1
|
Chen Y, Xu W, Pan Z, Li B, Mo X, Li Y, Wang J, Wang Y, Wei Z, Chen Y, Han Z, Lin C, Liu Y, Ye X, Yu J. Three-dimensional gas-foamed scaffolds decorated with metal phenolic networks for cartilage regeneration. Mater Today Bio 2024; 29:101249. [PMID: 39351488 PMCID: PMC11440796 DOI: 10.1016/j.mtbio.2024.101249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/03/2024] [Accepted: 09/13/2024] [Indexed: 10/04/2024] Open
Abstract
Inflammation is a major impediment to the healing of cartilage injuries, yet bioactive scaffolds suitable for cartilage repair in inflammatory environments are extremely rare. Herein, we utilized electrospinning to fabricate a two-dimensional nanofiber scaffold (2DS), which was then subjected to gas foaming to obtain a three-dimensional scaffold (3DS). 3DS was modified with metal phenolic networks (MPNs) composed of epigallocatechin gallate (EGCG) and strontium ions (Sr2+) to afford a MPNs-modified 3D scaffold (3DS-E). Gas-foamed scaffold exhibited multilayered structure conducive to cellular infiltration and proliferation. Compared to other groups, 3DS-E better preserved chondrocytes under interleukin (IL)-1β induced inflammatory environment, showing less apoptosis of chondrocytes and higher expression of cartilage matrix. Additionally, 3DS-E facilitated the regeneration of more mature cartilage in vivo, reduced cell apoptosis, and decreased the expression of pro-inflammatory cytokines. Taken together, 3DS-E may offer an ideal candidate for cartilage regeneration.
Collapse
Affiliation(s)
- Yujie Chen
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
- Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai, 200336, China
- Department of Orthopaedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Wei Xu
- Department of Plastic Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, 266035, China
| | - Zhen Pan
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
- Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai, 200336, China
- Department of Orthopaedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Bohui Li
- Plastic Surgery Institute, Shandong Second Medical University, Weifang, Shandong, 261053, China
- Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine, Huangpu, Shanghai, 200001, China
| | - Xiumei Mo
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Songjiang, Shanghai, 201600, China
| | - Yucai Li
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
- Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai, 200336, China
- Department of Orthopaedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Jielin Wang
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
- Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai, 200336, China
- Department of Orthopaedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Yuan Wang
- Department of Orthopaedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Zhenyuan Wei
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
- Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai, 200336, China
- Department of Orthopaedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Yicheng Chen
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
- Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai, 200336, China
- Department of Orthopaedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Zhaopu Han
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
- Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai, 200336, China
- Department of Orthopaedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Chen Lin
- Department of General Surgery, Shanghai East Hospital, Tongji University School of Medicine, Pudong New Area, Shanghai, 200120, China
| | - Yu Liu
- Plastic Surgery Institute, Shandong Second Medical University, Weifang, Shandong, 261053, China
- Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine, Huangpu, Shanghai, 200001, China
| | - Xiaojian Ye
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
- Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai, 200336, China
- Department of Orthopaedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Jiangming Yu
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
- Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai, 200336, China
- Department of Orthopaedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| |
Collapse
|
2
|
Ran Y, Shi J, Ding Y, Li L, Lu D, Zeng Y, Qiu D, Yu J, Cai X, Pan Y. Black Phosphorus Nanosheets-Loaded Mussel-Inspired Hydrogel with Wet Adhesion, Photothermal Antimicrobial, and In Situ Remineralization Capabilities for Caries Prevention. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2409155. [PMID: 39392196 DOI: 10.1002/advs.202409155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/19/2024] [Indexed: 10/12/2024]
Abstract
The main features of early caries are the massive colonization of cariogenic bacteria and demineralization of tooth enamel by the acids that they produce. Owing to the lack of effective treatments, the development of anticaries therapeutics with both antimicrobial and remineralizing properties is urgently required. Black phosphorus nanosheets (BPNs) are ideal therapeutics for the treatment of early caries because they can mediate photothermal antibacterial activity and subsequently promote remineralization by generating PO4 3-. However, the dynamic and wet environment of the oral cavity prevents the long-term adhesion of BPNs to the tooth surface. In this study, using catechol-modified chitosan and PLGA-PEG-PLGA as raw materials, a mussel-inspired versatile hydrogel, BP@CP5, is presented that can be used to physically load BPNs. BP@CP5 has exceptional injectability and can firmly adhere to tooth surfaces for up to 24 h. Upon irradiation, BP@CP5 can quickly eliminate ≈99% of Streptococcus mutans and Streptococcus sanguinis; furthermore, the PO4 3- generated via degradation also promotes rapid remineralization of enamel slabs. Importantly, the vivo rodent caries modeling results further confirm the excellent caries-prevention properties of BP@CP5. This study demonstrates that BP@CP5 is a promising anticaries material for caries management.
Collapse
Affiliation(s)
- Ying Ran
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jiayi Shi
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yiqin Ding
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Lujian Li
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Dandan Lu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Youyun Zeng
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Dongchao Qiu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jie Yu
- Department of Endodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiaojun Cai
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yihuai Pan
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
- Department of Endodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| |
Collapse
|
3
|
Tang S, Cai P, He H, Tian Y, Hao R, Liu X, Jing T, Xu Y, Li X. Global trends in the clinical utilization of exosomes in dermatology: a bibliometric analysis. Front Med (Lausanne) 2024; 11:1462085. [PMID: 39450105 PMCID: PMC11500466 DOI: 10.3389/fmed.2024.1462085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/11/2024] [Indexed: 10/26/2024] Open
Abstract
The arena of exosomal research presents substantial emerging prospects for clinical dermatology applications. This investigation conducts a thorough analysis of the contemporary global research landscape regarding exosomes and their implications for dermatological applications over the preceding decade. Employing bibliometric methodologies, this study meticulously dissects the knowledge framework and identifies dynamic trends within this specialized field. Contemporary scholarly literature spanning the last decade was sourced from the Web of Science Core Collection (WoSCC) database. Subsequent to retrieval, both quantitative and visual analyses of the pertinent publications were performed utilizing the analytical software tools VOSviewer and Citespace. A comprehensive retrieval yielded 545 scholarly articles dated from January 1, 2014, to December 31, 2023. Leading the research forefront are institutions such as Shanghai Jiao Tong University, The Fourth Military Medical University, and Sun Yat-sen University. The most prolific contributors on a national scale are China, the United States, and South Korea. Among the authors, Zhang Bin, Zhang Wei, and Zhang Yan emerge as the most published, with Zhang Bin also achieving the distinction of being the most cited. The International Journal of Molecular Sciences leads in article publications, whereas Stem Cell Research & Therapy holds the pinnacle in citation rankings. Theranostics boasts the highest impact factor among the periodicals. Current research hotspots in this area include Adipose mesenchymal stem cell-derived exosomes(ADSC-Exos), diabetic skin wounds, cutaneous angiogenesis, and the combination of biomaterials and exosomes. This manuscript constitutes the inaugural comprehensive bibliometric analysis that delineates the prevailing research trends and advancements in the clinical application of exosomes in dermatology. These analyses illuminate the contemporary research focal points and trajectories, providing invaluable insights that will inform further exploration within this domain.
Collapse
Affiliation(s)
- Shiqin Tang
- School of Clinical Medicine, Hebei University of Engineering, Handan, Hebei, China
| | - Pai Cai
- School of Information Engineering, Suihua University, Suihua, Heilongjiang, China
| | - Huina He
- School of Clinical Medicine, Hebei University of Engineering, Handan, Hebei, China
| | - Yanan Tian
- School of Clinical Medicine, Hebei University of Engineering, Handan, Hebei, China
| | - Ruiying Hao
- Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, China
| | - Xin Liu
- Handan Stomatological Hospital, Endodontics, Handan, Hebei, China
| | - Tingting Jing
- Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, China
- Hebei Key Laboratory of Immunological Dermatology, Handan, Hebei, China
| | - Yanyan Xu
- Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, China
- Hebei Key Laboratory of Immunological Dermatology, Handan, Hebei, China
| | - Xiaojing Li
- School of Clinical Medicine, Hebei University of Engineering, Handan, Hebei, China
- Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, China
- Hebei Key Laboratory of Immunological Dermatology, Handan, Hebei, China
| |
Collapse
|
4
|
Cai Z, Shu L, Wang C, Xie X, Liu X. M2 Macrophage-Derived Exosomes Promote Tendon-to-Bone Healing by Alleviating Cellular Senescence in Aged Rats. Arthroscopy 2024:S0749-8063(24)00737-0. [PMID: 39326562 DOI: 10.1016/j.arthro.2024.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/31/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024]
Abstract
PURPOSE To explore the potential of M2 macrophage-derived exosomes (M2-Exos) in enhancing tendon-to-bone healing in aged rats by mitigating cellular senescence of bone marrow-derived stem cells (BMSCs). METHODS In vitro, the effects of M2-Exos on alleviating cellular senescence and improving chondrogenic potential of senescent BMSCs were evaluated. Rats (24 young and 48 aged) with chronic rotator cuff tear (RCT) were repaired and assigned into 3 groups: young group (young rats injected with fibrin at the enthesis), aged group (aged rats injected with fibrin at the enthesis), and aged + M2-Exos group (aged rats injected with fibrin containing M2-Exos at the enthesis). At 6 and 12 weeks after repair, enthesis regeneration was evaluated. Proteomic analysis was conducted to explore the mechanism through which M2-Exos mitigated cellular senescence. RESULTS In senescent BMSCs treated with M2-Exos, there was a reduction in senescence biomarkers including senescence-associated β-galactosidase, p53, p21, and senescence-associated secretory phenotype (P < .001). M2-Exos also enhanced chondrogenic potential of senescent BMSCs, reflected in greater Bern score (P < .001) and increased expression of Sox9 (P = .013), Col2a1 (P < .001), and Acan (P < .001). Histologically, aged rats treated with M2-Exos demonstrated significantly greater histologic scores (P < .001 at both 6 and 12 weeks) and increased fibrocartilage regeneration at the enthesis. Biomechanically, these rats exhibited greater failure load, stiffness, and stress (all P < .001) at 12 weeks. Mechanistically, proteomic analysis suggested that M2-Exos might alleviate cellular senescence by potentially regulating DNA replication and repair. CONCLUSIONS M2-Exos can significantly alleviate BMSC senescence and thereby enhance tendon-to-bone healing in an aged rat RCT model. CLINICAL RELEVANCE This study suggests the potential utility of M2-Exos as a therapy for RCT in the older population.
