocalcin, and type 1α collagen mRNA expression. The results confirmed that our injectable, in situ-forming hydrogel system, electrostatically loaded with BMP2, can enhance in vivo osteogenic differentiation of hTMSCs.
Collapse
Affiliation(s)
- Mal Geum Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Tae Woong Kang
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Joon Yeong Park
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Seung Hun Park
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Yun Bae Ji
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Hyeon Jin Ju
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Doo Yeon Kwon
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Young Sik Kim
- The Institute of Biomaterial and Medical Engineering, Cellumed Co., Ltd., Seoul 08589, Republic of Korea
| | - Sung Won Kim
- Department of Otolaryngology-Head and Neck Surgery, The Catholic University of Korea, College of Medicine, Seoul 06591, Republic of Korea
| | - Bong Lee
- Department of Polymer Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Hai Bang Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Jae Ho Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Bun Yeoul Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Byoung Hyun Min
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Moon Suk Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea.
| |
Collapse
|
38
|
Gunputh UF, Le H, Besinis A, Tredwin C, Handy RD. Multilayered composite coatings of titanium dioxide nanotubes decorated with zinc oxide and hydroxyapatite nanoparticles: controlled release of Zn and antimicrobial properties against Staphylococcus aureus. Int J Nanomedicine 2019; 14:3583-3600. [PMID: 31190813 PMCID: PMC6529028 DOI: 10.2147/ijn.s199219] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 03/21/2019] [Indexed: 12/28/2022] Open
Abstract
Purpose: This study aimed to decorate the surface of TiO2 nanotubes (TiO2 NTs) grown on medical grade Ti-6Al-4V alloy with an antimicrobial layer of nano zinc oxide particles (nZnO) and then determine if the antimicrobial properties were maintained with a final layer of nano-hydroxyapatite (HA) on the composite. Methods: The additions of nZnO were attempted at three different annealing temperatures: 350, 450 and 550 °C. Of these temperatures, 350°C provided the most uniform and nanoporous coating and was selected for antimicrobial testing. Results: The LIVE/DEAD assay showed that ZnCl2 and nZnO alone were >90% biocidal to the attached bacteria, and nZnO as a coating on the nanotubes resulted in around 70% biocidal activity. The lactate production assay agreed with the LIVE/DEAD assay. The concentrations of lactate produced by the attached bacteria on the surface of nZnO-coated TiO2 NTs and ZnO/HA-coated TiO2 NTs were 0.13±0.03 mM and 0.37±0.1 mM, respectively, which was significantly lower than that produced by the bacteria on TiO2 NTs alone, 1.09±0.30 mM (Kruskal–Wallis, P<0.05, n=6). These biochemical measurements were correlated with electron micrographs of cell morphology and cell coverage on the coatings. Conclusion: nZnO on TiO2 NTs was a stable and antimicrobial coating, and most of the biocidal properties remained in the presence of nano-HA on the coating.
Collapse
Affiliation(s)
- Urvashi F Gunputh
- School of Mechanical Engineering and Built Environment, University of Derby, Derby DE22 3AW, UK.,School of Engineering, Plymouth University, Plymouth PL4 8AA, UK
| | - Huirong Le
- School of Mechanical Engineering and Built Environment, University of Derby, Derby DE22 3AW, UK
| | | | - Christopher Tredwin
- Peninsula Schools of Medicine and Dentistry, Plymouth University, Plymouth, Devon PL6 8BU, UK
| | - Richard D Handy
- School of Biological & Marine Sciences, Plymouth University, Plymouth PL4 8AA, UK
| |
Collapse
|
39
|
Electrospun polymer micro/nanofibers as pharmaceutical repositories for healthcare. J Control Release 2019; 302:19-41. [PMID: 30922946 DOI: 10.1016/j.jconrel.2019.03.020] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 12/19/2022]
|
40
|