Collapse
Affiliation(s)
- Zhuochang Cai
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Longqiang Shu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chongyang Wang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuetao Xie
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xudong Liu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Bai Y, Wang Z, He X, Zhu Y, Xu X, Yang H, Mei G, Chen S, Ma B, Zhu R. Application of Bioactive Materials for Osteogenic Function in Bone Tissue Engineering. SMALL METHODS 2024; 8:e2301283. [PMID: 38509851 DOI: 10.1002/smtd.202301283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/04/2023] [Indexed: 03/22/2024]
Abstract
Bone tissue defects present a major challenge in orthopedic surgery. Bone tissue engineering using multiple versatile bioactive materials is a potential strategy for bone-defect repair and regeneration. Due to their unique physicochemical and mechanical properties, biofunctional materials can enhance cellular adhesion, proliferation, and osteogenic differentiation, thereby supporting and stimulating the formation of new bone tissue. 3D bioprinting and physical stimuli-responsive strategies have been employed in various studies on bone regeneration for the fabrication of desired multifunctional biomaterials with integrated bone tissue repair and regeneration properties. In this review, biomaterials applied to bone tissue engineering, emerging 3D bioprinting techniques, and physical stimuli-responsive strategies for the rational manufacturing of novel biomaterials with bone therapeutic and regenerative functions are summarized. Furthermore, the impact of biomaterials on the osteogenic differentiation of stem cells and the potential pathways associated with biomaterial-induced osteogenesis are discussed.
Collapse
Affiliation(s)
- Yuxin Bai
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Zhaojie Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Xiaolie He
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Yanjing Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Xu Xu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Huiyi Yang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Guangyu Mei
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Shengguang Chen
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
- Department of Endocrinology and Metabolism, Gongli Hospital of Shanghai Pudong New Area, Shanghai, 200135, China
| | - Bei Ma
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Rongrong Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200065, China
| |
Collapse
|
6
|
Liu WS, Chen Z, Lu ZM, Dong JH, Wu JH, Gao J, Deng D, Li M. Multifunctional hydrogels based on photothermal therapy: A prospective platform for the postoperative management of melanoma. J Control Release 2024; 371:406-428. [PMID: 38849093 DOI: 10.1016/j.jconrel.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/22/2024] [Accepted: 06/01/2024] [Indexed: 06/09/2024]
Abstract
Preventing the recurrence of melanoma after surgery and accelerating wound healing are among the most challenging aspects of melanoma management. Photothermal therapy has been widely used to treat tumors and bacterial infections and promote wound healing. Owing to its efficacy and specificity, it may be used for postoperative management of tumors. However, its use is limited by the uncontrollable distribution of photosensitizers and the likelihood of damage to the surrounding normal tissue. Hydrogels provide a moist environment with strong biocompatibility and adhesion for wound healing owing to their highly hydrophilic three-dimensional network structure. In addition, these materials serve as excellent drug carriers for tumor treatment and wound healing. It is possible to combine the advantages of both of these agents through different loading modalities to provide a powerful platform for the prevention of tumor recurrence and wound healing. This review summarizes the design strategies, research progress and mechanism of action of hydrogels used in photothermal therapy and discusses their role in preventing tumor recurrence and accelerating wound healing. These findings provide valuable insights into the postoperative management of melanoma and may guide the development of promising multifunctional hydrogels for photothermal therapy.
Collapse
Affiliation(s)
- Wen-Shang Liu
- Department of Dermatology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, People's Republic of China
| | - Zhuo Chen
- Department of Dermatology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, People's Republic of China
| | - Zheng-Mao Lu
- Department of Gastrointestinal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, People's Republic of China
| | - Jin-Hua Dong
- Women and Children Hospital Affiliated to Jiaxing University, 2468 Middle Ring Eastern Road, Jiaxing City, Zhejiang 314000, People's Republic of China
| | - Jin-Hui Wu
- Ophthalmology Department of the Third Affiliated Hospital of Naval Medical University, Shanghai 201805, People's Republic of China.
| | - Jie Gao
- Changhai Clinical Research Unit, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, People's Republic of China; Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai 200433, People's Republic of China.
| | - Dan Deng
- Department of Dermatology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, People's Republic of China.
| | - Meng Li
- Department of Dermatology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, People's Republic of China.
| |
Collapse
|
7
|
Qi X, Liu C, Si J, Yin B, Huang J, Wang X, Huang J, Sun H, Zhu C, Zhang W. A bioenergetically-active ploy (glycerol sebacate)-based multiblock hydrogel improved diabetic wound healing through revitalizing mitochondrial metabolism. Cell Prolif 2024; 57:e13613. [PMID: 38351579 PMCID: PMC11216945 DOI: 10.1111/cpr.13613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/16/2024] [Accepted: 01/30/2024] [Indexed: 07/03/2024] Open
Abstract
Diabetic wounds impose significant burdens on patients' quality of life and healthcare resources due to impaired healing potential. Factors like hyperglycemia, oxidative stress, impaired angiogenesis and excessive inflammation contribute to the delayed healing trajectory. Mounting evidence indicates a close association between impaired mitochondrial function and diabetic complications, including chronic wounds. Mitochondria are critical for providing energy essential to wound healing processes. However, mitochondrial dysfunction exacerbates other pathological factors, creating detrimental cycles that hinder healing. This study conducted correlation analysis using clinical specimens, revealing a positive correlation between mitochondrial dysfunction and oxidative stress, inflammatory response and impaired angiogenesis in diabetic wounds. Restoring mitochondrial function becomes imperative for developing targeted therapies. Herein, we synthesized a biodegradable poly (glycerol sebacate)-based multiblock hydrogel, named poly (glycerol sebacate)-co-poly (ethylene glycol)-co-poly (propylene glycol) (PEPGS), which can be degraded in vivo to release glycerol, a crucial component in cellular metabolism, including mitochondrial respiration. We demonstrate the potential of PEPGS-based hydrogels to improve outcomes in diabetic wound healing by revitalizing mitochondrial metabolism. Furthermore, we investigate the underlying mechanism through proteomics analysis, unravelling the regulation of ATP and nicotinamide adenine dinucleotide metabolic processes, biosynthetic process and generation during mitochondrial metabolism. These findings highlight the therapeutic potential of PEPGS-based hydrogels as advanced wound dressings for diabetic wound healing.
Collapse
Affiliation(s)
- Xin Qi
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on ExtremitiesShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Chenjun Liu
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jingyi Si
- Department of Gastroenterology and Hepatology, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Bohao Yin
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jingjing Huang
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xin Wang
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jinghuan Huang
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Hui Sun
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Changfeng Zhu
- Department of Gastroenterology and Hepatology, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Wei Zhang
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
8
|
Miao A, Li Q, Tang G, Lu Q. Alginate-containing 3D-printed hydrogel scaffolds incorporated with strontium promotes vascularization and bone regeneration. Int J Biol Macromol 2024; 273:133038. [PMID: 38857724 DOI: 10.1016/j.ijbiomac.2024.133038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Bone defects persist as a significant challenge in the field of clinical orthopedics. This study focuses on the fabrication and characterization of 3D-printed composite hydrogel scaffolds composed of sodium alginate, gelatin, and α-tricalcium phosphate (α-TCP) with varying ratios of Strontium ions (Sr2+). These scaffolds aim to address the clinical challenges associated with bone defect repair by providing mechanical support and promoting bone formation and vascularization. The degradation, swelling, mechanical properties, and release profiles of Sr2+ from the hydrogel scaffolds were comprehensively characterized. In vitro tests were conducted to assess cell viability and proliferation, as well as osteogenic and angiogenic gene expression, to investigate the osteogenic and pro-angiogenic potential of the composite hydrogel scaffolds. Furthermore, skull defect simulations were performed, and composite scaffolds with varying Sr2+ ratios were implanted to evaluate their effectiveness in bone repair. This research establishes a foundation for advancing bone tissue engineering through composite scaffolds containing biological macromolecules and strontium, with alginate serving as a key element in enhancing performance and expanding clinical applicability.
Collapse
Affiliation(s)
- Afeng Miao
- Department of Orthopaedics, Taizhou People's Hospital, Taizhou, Jiangsu, China; Affiliated Taizhou People's Hospital of Nanjing Medical University, Jiangsu, China
| | - Qingsong Li
- Department of Orthopaedics, Taizhou People's Hospital, Taizhou, Jiangsu, China; Affiliated Taizhou People's Hospital of Nanjing Medical University, Jiangsu, China
| | - Genling Tang
- Department of Orthopaedics, Taizhou People's Hospital, Taizhou, Jiangsu, China; Affiliated Taizhou People's Hospital of Nanjing Medical University, Jiangsu, China
| | - Qifeng Lu
- Department of Orthopaedics, Taizhou People's Hospital, Taizhou, Jiangsu, China; Affiliated Taizhou People's Hospital of Nanjing Medical University, Jiangsu, China.
| |
Collapse
|
9
|
Peng S, Fu H, Li R, Li H, Wang S, Li B, Sun J. A new direction in periodontitis treatment: biomaterial-mediated macrophage immunotherapy. J Nanobiotechnology 2024; 22:359. [PMID: 38907216 PMCID: PMC11193307 DOI: 10.1186/s12951-024-02592-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 05/28/2024] [Indexed: 06/23/2024] Open
Abstract
Periodontitis is a chronic inflammation caused by a bacterial infection and is intimately associated with an overactive immune response. Biomaterials are being utilized more frequently in periodontal therapy due to their designability and unique drug delivery system. However, local and systemic immune response reactions driven by the implantation of biomaterials could result in inflammation, tissue damage, and fibrosis, which could end up with the failure of the implantation. Therefore, immunological adjustment of biomaterials through precise design can reduce the host reaction while eliminating the periodontal tissue's long-term chronic inflammation response. It is important to note that macrophages are an active immune system component that can participate in the progression of periodontal disease through intricate polarization mechanisms. And modulating macrophage polarization by designing biomaterials has emerged as a new periodontal therapy technique. In this review, we discuss the role of macrophages in periodontitis and typical strategies for polarizing macrophages with biomaterials. Subsequently, we discuss the challenges and potential opportunities of using biomaterials to manipulate periodontal macrophages to facilitate periodontal regeneration.
Collapse
Affiliation(s)
- Shumin Peng
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
- Academy of Medical Sciences at Zhengzhou University, Zhengzhou, 45000, China
| | - Haojie Fu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
- Academy of Medical Sciences at Zhengzhou University, Zhengzhou, 45000, China
| | - Rui Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
| | - Hui Li
- Beijing Shijitan Hospital, Capital Medical University, Beijing, 100069, China
| | - Shuyuan Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
- Academy of Medical Sciences at Zhengzhou University, Zhengzhou, 45000, China
| | - Bingyan Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
- Academy of Medical Sciences at Zhengzhou University, Zhengzhou, 45000, China
| | - Jingjing Sun
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China.
| |
Collapse
|
10
|
Qiu H, Xiong H, Zheng J, Peng Y, Wang C, Hu Q, Zhao F, Chen K. Sr-Incorporated Bioactive Glass Remodels the Immunological Microenvironment by Enhancing the Mitochondrial Function of Macrophage via the PI3K/AKT/mTOR Signaling Pathway. ACS Biomater Sci Eng 2024; 10:3923-3934. [PMID: 38766805 DOI: 10.1021/acsbiomaterials.4c00228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The repair of critical-sized bone defects continues to pose a challenge in clinics. Strontium (Sr), recognized for its function in bone metabolism regulation, has shown potential in bone repair. However, the underlying mechanism through which Sr2+ guided favorable osteogenesis by modulating macrophages remains unclear, limiting their application in the design of bone biomaterials. Herein, Sr-incorporated bioactive glass (SrBG) was synthesized for further investigation. The release of Sr ions enhanced the immunomodulatory properties and osteogenic potential by modulating the polarization of macrophages toward the M2 phenotype. In vivo, a 3D-printed SrBG scaffold was fabricated and showed consistently improved bone regeneration by creating a prohealing immunological microenvironment. RNA sequencing was performed to explore the underlying mechanisms. It was found that Sr ions might enhance the mitochondrial function of macrophage by activating PI3K/AKT/mTOR signaling, thereby favoring osteogenesis. Our findings demonstrate the relationship between the immunomodulatory role of Sr ions and the mitochondrial function of macrophages. By focusing on the mitochondrial function of macrophages, Sr2+-mediated immunomodulation sheds light on the future design of biomaterials for tissue regenerative engineering.
Collapse
Affiliation(s)
- Huanhuan Qiu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Huacui Xiong
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Jiafu Zheng
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yuqi Peng
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Chunhui Wang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Qing Hu
- School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333001, China
| | - Fujian Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Ke Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| |
Collapse
|
11
|
Byun H, Han Y, Kim E, Jun I, Lee J, Jeong H, Huh SJ, Joo J, Shin SR, Shin H. Cell-homing and immunomodulatory composite hydrogels for effective wound healing with neovascularization. Bioact Mater 2024; 36:185-202. [PMID: 38463552 PMCID: PMC10924181 DOI: 10.1016/j.bioactmat.2024.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/08/2024] [Accepted: 02/23/2024] [Indexed: 03/12/2024] Open
Abstract
Wound healing in cases of excessive inflammation poses a significant challenge due to compromised neovascularization. Here, we propose a multi-functional composite hydrogel engineered to overcome such conditions through recruitment and activation of macrophages with adapted degradation of the hydrogel. The composite hydrogel (G-TSrP) is created by combining gelatin methacryloyl (GelMA) and nanoparticles (TSrP) composed of tannic acid (TA) and Sr2+. These nanoparticles are prepared using a one-step mineralization process assisted by metal-phenolic network formation. G-TSrP exhibits the ability to eliminate reactive oxygen species and direct polarization of macrophages toward M2 phenotype. It has been observed that the liberation of TA and Sr2+ from G-TSrP actively facilitate the recruitment and up-regulation of the expression of extracellular matrix remodeling genes of macrophages, and thereby, coordinate in vivo adapted degradation of the G-TSrP. Most significantly, G-TSrP accelerates angiogenesis despite the TA's inhibitory properties, which are counteracted by the released Sr2+. Moreover, G-TSrP enhances wound closure under inflammation and promotes normal tissue formation with strong vessel growth. Genetic analysis confirms macrophage-mediated wound healing by the composite hydrogel. Collectively, these findings pave the way for the development of biomaterials that promote wound healing by creating regenerative environment.
Collapse
Affiliation(s)
- Hayeon Byun
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Cambridge, MA 02139, USA
| | - Yujin Han
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Eunhyung Kim
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Indong Jun
- Environmental Safety Group, Korea Institute of Science & Technology Europe (KIST-EUROPE), Saarbrücken 66123, Germany
| | - Jinkyu Lee
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Hyewoo Jeong
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Seung Jae Huh
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Jinmyoung Joo
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Cambridge, MA 02139, USA
| | - Heungsoo Shin
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
- Institute of Nano Science and Technology, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| |
Collapse
|
12
|
Huang J, Wei J, Xia X, Xiao S, Jin S, Zou Q, Zuo Y, Li Y, Li J. A sequential macrophage activation strategy for bone regeneration: A micro/nano strontium-releasing composite scaffold loaded with lipopolysaccharide. Mater Today Bio 2024; 26:101063. [PMID: 38698884 PMCID: PMC11063594 DOI: 10.1016/j.mtbio.2024.101063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/11/2024] [Accepted: 04/14/2024] [Indexed: 05/05/2024] Open
Abstract
Effective tissue repair relies on the orchestration of different macrophage phenotypes, both the M2 phenotype (promotes tissue repair) and M1 phenotype (pro-inflammatory) deserve attention. In this study, we propose a sequential immune activation strategy to mediate bone regeneration, by loading lipopolysaccharide (LPS) onto the surface of a strontium (Sr) ions -contained composite scaffold, which was fabricated by combining Sr-doped micro/nano-hydroxyapatite (HA) and dual degradable matrices of polycaprolactone (PCL) and poly (lactic-co-glycolic acid) (PLGA). Our strategy involves the sequential release of LPS to promote macrophage homing and induce the expression of the pro-inflammatory M1 phenotype, followed by the release of Sr ions to suppress inflammation. In vitro and in vivo experiments demonstrated that, the appropriate pro-inflammatory effects at the initial stage of implantation, along with the anti-inflammatory effects at the later stage, as well as the structural stability of the scaffolds conferred by the composition, can synergistically promote the regeneration and repair of bone defects.
Collapse
Affiliation(s)
- Jinhui Huang
- Yunnan Key Laboratory of Stomatology, School and Hospital of Stomatology, Kunming Medical University, Kunming, 650106, China
- Research Center for Nano-Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu, 610064, China
| | - Jiawei Wei
- Research Center for Nano-Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu, 610064, China
| | - Xue Xia
- Research Center for Nano-Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu, 610064, China
| | - Shiqi Xiao
- Research Center for Nano-Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu, 610064, China
| | - Shue Jin
- Research Center for Nano-Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu, 610064, China
| | - Qin Zou
- Research Center for Nano-Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu, 610064, China
| | - Yi Zuo
- Research Center for Nano-Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu, 610064, China
| | - Yubao Li
- Research Center for Nano-Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu, 610064, China
| | - Jidong Li
- Research Center for Nano-Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
13
|
Chen T, Wu X, Zhang P, Wu W, Dai H, Chen S. Strontium-Doped Hydroxyapatite Coating Improves Osteo/Angiogenesis for Ameliorative Graft-Bone Integration via the Macrophage-Derived Cytokines-Mediated Integrin Signal Pathway. ACS APPLIED MATERIALS & INTERFACES 2024; 16:15687-15700. [PMID: 38511302 DOI: 10.1021/acsami.3c14904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Polyethylene terephthalate (PET) artificial ligaments, renowned for their superior mechanical properties, have been extensively adopted in anterior cruciate ligament (ACL) reconstruction surgeries. However, the inherent bio-inertness of PET introduces formidable barriers to graft-bone integration, a critical aspect of rehabilitation. Previous interventions, ranging from surface roughening to chemical modifications, have aimed to address this challenge; however, consistently effective techniques for inducing graft-bone integration remain scarce. Our study employed advanced surface-coating methodologies to introduce strontium-doped hydroxyapatite (SrHA) onto PET ligaments. Detailed scanning electron microscopy (SEM) examinations revealed a uniform and integrative coating of SrHA on PET fibers. Furthermore, spectroscopic analysis confirmed the steady release of strontium ions from the coated surface under physiological conditions. In-depth cellular studies proved that extracellular strontium emanating from SrHA-coated PET (PET@SrHA) ligaments actively steers the M2 macrophage polarization. Additionally, macrophages (Mφs) manifested a heightened secretion of prohealing cytokines when exposed to PET@SrHA. Subsequent investigations showed that these cytokines acted as mediators, activating integrin signaling pathways among macrophages, vascular endothelial cells, and osteoblasts. As a direct consequence, an increased rate of angiogenesis and osteogenic differentiation was observed, vital for graft-bone integration following ACL reconstruction with PET@SrHA ligaments. From a biochemical standpoint, our results pinpoint strontium ions as influential immunomodulators, sculpting the graft-bone interface's immune environment. This insight presents the SrHA-coating technique as a viable therapeutic strategy, holding sound promise for improving angiogenesis and osseointegration outcomes during ACL reconstruction using PET-based grafts.