Shu Y, Zhou Y, Ma P, Li C, Ge C, Wang Y, Li Q, Yu K, Lu R, Zou X, Yin Y, Li J. Degradation in vitro and in vivo of β-TCP/MCPM-based premixed calcium phosphate cement. J Mech Behav Biomed Mater 2019; 90:86-95. [DOI: 10.1016/j.jmbbm.2018.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/28/2018] [Accepted: 10/01/2018] [Indexed: 01/04/2023]
|
41
|
Antimicrobial Silver Nanoparticles: Future of Nanomaterials. NANOTECHNOLOGY IN THE LIFE SCIENCES 2019. [DOI: 10.1007/978-3-030-16534-5_6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
42
|
Luo S, Jiang T, Yang X, Yang Y, Zhao J. Treatment of tumor-like lesions in the femoral neck using free nonvascularized fibular autografts in pediatric patients before epiphyseal closure. J Int Med Res 2018; 47:823-835. [PMID: 30556444 PMCID: PMC6381492 DOI: 10.1177/0300060518813510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Objectives Surgical resection of benign bone tumors and tumor-like lesions at the
femoral neck presents a difficult reconstructive challenge. However, the
safety and efficacy of free nonvascularized fibular autografts (FNFAs) in
the treatment of femoral neck tumor-like lesions before epiphyseal closure
in young patients remain unknown. Methods Sixteen pediatric patients who had not yet undergone epiphyseal closure were
treated with FNFAs after resection of tumor-like lesions in the femoral neck
from August 2012 to September 2016. All patients underwent supplementary
skeletal traction through the supracondylar femur for 4 to 6 weeks after
resection. Demographic data were recorded and clinical and radiological
outcomes were evaluated during the follow-up. Results All patients could walk with partial weight bearing 4 weeks postoperative,
and full weight bearing was permitted after a mean of 8 weeks. Graft union
was attained in all 16 patients at a mean of 2 months. The donor site of the
fibular cortical strut showed good regeneration in all patients. The Harris
hip score significantly improved from 65% to 95%. Conclusions Application of an FNFA is a feasible method in the treatment of tumor-like
lesions in the femoral neck before epiphyseal closure in pediatric
patients. Level of Evidence Level IV.
Collapse
Affiliation(s)
- Shanchao Luo
- Yulin Orthopedics Hospital of Chinese and Western Medicine,
Yulin, China
- Postdoctoral Innovation Practice Base, The Ninth Affiliated
Hospital of Guangxi Medical University, Beihai, China
- Guangxi Engineering Center in Biomedical Materials for Tissue
and Organ Regeneration & Guangxi Collaborative Innovation Center for
Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning,
China
- *These authors contributed equally to this
work
| | - Tongmeng Jiang
- Guangxi Engineering Center in Biomedical Materials for Tissue
and Organ Regeneration & Guangxi Collaborative Innovation Center for
Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning,
China
- Department of Orthopaedics & Guangxi Key Laboratory of
Regenerative Medicine, International Joint Laboratory on Regeneration of Bone
and Soft Tissue, The First Affiliated Hospital of Guangxi Medical University,
Nanning, China
- School of Materials Science and Engineering, Zhejiang
University, Hangzhou, China
- *These authors contributed equally to this
work
| | - Xiaoping Yang
- Yulin Orthopedics Hospital of Chinese and Western Medicine,
Yulin, China
| | - Yingnian Yang
- Yulin Orthopedics Hospital of Chinese and Western Medicine,
Yulin, China
| | - Jinmin Zhao
- Postdoctoral Innovation Practice Base, The Ninth Affiliated
Hospital of Guangxi Medical University, Beihai, China
- Guangxi Engineering Center in Biomedical Materials for Tissue
and Organ Regeneration & Guangxi Collaborative Innovation Center for
Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning,
China
- Department of Orthopaedics & Guangxi Key Laboratory of
Regenerative Medicine, International Joint Laboratory on Regeneration of Bone
and Soft Tissue, The First Affiliated Hospital of Guangxi Medical University,
Nanning, China
- Jinmin Zhao, Department of Orthopaedics
& Guangxi Key Laboratory of Regenerative Medicine, International Joint
Laboratory on Regeneration of Bone and Soft Tissue, The First Affiliated
Hospital of Guangxi Medical University, Shuangyong Road #22, Nanning 530021,
China.