Collapse
Affiliation(s)
- Tianwu Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiaopei Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Peng Zhang
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wei Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Shiyi Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
14
|
Cao H, He S, Wu M, Hong L, Feng X, Gao X, Li H, Liu M, Lv N. Cascaded controlled delivering growth factors to build vascularized and osteogenic microenvironment for bone regeneration. Mater Today Bio 2024; 25:101015. [PMID: 38500557 PMCID: PMC10945171 DOI: 10.1016/j.mtbio.2024.101015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024] Open
Abstract
The process of bone regeneration is intricately regulated by various cytokines at distinct stages. The establishment of early and efficient vascularization, along with the maintenance of a sustained osteoinductive microenvironment, plays a crucial role in the successful utilization of bone repair materials. This study aimed to develop a composite hydrogel that would facilitate the creation of an osteogenic microenvironment for bone repair. This was achieved by incorporating an early rapid release of VEGF and a sustained slow release of BMP-2. Herein, the Schiff base was formed between VEGF and the composite hydrogel, and VEGF could be rapidly released to promote vascularization in response to the early acidic bone injury microenvironment. Furthermore, the encapsulation of BMP-2 within mesoporous silica nanoparticles enabled a controlled and sustained release, thereby facilitating the process of bone repair. Our developed composite hydrogel released more than 80% of VEGF and BMP-2 in the acidic medium, which was significantly higher than that in the neutral medium (about 60%). Moreover, the composite hydrogel demonstrated a significant improvement in the migratory capacity and tube formation ability of human umbilical vein endothelial cells (HUVECs). Furthermore, the composite hydrogel exhibited an augmented ability for osteogenesis, as confirmed by the utilization of ALP staining, alizarin red staining, and the upregulation of osteogenesis-related genes. Notably, the composite hydrogel displayed substantial osteoinductive properties, compared with other groups, the skull defect in the composite hydrogels combined with BMP-2 and VEGF was full of new bone, basically completely repaired, and the BV/TV value was greater than 80%. The outcomes of animal experiments demonstrated that the composite hydrogel effectively promoted bone regeneration in cranial defects of rats by leveraging the synergistic effect of an early rapid release of VEGF and a sustained slow release of BMP-2, thereby facilitating vascularized bone regeneration. In conclusion, our composite hydrogel has demonstrated promising potential for vascularized bone repair through the enhancement of angiogenesis and osteogenic microenvironment.
Collapse
Affiliation(s)
- Haifei Cao
- Department of Orthopaedics, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264000, China
| | - Shuangjun He
- Department of Orthopedic Surgery, Affiliated Danyang Hospital of Nantong University, The People's Hospital of Danyang, Danyang, 212300, China
| | - Mingzhou Wu
- Department of Orthopedic Surgery, Taicang Hospital of Traditional Chinese Medicine, Taicang, 215400, China
| | - Lihui Hong
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Xuzhou Medical University (The Second People's Hospital of Lianyungang), Lianyungang, 222003, China
| | - Xiaoxiao Feng
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Xuzhou Medical University (The Second People's Hospital of Lianyungang), Lianyungang, 222003, China
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Jiangsu University (The Second People's Hospital of Lianyungang), Lianyungang, 222003, China
| | - Xuzhu Gao
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Xuzhou Medical University (The Second People's Hospital of Lianyungang), Lianyungang, 222003, China
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Jiangsu University (The Second People's Hospital of Lianyungang), Lianyungang, 222003, China
| | - Hongye Li
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Xuzhou Medical University (The Second People's Hospital of Lianyungang), Lianyungang, 222003, China
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Jiangsu University (The Second People's Hospital of Lianyungang), Lianyungang, 222003, China
| | - Mingming Liu
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Xuzhou Medical University (The Second People's Hospital of Lianyungang), Lianyungang, 222003, China
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Jiangsu University (The Second People's Hospital of Lianyungang), Lianyungang, 222003, China
| | - Nanning Lv
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Xuzhou Medical University (The Second People's Hospital of Lianyungang), Lianyungang, 222003, China
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Jiangsu University (The Second People's Hospital of Lianyungang), Lianyungang, 222003, China
| |
Collapse
|
15
|
Ru X, Yang L, Shen G, Wang K, Xu Z, Bian W, Zhu W, Guo Y. Microelement strontium and human health: comprehensive analysis of the role in inflammation and non-communicable diseases (NCDs). Front Chem 2024; 12:1367395. [PMID: 38606081 PMCID: PMC11007224 DOI: 10.3389/fchem.2024.1367395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/08/2024] [Indexed: 04/13/2024] Open
Abstract
Strontium (Sr), a trace element with a long history and a significant presence in the Earth's crust, plays a critical yet often overlooked role in various biological processes affecting human health. This comprehensive review explores the multifaceted implications of Sr, especially in the context of non-communicable diseases (NCDs) such as cardiovascular diseases, osteoporosis, hypertension, and diabetes mellitus. Sr is predominantly acquired through diet and water and has shown promise as a clinical marker for calcium absorption studies. It contributes to the mitigation of several NCDs by inhibiting oxidative stress, showcasing antioxidant properties, and suppressing inflammatory cytokines. The review delves deep into the mechanisms through which Sr interacts with human physiology, emphasizing its uptake, metabolism, and potential to prevent chronic conditions. Despite its apparent benefits in managing bone fractures, hypertension, and diabetes, current research on Sr's role in human health is not exhaustive. The review underscores the need for more comprehensive studies to solidify Sr's beneficial associations and address the gaps in understanding Sr intake and its optimal levels for human health.
Collapse
Affiliation(s)
- Xin Ru
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Lida Yang
- College of Nursing, Mudanjiang Medical University, Mudanjiang, China
| | - Guohui Shen
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Kunzhen Wang
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Zihan Xu
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Wenbo Bian
- Zibo Agricultural Science Research Institute, Shandong, China
- Digital Agriculture and Rural Research Institute of CAAS (Zibo), Shandong, China
| | - Wenqi Zhu
- Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanzhi Guo
- Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
16
|
Mu Z, Shen T, Deng H, Zeng B, Huang C, Mao Z, Xie Y, Pei Y, Guo L, Hu R, Chen L, Zhou Y. Enantiomer-Dependent Supramolecular Immunosuppressive Modulation for Tissue Reconstruction. ACS NANO 2024; 18:5051-5067. [PMID: 38306400 DOI: 10.1021/acsnano.3c11601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
Modulating the properties of biomaterials in terms of the host immune response is critical for tissue repair and regeneration. However, it is unclear how the preference for the cellular microenvironment manipulates the chiral immune responses under physiological or pathological conditions. Here, we reported that in vivo and in vitro oligopeptide immunosuppressive modulation was achieved by manipulation of macrophage polarization using chiral tetrapeptide (Ac-FFFK-OH, marked as FFFK) supramolecular polymers. The results suggested that chiral FFFK nanofibers can serve as a defense mechanism in the restoration of tissue homeostasis by upregulating macrophage M2 polarization via the Src-STAT6 axis. More importantly, transiently acting STAT6, insufficient to induce a sustained polarization program, then passes the baton to EGR2, thereby continuously maintaining the M2 polarization program. It is worth noting that the L-chirality exhibits a more potent effect in inducing macrophage M2 polarization than does the D-chirality, leading to enhanced tissue reconstruction. These findings elucidate the crucial molecular signals that mediate chirality-dependent supramolecular immunosuppression in damaged tissues while also providing an effective chiral supramolecular strategy for regulating macrophage M2 polarization and promoting tissue injury repair based on the self-assembling chiral peptide design.
Collapse
Affiliation(s)
- Zhixiang Mu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Tianxi Shen
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Hui Deng
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Bairui Zeng
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Chen Huang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Zhengjin Mao
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Yuyu Xie
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325000, P. R. China
| | - Yu Pei
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325000, P. R. China
| | - Liting Guo
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325000, P. R. China
| | - Rongdang Hu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Limin Chen
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, P. R. China
| | - Yunlong Zhou
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, P. R. China
| |
Collapse
|
17
|
Sun W, Xie W, Hu K, Yang Z, Han L, Li L, Qi Y, Wei Y. Three-Dimensional Bioprinting of Strontium-Modified Controlled Assembly of Collagen Polylactic Acid Composite Scaffold for Bone Repair. Polymers (Basel) 2024; 16:498. [PMID: 38399876 PMCID: PMC10891933 DOI: 10.3390/polym16040498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
In recent years, the incidence of bone defects has been increasing year by year. Bone transplantation has become the most needed surgery after a blood transfusion and shows a rising trend. Three-dimensional-printed implants can be arbitrarily shaped according to the defects of tissues and organs to achieve perfect morphological repair, opening a new way for non-traumatic repair and functional reconstruction. In this paper, strontium-doped mineralized collagen was first prepared by an in vitro biomimetic mineralization method and then polylactic acid was homogeneously blended with the mineralized collagen to produce a comprehensive bone repair scaffold by a gas extrusion 3D printing method. Characterization through scanning electron microscopy, X-ray diffraction, and mechanical testing revealed that the strontium-functionalized composite scaffold exhibits an inorganic composition and nanostructure akin to those of human bone tissue. The scaffold possesses uniformly distributed and interconnected pores, with a compressive strength reaching 21.04 MPa. The strontium doping in the mineralized collagen improved the biocompatibility of the scaffold and inhibited the differentiation of osteoclasts to promote bone regeneration. This innovative composite scaffold holds significant promise in the field of bone tissue engineering, providing a forward-thinking solution for prospective bone injury repair.
Collapse
Affiliation(s)
- Weiwei Sun
- Beijing Engineering Research Center of Printed Electronics, Institute of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Beijing 102600, China
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Wenyu Xie
- Beijing Engineering Research Center of Printed Electronics, Institute of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Kun Hu
- Beijing Engineering Research Center of Printed Electronics, Institute of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Zongwen Yang
- Beijing Engineering Research Center of Printed Electronics, Institute of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Lu Han
- Beijing Engineering Research Center of Printed Electronics, Institute of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Luhai Li
- Beijing Engineering Research Center of Printed Electronics, Institute of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Yuansheng Qi
- Beijing Engineering Research Center of Printed Electronics, Institute of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Yen Wei
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
18
|
Qian G, Mao Y, Shuai Y, Zeng Z, Peng S, Shuai C. Enhancing bone scaffold interfacial reinforcement through in situ growth of metal-organic frameworks (MOFs) on strontium carbonate: Achieving high strength and osteoimmunomodulation. J Colloid Interface Sci 2024; 655:43-57. [PMID: 37925968 DOI: 10.1016/j.jcis.2023.10.133] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023]
Abstract
Bioceramics have been extensively used to improve osteogenesis of polymers because of their excellent bone-forming capabilities. However, the inadequate interfacial bonding between ceramics and polymers compromises their mechanical properties. In this study, zeolitic imidazolate framework-8 (ZIF-8) was grown in situ on strontium carbonate (SrCO3) to construct a core-shell SrCO3@ZIF-8, which was then added to poly-l-lactic acid (PLLA) to print a SrCO3@ZIF-8/PLLA composite scaffold using selective sintering technology. First, ZIF-8 characterized by its multiple organic ligands, forms a robust interface with PLLA. Second, SrCO3 characterized by its negative zeta potential in solution, exhibits the ability to adsorb positively charged zinc ions. This, in turn, promotes the in situ growth of ZIF-8 on SrCO3, eventually achieving perfect bonding between the second phase and the PLLA matrix. Our findings indicated that the composite scaffold exhibited the highest compressive strength (21.93 MPa) and significantly promoted the osteogenic differentiation of mouse mesenchymal stem cells. Moreover, the in vivo results established that the SrCO3@ZIF-8/PLLA scaffold significantly accelerated bone regeneration efficiency in rat femur defects. The prepared scaffold, with its favorable mechanical properties and osteogenic activity, shows considerable promise for applications in bone repair.
Collapse
Affiliation(s)
- Guowen Qian
- Institute of Additive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China.
| | - Yuqian Mao
- Institute of Additive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Yang Shuai
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhikui Zeng
- Department of Orthopedics, The Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang 330006, China.
| | - Shuping Peng
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China; NHC Key Laboratory of Carcinogenesis of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Cijun Shuai
- Institute of Additive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China; State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
| |
Collapse
|
19
|
Yang X, Wang Q, Yan C, Huang D, Zhang Y, He H, Xiong S, Li C, Chen P, Ye T, Hu D, Wang L. A dual-functional strontium-decorated titanium implants that guides the immune response for osseointegration of osteoporotic rats. Colloids Surf B Biointerfaces 2024; 233:113643. [PMID: 37995629 DOI: 10.1016/j.colsurfb.2023.113643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023]
Abstract
Due to the dynamic imbalance between osteogenesis and osteoclasis and the abnormal inflammatory microenvironment in situ, osteoporosis hampers the early osseointegration between implants and bones. To improve osseointegration with the osteoporosis, we first coated the titanium implants (Ti) with polydopamine (PDA) coating (Ti-PDA), followed by modification with strontium (Sr) to prepare the Ti-PDA-Sr implants. An osteoporotic rat model with femoral bone defect was verified to estimate the osseointegration of the implants. The Ti-PDA-Sr implants exhibited good biocompatibility with continuous release of Sr ions for up to 21 days. Ti-PDA-Sr implants promoted the osteogenesis of BMSCs and the polarization of BMMs to M2 phenotype compared to that of Ti and Ti-PDA implants, revealing the double-regulated effects in bone induction and immune regulation. According to the Micro-CT and histopathology results, Ti-PDA-Sr implants exhibited the most stable osseointegration between bone tissues and implants. According to the immunohistochemistry results, the Ti-PDA-Sr implants differentiated the BMMs to M2 phenotype, alleviating the abnormal inflammation in osteoporosis and preventing the consistent bone destruction between the implants and bone tissues. This study provides a practical and effective strategy in preparing bi-functional implants that can promote osseointegration with osteoporosis.
Collapse
Affiliation(s)
- Xin Yang
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China
| | - Qiang Wang
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China
| | - Chaoxi Yan
- Department of Orthopedics, Renmin Hospital of Zhijiang, Yichang 443200, Hubei, China
| | - Degang Huang
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China
| | - Yinchang Zhang
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China
| | - Huazheng He
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China
| | - Shouliang Xiong
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China
| | - Congming Li
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China
| | - Pingbo Chen
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China
| | - Tingjun Ye
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China.
| | - Dan Hu
- Department of Orthopedics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215500, Jiangsu, China.
| | - Lei Wang
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China.
| |
Collapse
|
20
|
Liu L, Luo P, Liao H, Yang K, Yang S, Tu M. Effects of aligned PLGA/SrCSH composite scaffolds on in vitro growth and osteogenic differentiation of human mesenchymal stem cells. J Biomed Mater Res B Appl Biomater 2024; 112:e35366. [PMID: 38247249 DOI: 10.1002/jbm.b.35366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 11/14/2023] [Accepted: 11/24/2023] [Indexed: 01/23/2024]
Abstract
Strontium (Sr) has important functions in bone remodeling. Incorporating strontium-doped α-calcium sulfate hemihydrate (SrCSH) into poly(lactic-co-glycolic acid) (PLGA) fibrous scaffolds were expected to increase its bio-activity and provide a potential material for bone tissue engineering. In the present study, Sr-containing aligned PLGA/SrCSH fibrous scaffolds similar to the architecture of natural bone were prepared via wet spinning. CCK-8 assay revealed that Sr-containing scaffolds possessed better bioactivity and supported favorable cell growth effectively. The aligned PLGA/SrCSH fibers exerted a contact effect on cell attachment, inducing regular cell alignment and influencing a series of cell behaviors. Releasing of high concentration Sr from a-PLGA/SrCSH scaffolds could induce high expression levels of BMP-2, increase ALP activity and upregulate RUNX-2 expression, and further promote the expressions of COL-I and OCN and the maximum mineralization. This study demonstrated that Sr and ordered structure in a-PLGA/SrCSH fibrous scaffolds could synergistically enhance the osteogenic differentiation of umbilical cord mesenchymal stem cells (UCMSCs) by regulating cell arrangement and expressions of osteogenic genes.
Collapse
Affiliation(s)
- Lichu Liu
- Institute of Orthopedics and Traumatology, Foshan Hospital of Traditional Chinese Medicine, Foshan, P. R. China
| | - Pin Luo
- College of Chemistry and Materials Science, Jinan University, Guangzhou, P. R. China
| | - Honghong Liao
- Institute of Orthopedics and Traumatology, Foshan Hospital of Traditional Chinese Medicine, Foshan, P. R. China
| | - Kuangyang Yang
- Institute of Orthopedics and Traumatology, Foshan Hospital of Traditional Chinese Medicine, Foshan, P. R. China
| | - Shenyu Yang
- Medical 3D Printing Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| | - Mei Tu
- College of Chemistry and Materials Science, Jinan University, Guangzhou, P. R. China
| |
Collapse
|
21
|
Miao Q, Yang X, Diao J, Ding H, Wu Y, Ren X, Gao J, Ma M, Yang S. 3D printed strontium-doped calcium phosphate ceramic scaffold enhances early angiogenesis and promotes bone repair through the regulation of macrophage polarization. Mater Today Bio 2023; 23:100871. [PMID: 38179229 PMCID: PMC10765239 DOI: 10.1016/j.mtbio.2023.100871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/16/2023] [Accepted: 11/14/2023] [Indexed: 01/06/2024] Open
Abstract
The vascularization of bone repair materials is one of the key issues that urgently need to be addressed in the process of bone repair. The changes in macrophage phenotype and function play an important role in the process of vascularization, and endowing bone repair materials with immune regulatory characteristics to enhance angiogenesis is undoubtedly a new strategy to improve the effectiveness of bone repair. In order to improve the effect of tricalcium phosphate (TCP) on vascularization and bone repair, we doped strontium ions (Sr) into TCP (SrTCP) and prepared porous 3D printed SrTCP scaffolds using 3D printing technology, and studied the scaffold mediated macrophage polarization and subsequent vascularization and bone regeneration. The results of the interaction between the scaffold and macrophages showed that the SrTCP scaffold can promote the polarization of macrophages from M1 to M2 and secrete high concentrations of VEGF and PDGF-bb cytokines, which shows excellent angiogenic potential. When human umbilical vein endothelial cells (HUVECs) were co-cultured with macrophage-conditioned medium of SrTCP scaffold, HUVECs exhibited excellent early angiogenesis-promoting effects in terms of scratch healing, angiogenic gene expression, and in vitro tube formation performance. The results of in vivo bone repair experiments showed that the SrTCP scaffold formed a vascular network with high density and quantity in the bone defect area, which could increase the rate of new bone formation and advance the period of bone formation, and finally achieved a better bone repair effect. We observed a cascade effect in which Sr-doped SrTCP scaffold regulate macrophage polarization to enhance angiogenesis and promote bone repair, which may provide a new strategy for the repair of clinical bone defects.