| |
Collapse
|
43
|
Liu S, Mou S, Zhou C, Guo L, Zhong A, Yang J, Yuan Q, Wang J, Sun J, Wang Z. Off-the-Shelf Biomimetic Graphene Oxide-Collagen Hybrid Scaffolds Wrapped with Osteoinductive Extracellular Matrix for the Repair of Cranial Defects in Rats. ACS APPLIED MATERIALS & INTERFACES 2018; 10:42948-42958. [PMID: 30421913 DOI: 10.1021/acsami.8b11071] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Hydrogels such as type I collagen (COL) have been widely studied in bone tissue repair, whereas their weak mechanical strength has limited their clinical application. By adding graphene oxide (GO) nanosheets, researchers have successfully improved the mechanical properties and biocompatibility of the hydrogels. However, for large bone defects, the osteoinductive and cell adhesion ability of the GO hybrid hydrogels need to be improved. Mesenchymal stem cell (MSC) secreted extracellular matrix (ECM), which is an intricate network, could provide a biomimetic microenvironment and functional molecules that enhance the cell proliferation and survival rate. To synergize the advantages of MSC-ECM with GO-COL hybrid implants, we developed a novel ECM scaffold construction method. First, an osteoinductive extracellular matrix (OiECM) was created by culturing osteodifferentiated bone marrow mesenchymal stem cells (BMSCs) for 21 days. Then, the GO-COL scaffold was fully wrapped with the OiECM to construct the OiECM-GO-COL composite for implantation. The morphology, physical properties, biocompatibility, and osteogenic performance of the OiECM-GO-COL implants were assessed in vitro and in vivo (5 mm rat cranial defect model). Both gene expression and cell level assessments suggested that the BMSCs cultured on OiECM-GO-COL implants had a higher proliferation rate and osteogenic ability compared to the COL or GO-COL groups. In vivo results showed that the OiECM-GO-COL implants achieved better repair effects in a rat critical cranial defect model, whereas bone formation in other groups was limited. This study provides a promising strategy, which greatly improves the osteogenic ability and biocompatibility of the GO hydrogels without the procedure of seeding and culturing MSCs on scaffolds in vitro, demonstrating its potential as an off-the-shelf method for bone tissue engineering.
Collapse
Affiliation(s)
- Shaokai Liu
- Department of Plastic Surgery, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , 1277 Jiefang Avenue , Wuhan 430022 , China
| | - Shan Mou
- Department of Plastic Surgery, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , 1277 Jiefang Avenue , Wuhan 430022 , China
| | - Chuchao Zhou
- Department of Plastic Surgery, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , 1277 Jiefang Avenue , Wuhan 430022 , China
| | - Liang Guo
- Department of Plastic Surgery, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , 1277 Jiefang Avenue , Wuhan 430022 , China
| | - Aimei Zhong
- Department of Plastic Surgery, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , 1277 Jiefang Avenue , Wuhan 430022 , China
| | - Jie Yang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , 1277 Jiefang Avenue , Wuhan 430022 , China
| | - Quan Yuan
- Department of Plastic Surgery, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , 1277 Jiefang Avenue , Wuhan 430022 , China
| | - Jiecong Wang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , 1277 Jiefang Avenue , Wuhan 430022 , China
| | - Jiaming Sun
- Department of Plastic Surgery, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , 1277 Jiefang Avenue , Wuhan 430022 , China
| | - Zhenxing Wang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , 1277 Jiefang Avenue , Wuhan 430022 , China
| |
Collapse
|
44
|
Chen Y, Chen S, Kawazoe N, Chen G. Promoted Angiogenesis and Osteogenesis by Dexamethasone-loaded Calcium Phosphate Nanoparticles/Collagen Composite Scaffolds with Microgroove Networks. Sci Rep 2018; 8:14143. [PMID: 30237563 PMCID: PMC6147787 DOI: 10.1038/s41598-018-32495-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/07/2018] [Indexed: 11/09/2022] Open
Abstract
Reconstruction of large bone defects remains a clinical challenge because current approaches involving surgery and bone grafting often do not yield satisfactory outcomes. For artificial bone substitutes, angiogenesis plays a pivotal role to achieve the final success of newly regenerated bone. In this study, dexamethasone-loaded biphasic calcium phosphate nanoparticles/collagen composite scaffolds with several types of concave microgrooves were prepared for simultaneous promotion of angiogenesis and osteogenesis. Microgrooves in the scaffolds were supposed to guide the assembly of human umbilical vascular endothelial cells (HUVECs) into well aligned tubular structures, thus promoting rapid angiogenesis. The scaffolds were used for co-culture of HUVECs and human bone marrow-derived mesenchymal stem cells. Subcutaneous implantation in mice showed that more blood vessels and newly formed bone were observed in the microgrooved composite scaffolds than in the control scaffold. Scaffold bearing parallel microgrooves with a concave width of 290 µm and a convex ridge width of 352 µm showed the highest promotion effect on angiogenesis and osteogenesis among the parallelly microgrooved composite scaffolds. The scaffolds bearing a grid network had further superior promotion effect to the scaffolds bearing parallel microgrooves. The results indicated that microgrooves in the composite scaffolds facilitated angiogenesis and stimulated new bone formation. The microgrooved composite scaffolds should be useful for repairing of large bone defects.