Collapse
Affiliation(s)
- Qiuju Miao
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Xiaopeng Yang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Jingjing Diao
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, People's Republic of China
| | - Huanwen Ding
- School of Medicine, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Yan Wu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Xiangyang Ren
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Jianbo Gao
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Mengze Ma
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Shenyu Yang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| |
Collapse
|
22
|
Tan S, Qiu Y, Xiong H, Wang C, Chen Y, Wu W, Yang Z, Zhao F. Mussel-inspired cortical bone-adherent bioactive composite hydrogels promote bone augmentation through sequential regulation of endochondral ossification. Mater Today Bio 2023; 23:100843. [PMID: 37942424 PMCID: PMC10628777 DOI: 10.1016/j.mtbio.2023.100843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/11/2023] [Accepted: 10/22/2023] [Indexed: 11/10/2023] Open
Abstract
Endochondral ossification (ECO) plays an integral part in bone augmentation, which undergoes sequential processes including mesenchymal stem cells (MSC) condensation, chondrocyte differentiation, chondrocyte hypertrophy, and mineralized bone formation. Thus, accelerating these steps will speed up the osteogenesis process through ECO. Herein, inspired by the marine mussels' adhesive mechanism, a bioactive glass-dopamine (BG-Dopa) hydrogel was prepared by distributing the micro-nano BG to aldehyde modified hyaluronic acid with dopamine-modified gelatin. By in vitro and in vivo experiments, we confirm that after implanting in the bone augmentation position, the hydrogel can adhere to the cortical bone surface firmly without sliding. Moreover, the condensation and hypertrophy of stem cells were accelerated at the early stage of ECO. Whereafter, the osteogenic differentiation of the hypertrophic chondrocytes was promoted, which lead to accelerating the late stage of ECO process to achieve more bone augmentation. This experiment provides a new idea for the design of bone augmentation materials.
Collapse
Affiliation(s)
- Shuyi Tan
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Yonghao Qiu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Huacui Xiong
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Chunhui Wang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Yifan Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Wangxi Wu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Zhen Yang
- Center for Health Science and Engineering, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300131, China
| | - Fujian Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| |
Collapse
|
23
|
Cui L, Zhao Y, Zhong Y, Zhang L, Zhang X, Guo Z, Wang F, Chen X, Tong H, Fan J. Combining decellularized adipose tissue with decellularized adventitia extravascular matrix or small intestinal submucosa matrix for the construction of vascularized tissue-engineered adipose. Acta Biomater 2023; 170:567-579. [PMID: 37683968 DOI: 10.1016/j.actbio.2023.08.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/24/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023]
Abstract
Adipose tissue is an endocrine organ. It serves many important functions, such as energy storage, hormones secretion, and providing insulation, cushioning and aesthetics to the body etc. Adipose tissue engineering offers a promising treatment for soft tissue defects. Early adipose tissue production and long-term survival are closely associated with angiogenesis. Decellularized matrix has a natural ECM (extracellular matrix) component, good biocompatibility, and low immunogenicity. Therefore, in this study, the injectable composite hydrogels were developed to construct vascularized tissue-engineered adipose by using the pro-angiogenic effects of aortic adventitia extravascular matrix (Adv) or small intestinal submucosa (SIS), and the pro-adipogenic effects of decellularized adipose tissue (DAT). The composite hydrogels were cross-linked by genipin. The adipogenic and angiogenic abilities of composite hydrogels were investigated in vitro, and in a rat dorsal subcutaneous implant model. The results showed that DAT and SIS or Adv 1:1 composite hydrogel promoted the migration and tube formation of endothelial cells. Furthermore, DAT and SIS or Adv 1:1 composite hydrogel enhanced adipogenic differentiation of adipose-derived mesenchymal stem cells (ASCs) through activation of PPARγ and C/EBPα. The in vivo studies further demonstrated that DAT with SIS or Adv in a 1:1 ratio also significantly promoted adipogenesis and angiogenesis. In addition, DAT with SIS or Adv in a 1:1 ratio hydrogel recruited macrophage population with enhanced M2-type macrophage polarization, suggesting a positive effect of inflammatory response on angiogenesis. In conclusion, these data suggest that the composite hydrogels of DAT with SIS or Adv in 1:1 ratio have apparent pro-adiogenic and angiogenic abilities, thus providing a promising cell-free tissue engineering biomaterial with broad clinical applications. STATEMENT OF SIGNIFICANCE: Decellularized adipose tissue (DAT) has emerged as an important biomaterial in adipose tissue regeneration. Early adipose tissue production and long-term survival is tightly related to the angiogenesis. The revascularization of the DAT is a key issue that needs to be solved in adipose regeneration. In this study, the injectable composite hydrogels were developed by using DAT with Adv (aortic adventitia extravascular matrix) or SIS (small intestinal submucosa) in different ratio. We demonstrated that the combination of DAT with SIS or Adv in 1:1 ratio effectively improved the proliferation of adipose stem cells and endothelial cells, and promoted greater adipose regeneration and tissue vascularization as compared to the DAT scaffold. This study provides the potential biomaterial for clinical soft tissue regeneration.
Collapse
Affiliation(s)
- Lu Cui
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China
| | - Yujia Zhao
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China
| | - Yuxuan Zhong
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China
| | - Lanlan Zhang
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China
| | - Xinnan Zhang
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China
| | - Zhenglong Guo
- Second Clinical Medical College, Shengjing Hospital, China Medical University, No.36 Sanhao Road, Heping District, Shenyang, Liaoning Province 110004, PR China
| | - Fanglin Wang
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China
| | - Xin Chen
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China
| | - Hao Tong
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China
| | - Jun Fan
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China.
| |
Collapse
|
24
|
Gao H, Wang L, Lin Z, Jin H, Lyu Y, Kang Y, Zhu T, Zhao J, Jiang J. Bi-lineage inducible and immunoregulatory electrospun fibers scaffolds for synchronous regeneration of tendon-to-bone interface. Mater Today Bio 2023; 22:100749. [PMID: 37545569 PMCID: PMC10400930 DOI: 10.1016/j.mtbio.2023.100749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/08/2023] Open
Abstract
Facilitating regeneration of the tendon-to-bone interface can reduce the risk of postoperative retear after rotator cuff repair. Unfortunately, undesirable inflammatory responses following injury, difficulties in fibrocartilage regeneration, and bone loss in the surrounding area are major contributors to suboptimal tendon-bone healing. Thus, the development of biomaterials capable of regulating macrophage polarization to a favorable phenotype and promoting the synchronous regeneration of the tendon-to-bone interface is currently a top priority. Here, strontium-doped mesoporous bioglass nanoparticles (Sr-MBG) were synthesized through a modulated sol-gel method and Bi-lineage Inducible and Immunoregulatory Electrospun Fibers Scaffolds (BIIEFS) containing Sr-MBG were fabricated. The BIIEFS were biocompatible, showed sustained release of multiple types of bioactive ions, enhanced osteogenic and chondrogenic differentiation of mesenchymal stem cells (MSCs), and facilitated macrophage polarization towards the M2 phenotype in vitro. The implantation of BIIEFS at the torn rotator cuff resulted in greater numbers of M2 macrophages and the synchronous regeneration of tendon, fibrocartilage, and bone at the tendon-to-bone interface, leading to a significant improvement in the biomechanical strength of the supraspinatus tendon-humerus complexes. Our research offers a feasible strategy to fabricate immunoregulatory and multi-lineage inducible electrospun fibers scaffolds incorporating bioglass nanoparticles for the regeneration of soft-to-hard tissue interfaces.
Collapse
Affiliation(s)
- Haihan Gao
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Regenerative Sports Medicine and Translational Youth Science and Technology Innovation Workroom, Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
| | - Liren Wang
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Regenerative Sports Medicine and Translational Youth Science and Technology Innovation Workroom, Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
| | - Zhiqi Lin
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Haocheng Jin
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yangbao Lyu
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yuhao Kang
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Tonghe Zhu
- School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Non-coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai, 201620, PR China
| | - Jinzhong Zhao
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Regenerative Sports Medicine Lab of the Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration Building 3, Langu Science and Technology Park, Lane 70, Haiji 6th Road, Shanghai, 201306, China
| | - Jia Jiang
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Regenerative Sports Medicine Lab of the Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
25
|
Huang X, Gao Y, Zhang Y, Wang J, Zheng N. Strontium Chloride Improves Reproductive Function and Alters Gut Microbiota in Male Rats. Int J Mol Sci 2023; 24:13922. [PMID: 37762223 PMCID: PMC10531462 DOI: 10.3390/ijms241813922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Strontium (Sr) is an essential trace element in the human body and plays an important role in regulating male reproductive health. Recent studies have shown that gut flora plays a key role in maintaining spermatogenesis, as well as testicular health, through the gut-testis axis. At present, it is unclear whether gut microbiota can mediate the effects of Sr on sperm quality, and what the underlying mechanisms may be. We investigated the effects of different concentrations of strontium chloride (SrCl2) solutions (0, 50, 100, and 200 mg/kg BW) on reproductive function and gut microbiota in male Wistar rats (6-8 weeks, 250 ± 20 g). All the animals were euthanized after 37 days of treatment. The Sr-50 group significantly increased sperm concentration, sperm motility, and sperm viability in rats. After Sr treatment, serum and testicular testosterone (T) and Sr levels increased in a dose-dependent manner with increasing Sr concentration. At the same time, we also found that testicular marker enzymes (ACP, LDH) and testosterone marker genes (StAR, 3β-HSD, and Cyp11a1) increased significantly in varying degrees after Sr treatment, while serum NO levels decreased significantly in a dose-dependent manner. Further investigation of intestinal flora showed that SrCl2 affected the composition of gut microbiome, but did not affect the richness and diversity of gut microbiota. Sr treatment reduced the number of bacteria with negative effects on reproductive health, such as Bacteroidetes, Tenericutes, Romboutsia, Ruminococcaceae_UCG_014, Weissella, and Eubacterium_coprostanoligenes_group, and added bacteria with negative effects on reproductive health, such as Jeotgalicoccus. To further explore the Sr and the relationship between the gut microbiota, we conducted a Spearman correlation analysis, and the results showed that the gut microbiota was closely correlated with Sr content in serum and testicular tissue, sex hormone levels, and testicular marker enzymes. Additionally, gut microbiota can also regulate each other and jointly maintain the homeostasis of the body's internal environment. However, we found no significant correlation between intestinal flora and sperm quality in this study, which may be related to the small sample size of our 16S rDNA sequencing. In conclusion, the Sr-50 group significantly increased T levels and sperm quality, and improved the levels of testicular marker enzymes and testosterone marker genes in the rats. Sr treatment altered the gut flora of the rats. However, further analysis of the effects of gut microbiota in mediating the effects of SrCl2 on male reproductive function is needed. This study may improve the current understanding of the interaction between Sr, reproductive health, and gut microbiota, providing evidence for the development of Sr-rich foods and the prevention of male fertility decline.