Collapse
Affiliation(s)
- Ying Chen
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Shangwu Chen
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Naoki Kawazoe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Guoping Chen
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.
- Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan.
| |
Collapse
|
45
|
Du J, Gan S, Bian Q, Fu D, Wei Y, Wang K, Lin Q, Chen W, Huang D. Preparation and characterization of porous hydroxyapatite/β-cyclodextrin-based polyurethane composite scaffolds for bone tissue engineering. J Biomater Appl 2018; 33:402-409. [DOI: 10.1177/0885328218797545] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this study, novel porous scaffolds containing hydroxyapatite and β-cyclodextrin-based polyurethane were first successfully fabricated by polymerizing β-cyclodextrin with hexamethylene diisocyanate and hydroxyapatite in situ for bone tissue engineering. The physicochemical and mechanical properties as well as cytocompatibility of porous scaffolds were investigated. The results showed that polyurethane reinforced with hydroxyapatite composites had cancellous bone-like porous structure. The mechanical strength of the scaffolds increased with increasing the hydroxyapatite content in scaffolds. Synthesized scaffolds (PU1, PUHA1, PU2, and PUHA2) presented compressive strength values of 0.87 ± 0.24 MPa, 1.81 ± 0.10 MPa, 6.16 ± 0.89 MPa, and 12.95 ± 2.05 MPa, respectively. The pore size and porosity of these scaffolds were suitable for bone regeneration. Cytocompatibility of composite scaffolds was proven via favorable interactions with MC3T3-E1 cells. The addition of hydroxyapatite into CD-based polyurethane scaffolds improved cell attachment, well-spread morphology, and higher proliferation. The hydroxyapatite-polyurethane scaffolds have the potential to be applied in bone repair and regeneration.
Collapse
Affiliation(s)
- Jingjing Du
- Department of Biomedical Engineering, College of Mechanics, Taiyuan University of Technology, Taiyuan, PR China
| | - Shuchun Gan
- Department of Biomedical Engineering, College of Mechanics, Taiyuan University of Technology, Taiyuan, PR China
| | - Qihao Bian
- Department of Biomedical Engineering, College of Mechanics, Taiyuan University of Technology, Taiyuan, PR China
| | - Duhan Fu
- Department of Biomedical Engineering, College of Mechanics, Taiyuan University of Technology, Taiyuan, PR China
| | - Yan Wei
- Department of Biomedical Engineering, College of Mechanics, Taiyuan University of Technology, Taiyuan, PR China
- Institute of Applied Mechanics & Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Kaiqun Wang
- Department of Biomedical Engineering, College of Mechanics, Taiyuan University of Technology, Taiyuan, PR China
| | - Qiaoxia Lin
- Department of Biomedical Engineering, College of Mechanics, Taiyuan University of Technology, Taiyuan, PR China
| | - Weiyi Chen
- Institute of Applied Mechanics & Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Di Huang
- Department of Biomedical Engineering, College of Mechanics, Taiyuan University of Technology, Taiyuan, PR China
- Institute of Applied Mechanics & Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China
| |
Collapse
|
46
|
Sahmani S, Saber-Samandari S, Shahali M, Joneidi Yekta H, Aghadavoudi F, Montazeran AH, Aghdam MM, Khandan A. Mechanical and biological performance of axially loaded novel bio-nanocomposite sandwich plate-type implant coated by biological polymer thin film. J Mech Behav Biomed Mater 2018; 88:238-250. [PMID: 30193182 DOI: 10.1016/j.jmbbm.2018.08.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/15/2018] [Accepted: 08/19/2018] [Indexed: 12/19/2022]
Abstract
Post-surgical infection is one of the essential problems in bone scaffolds that is usually treated with antibiotics. This issue may be related to the poor blood supply for bone tissue due to high concentrations of drug. In the current study, the effect of zinc oxide (ZnO) nanoparticles on the antibacterial behavior of the nanocrystalline hydroxyapatite (n-HA) scaffolds coated by gelatin-ibuprofen (GN-IBO) is evaluated. To this end, the bio-nanocomposite scaffolds are fabricated via the space holder technique and then characterized with the aid of X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The compressive strength, fracture toughness, porosity, elastic modulus as the mechanical properties, and the apatite formation, biodegradation, drug release and wettability beside the roughness as the biological properties are predicted. The obtained experimental results indicate that the bio-nanocomposite scaffolds containing 10 wt% ZnO has suitable mechanical and biological properties. After that, an analytical model is developed to predict the nonlinear instability and vibration responses of an axially loaded sandwich plate-type implants made of the fabricated n-HA-ZnO bio-nanocomposites coated by GN-IBO thin film corresponding to various weight fractions of ZnO nanoparticles. It is found that ZnO peaks in the positions of 2θ are equal to 31.6°, 33.6°, 34°, 46.4°, and 62°, which represent the crystalline characteristics. Also, it is revealed that through addition of ZnO nanoparticles, the hardness and elastic modulus as well as the bone formation and biodegradation rate of the bio-nanocomposite scaffold enhance, while its drug release in the phosphate buffer solution detected with UV spectrum reduces. It is found that by increasing the ZnO weight fraction, the critical axial buckling load of the sandwich bio-nanocomposite implant enhances, and it buckles at lower axial shortening. However, it is seen that for higher value of wt% ZnO, its influence on the critical buckling load decreases.
Collapse
Affiliation(s)
- S Sahmani
- Mechanical Rotating Equipment Department, Niroo Research Institute (NRI), Tehran 14665-517, Iran
| | - S Saber-Samandari
- New Technologies Research Center, Amirkabir University of Technology, Tehran 15875-4413, Iran
| | - M Shahali
- Department of Quality Control, Research and Production Complex, Pasteur Institute of Iran, Tehran, Iran
| | - H Joneidi Yekta
- New Technologies Research Center, Amirkabir University of Technology, Tehran 15875-4413, Iran
| | - F Aghadavoudi
- Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr, Iran
| | - A H Montazeran
- New Technologies Research Center, Amirkabir University of Technology, Tehran 15875-4413, Iran
| | - M M Aghdam
- Department of Mechanical Engineering, Amirkabir University of Technology, Tehran 15875-4413, Iran
| | - A Khandan
- New Technologies Research Center, Amirkabir University of Technology, Tehran 15875-4413, Iran.
| |
Collapse
|
47
|
Park JY, Park SH, Kim MG, Park SH, Yoo TH, Kim MS. Biomimetic Scaffolds for Bone Tissue Engineering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1064:109-121. [PMID: 30471029 DOI: 10.1007/978-981-13-0445-3_7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The use of biomimetic scaffolds for bone tissue engineering has been studied for a long time. Biomimetic scaffolds can assist and accelerate bone regeneration that is similar to that of authentic tissue, which represents the environment of cells in a living organism. Currently, numerous biomaterials have been reported for use as a biomimetic scaffold. This review focuses on the design of biomimetic scaffolds, kinds of biomaterials and methods used to fabricate biomimetic scaffolds, growth factors used with biomimetic scaffold for bone regeneration, mobilization of biological agents into biomimetic scaffolds, and studies on (pre)clinical bone regeneration from biomimetic scaffolds. Then, future prospects for biomimetic scaffolds are discussed.
Collapse
Affiliation(s)
- Joon Yeong Park
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Seung Hun Park
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Mal Geum Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Sang-Hyug Park
- Department of Biomedical Engineering, Pukyong National University, Busan, South Korea
| | - Tae Hyeon Yoo
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Moon Suk Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea.
| |
Collapse
|