Collapse
Affiliation(s)
- Xulai Huang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Milk and Milk Products Inspection Center, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanan Gao
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Milk and Milk Products Inspection Center, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yangdong Zhang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Milk and Milk Products Inspection Center, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiaqi Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Milk and Milk Products Inspection Center, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nan Zheng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Milk and Milk Products Inspection Center, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
26
|
Feng L, Liu Y, Chen Y, Xiang Q, Huang Y, Liu Z, Xue W, Guo R. Injectable Antibacterial Hydrogel with Asiaticoside-Loaded Liposomes and Ultrafine Silver Nanosilver Particles Promotes Healing of Burn-Infected Wounds. Adv Healthc Mater 2023; 12:e2203201. [PMID: 37195780 DOI: 10.1002/adhm.202203201] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/15/2023] [Indexed: 05/18/2023]
Abstract
Post-injury infection and wound healing are recurrent daily life problems. Therefore, the necessity of developing a biomaterial with antibacterial and wound-healing properties is paramount. Based on the special porous structure of hydrogel, this work modifies recombinant collagen and quaternary ammonium chitosan and fused them with silver nanoparticles (Ag@mental-organic framework (Ag@MOF)) with antibacterial properties, and asiaticoside-loaded liposomes (Lip@AS) with anti-inflammatory/vascularization effects to form the rColMA/QCSG/LIP@AS/Ag@MOF (RQLAg) hydrogel. The prepared hydrogel possesses good sustainable release capabilities of Ag+ and AS and exhibits concentration-dependent swelling properties, pore size, and compressive strength. Cellular experiments show that the hydrogel exhibits good cell compatibility and promote cell migration, angiogenesis, and M1 macrophage polarization. Additionally, the hydrogels exhibit excellent antibacterial activity against Escherichia coli and Staphylococcus aureus in vitro. In vivo, Sprague Dawley rats burn-wound infection model showed that the RQLAg hydrogel could efficiently promote wound healing and has stronger healing promoting abilities than those of Aquacel Ag. In summary, the RQLAg hydrogel is expected to be an excellent material for accelerating open wound healing and preventing bacterial infections.
Collapse
Affiliation(s)
- Longbao Feng
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Yu Liu
- Research and Development Department, Guangzhou Beogene Biotech Co., Ltd, 510663, Guangzhou, China
| | - Yini Chen
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510663, China
| | - Qi Xiang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510663, China
| | - Yadong Huang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510663, China
| | - Zonghua Liu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Wei Xue
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Rui Guo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
27
|
Bosch-Rué È, Díez-Tercero L, Buitrago JO, Castro E, Pérez RA. Angiogenic and immunomodulation role of ions for initial stages of bone tissue regeneration. Acta Biomater 2023; 166:14-41. [PMID: 37302735 DOI: 10.1016/j.actbio.2023.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/10/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
It is widely known that bone has intrinsic capacity to self-regenerate after injury. However, the physiological regeneration process can be impaired when there is an extensive damage. One of the main reasons is due to the inability to establish a new vascular network that ensures oxygen and nutrient diffusion, leading to a necrotic core and non-junction of bone. Initially, bone tissue engineering (BTE) emerged to use inert biomaterials to just fill bone defects, but it eventually evolved to mimic bone extracellular matrix and even stimulate bone physiological regeneration process. In this regard, the stimulation of osteogenesis has gained a lot of attention especially in the proper stimulation of angiogenesis, being critical to achieve a successful osteogenesis for bone regeneration. Besides, the immunomodulation of a pro-inflammatory environment towards an anti-inflammatory one upon scaffold implantation has been considered another key process for a proper tissue restoration. To stimulate these phases, growth factors and cytokines have been extensively used. Nonetheless, they present some drawbacks such as low stability and safety concerns. Alternatively, the use of inorganic ions has attracted higher attention due to their higher stability and therapeutic effects with low side effects. This review will first focus in giving fundamental aspects of initial bone regeneration phases, focusing mainly on inflammatory and angiogenic ones. Then, it will describe the role of different inorganic ions in modulating the immune response upon biomaterial implantation towards a restorative environment and their ability to stimulate angiogenic response for a proper scaffold vascularization and successful bone tissue restoration. STATEMENT OF SIGNIFICANCE: The impairment of bone tissue regeneration when there is excessive damage has led to different tissue engineered strategies to promote bone healing. Significant importance has been given in the immunomodulation towards an anti-inflammatory environment together with proper angiogenesis stimulation in order to achieve successful bone regeneration rather than stimulating only the osteogenic differentiation. Ions have been considered potential candidates to stimulate these events due to their high stability and therapeutic effects with low side effects compared to growth factors. However, up to now, no review has been published assembling all this information together, describing individual effects of ions on immunomodulation and angiogenic stimulation, as well as their multifunctionality or synergistic effects when combined together.
Collapse
Affiliation(s)
- Èlia Bosch-Rué
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Josep Trueta, s/n, Sant Cugat del Vallès, Barcelona 08195, Spain; Basic Sciences Department, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Barcelona 08195, Spain
| | - Leire Díez-Tercero
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Josep Trueta, s/n, Sant Cugat del Vallès, Barcelona 08195, Spain; Basic Sciences Department, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Barcelona 08195, Spain
| | - Jenifer Olmos Buitrago
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Josep Trueta, s/n, Sant Cugat del Vallès, Barcelona 08195, Spain; Basic Sciences Department, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Barcelona 08195, Spain
| | - Emilio Castro
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Josep Trueta, s/n, Sant Cugat del Vallès, Barcelona 08195, Spain; Basic Sciences Department, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Barcelona 08195, Spain
| | - Roman A Pérez
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Josep Trueta, s/n, Sant Cugat del Vallès, Barcelona 08195, Spain; Basic Sciences Department, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Barcelona 08195, Spain.
| |
Collapse
|
28
|
Hou Q, Liu K, Lian C, Liu J, Wei W, Qiu T, Dai H. A Gelatin-Based Composite Hydrogel with a "One Stone, Two Birds" Strategy for Photothermal Antibacterial and Vascularization of Infected Wounds. Biomacromolecules 2023. [PMID: 37379247 DOI: 10.1021/acs.biomac.3c00471] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Bacterial infection, prolonged inflammation, and insufficient angiogenesis are the main challenges for effective wound repair. In this work, we developed a stretchable, remodeling, self-healing, and antibacterial multifunctional composite hydrogel for infected wound healing. The hydrogel was prepared using tannic acid (TA) and phenylboronic acid-modified gelatin (Gel-BA) through hydrogen bonding and borate ester bonds and incorporated iron-containing bioactive glasses (Fe-BGs) with uniform spherical morphologies and amorphous structures to achieve GTB composite hydrogels. On one hand, the chelation of Fe3+ in Fe-BGs with TA endowed the hydrogel with good photothermal synergistic antibacterial ability; on the other hand, the bioactive Fe3+ and Si ions contained in Fe-BGs can recruit cells and synergistically promote blood vessel formation. In vivo animal experiments showed that the GTB hydrogels remarkably accelerated infected full-thickness skin wound healing by improving granulation tissue formation, collagen deposition, and the formation of nerves and blood vessels while decreasing inflammation. This hydrogel with a dual synergistic effect and ″one stone, two birds″ strategy holds immense potential for wound dressing applications.
Collapse
Affiliation(s)
- Qinghua Hou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Kun Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Chenxi Lian
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Jiawei Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Wenying Wei
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Tong Qiu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
| |
Collapse
|
29
|
Zhou X, Wang Z, Li T, Liu Z, Sun X, Wang W, Chen L, He C. Enhanced tissue infiltration and bone regeneration through spatiotemporal delivery of bioactive factors from polyelectrolytes modified biomimetic scaffold. Mater Today Bio 2023; 20:100681. [PMID: 37304580 PMCID: PMC10250921 DOI: 10.1016/j.mtbio.2023.100681] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/09/2023] [Accepted: 05/23/2023] [Indexed: 06/13/2023] Open
Abstract
Efficient healing of bone defect is closely associated with the structured and functional characters of tissue engineered scaffolds. However, the development of bone implants with rapid tissue ingrowth and favorable osteoinductive properties remains a challenge. Herein, we fabricated polyelectrolytes modified-biomimetic scaffold with macroporous and nanofibrous structures as well as simultaneous delivery of BMP-2 protein and trace element strontium. The hierarchically structured scaffold incorporated with strontium-substituted hydroxyapatite (SrHA) was coated with polyelectrolyte multilayers of chitosan/gelatin via layer-by-layer assembly technique for BMP-2 immobilization, which endowed the composite scaffold with sequential release of BMP-2 and Sr ions. The integration of SrHA improved the mechanical property of composite scaffold, while the polyelectrolytes modification strongly increased the hydrophilicity and protein binding efficiency. In addition, polyelectrolytes modified-scaffold significantly facilitated cell proliferation in vitro, as well as enhanced tissue infiltration and new microvascular formation in vivo. Furthermore, the dual-factor loaded scaffold significantly enhanced the osteogenic differentiation of bone marrow mesenchymal stem cells. Moreover, both vascularization and new bone formation were significantly increased by the treatment of dual-factor delivery scaffold in the rat calvarial defects model, suggesting a synergistic effect on bone regeneration through spatiotemporal delivery of BMP-2 and Sr ions. Overall, this study demonstrate that the prepared biomimetic scaffold as dual-factor delivery system has great potential for bone regeneration application.
Collapse
Affiliation(s)
- Xiaojun Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Zunjuan Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Tao Li
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Zhonglong Liu
- Department of Oral & Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xin Sun
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Weizhong Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Liang Chen
- Department of Joint Surgery, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, 528400, China
| | - Chuanglong He
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
30
|
Xu T, Xie K, Wang C, Ivanovski S, Zhou Y. Immunomodulatory nanotherapeutic approaches for periodontal tissue regeneration. NANOSCALE 2023; 15:5992-6008. [PMID: 36896757 DOI: 10.1039/d2nr06149j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Periodontitis is an infection-induced inflammatory disease characterized by progressive destruction of tooth supporting tissues, which, if left untreated, can result in tooth loss. The destruction of periodontal tissues is primarily caused by an imbalance between the host immune protection and immune destruction mechanisms. The ultimate goal of periodontal therapy is to eliminate inflammation and promote the repair and regeneration of both hard and soft tissues, so as to restore the physiological structure and function of periodontium. Advancement in nanotechnologies has enabled the development of nanomaterials with immunomodulatory properties for regenerative dentistry. This review discusses the immune mechanisms of the major effector cells in the innate and adaptive immune systems, the physicochemical and biological properties of nanomaterials, and the research advancements in immunomodulatory nanotherapeutic approaches for the management of periodontitis and the regeneration of periodontal tissues. The current challenges, and prospects for future applications of nanomaterials are then discussed so that researchers at the intersections of osteoimmunology, regenerative dentistry and materiobiology will continue to advance the development of nanomaterials for improved periodontal tissue regeneration.
Collapse
Affiliation(s)
- Tian Xu
- School of Dentistry, The University of Queensland, QLD 4006, Australia.
| | - Kunke Xie
- Clinical Laboratory, Bo'Ai Hospital of Zhongshan, 6 Chenggui Road, East District, Zhongshan 528403, Guangdong, China
| | - Cong Wang
- School of Dentistry, The University of Queensland, QLD 4006, Australia.
| | - Sašo Ivanovski
- School of Dentistry, The University of Queensland, QLD 4006, Australia.
| | - Yinghong Zhou
- School of Dentistry, The University of Queensland, QLD 4006, Australia.
| |
Collapse
|
31
|
Liu X, Huang H, Zhang J, Sun T, Zhang W, Li Z. Recent Advance of Strontium Functionalized in Biomaterials for Bone Regeneration. Bioengineering (Basel) 2023; 10:bioengineering10040414. [PMID: 37106601 PMCID: PMC10136039 DOI: 10.3390/bioengineering10040414] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Bone defect disease causes damage to people’s lives and property, and how to effectively promote bone regeneration is still a big clinical challenge. Most of the current repair methods focus on filling the defects, which has a poor effect on bone regeneration. Therefore, how to effectively promote bone regeneration while repairing the defects at the same time has become a challenge for clinicians and researchers. Strontium (Sr) is a trace element required by the human body, which mainly exists in human bones. Due to its unique dual properties of promoting the proliferation and differentiation of osteoblasts and inhibiting osteoclast activity, it has attracted extensive research on bone defect repair in recent years. With the deep development of research, the mechanisms of Sr in the process of bone regeneration in the human body have been clarified, and the effects of Sr on osteoblasts, osteoclasts, mesenchymal stem cells (MSCs), and the inflammatory microenvironment in the process of bone regeneration have been widely recognized. Based on the development of technology such as bioengineering, it is possible that Sr can be better loaded onto biomaterials. Even though the clinical application of Sr is currently limited and relevant clinical research still needs to be developed, Sr-composited bone tissue engineering biomaterials have achieved satisfactory results in vitro and in vivo studies. The Sr compound together with biomaterials to promote bone regeneration will be a development direction in the future. This review will present a brief overview of the relevant mechanisms of Sr in the process of bone regeneration and the related latest studies of Sr combined with biomaterials. The aim of this paper is to highlight the potential prospects of Sr functionalized in biomaterials.
Collapse
|
32
|
Ye Z, Qi Y, Zhang A, Karels BJ, Aparicio C. Biomimetic Mineralization of Fibrillar Collagen with Strontium-doped Hydroxyapatite. ACS Macro Lett 2023; 12:408-414. [PMID: 36897173 DOI: 10.1021/acsmacrolett.3c00039] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Fibrillar collagen structures mineralized with hydroxyapatite using the polymer-induced liquid precursor (PILP) process have been explored as synthetic models for studying biomineralization of human hard tissues and have also been applied in the fabrication of scaffolds for hard tissue regeneration. Strontium has important biological functions in bone and has been used as a therapeutic agent for treating diseases that result in bone defects, such as osteoporosis. Here, we developed a strategy to mineralize collagen with Sr-doped hydroxyapatite (HA) using the PILP process. Doping with Sr altered the crystal lattice of HA and inhibited the degree of mineralization in a concentration-dependent manner, but did not affect the unique formation of intrafibrillar minerals using the PILP. The Sr-doped HA nanocrystals were aligned in the [001] direction but did not recapitulate the parallel alignment of the c-axis of pure Ca HA in relation to the collagen fiber long axis. The mimicry of doping Sr in PILP-mineralized collagen can help understand the doping of Sr in natural hard tissues and during treatment. The fibrillary mineralized collagen with Sr-doped HA will be explored in future work as biomimetic and bioactive scaffolds for regeneration of bone and tooth dentin.
Collapse
Affiliation(s)
- Zhou Ye
- MDRCBB, Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, S.A.R., China
| | - Yipin Qi
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510000, China
| | - Anqi Zhang
- MDRCBB, Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Brandon J Karels
- MDRCBB, Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Conrado Aparicio
- MDRCBB, Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Division of Basic and Translational Research, Faculty of Odontology, UIC Barcelona - Universitat Internacional de Catalunya, Sant Cugat del Vallès, 08195, Spain
- Institute for Bioengineering of Catalonia (IBEC), Barcelona, 08028, Spain
| |
Collapse
|
33
|
Zhou X, Qian Y, Chen L, Li T, Sun X, Ma X, Wang J, He C. Flowerbed-Inspired Biomimetic Scaffold with Rapid Internal Tissue Infiltration and Vascularization Capacity for Bone Repair. ACS NANO 2023; 17:5140-5156. [PMID: 36808939 DOI: 10.1021/acsnano.3c00598] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The favorable microstructure and bioactivity of tissue-engineered bone scaffolds are closely associated with the regenerative efficacy of bone defects. For the treatment of large bone defects, however, most of them fail to meet requirements such as adequate mechanical strength, highly porous structure, and excellent angiogenic and osteogenic activities. Herein, inspired by the characteristics of a "flowerbed", we construct a short nanofiber aggregates-enriched dual-factor delivery scaffold via 3D printing and electrospinning techniques for guiding vascularized bone regeneration. By the assembly of short nanofibers containing dimethyloxalylglycine (DMOG)-loaded mesoporous silica nanoparticles with a 3D printed strontium-contained hydroxyapatite/polycaprolactone (SrHA@PCL) scaffold, an adjustable porous structure can be easily realized by changing the density of nanofibers, while strong compressive strength will be acquired due to the framework role of SrHA@PCL. Owing to the different degradation performance between electrospun nanofibers and 3D printed microfilaments, a sequential release behavior of DMOG and Sr ions is achieved. Both in vivo and in vitro results demonstrate that the dual-factor delivery scaffold has excellent biocompatibility, significantly promotes angiogenesis and osteogenesis by stimulating endothelial cells and osteoblasts, and effectively accelerates tissue ingrowth and vascularized bone regeneration through activating the hypoxia inducible factor-1α pathway and immunoregulatory effect. Overall, this study has provided a promising strategy for constructing a bone microenvironment-matched biomimetic scaffold for bone regeneration.
Collapse
Affiliation(s)
- Xiaojun Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Yuhan Qian
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Liang Chen
- Department of Joint Surgery, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, China
| | - Tao Li
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xin Sun
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xiaojun Ma
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Jinwu Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Chuanglong He
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
34
|
Lei C, Song JH, Li S, Zhu YN, Liu MY, Wan MC, Mu Z, Tay FR, Niu LN. Advances in materials-based therapeutic strategies against osteoporosis. Biomaterials 2023; 296:122066. [PMID: 36842238 DOI: 10.1016/j.biomaterials.2023.122066] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023]
Abstract
Osteoporosis is caused by the disruption in homeostasis between bone formation and bone resorption. Conventional management of osteoporosis involves systematic drug administration and hormonal therapy. These treatment strategies have limited curative efficacy and multiple adverse effects. Biomaterials-based therapeutic strategies have recently emerged as promising alternatives for the treatment of osteoporosis. The present review summarizes the current status of biomaterials designed for managing osteoporosis. The advantages of biomaterials-based strategies over conventional systematic drug treatment are presented. Different anti-osteoporotic delivery systems are concisely addressed. These materials include injectable hydrogels and nanoparticles, as well as anti-osteoporotic bone tissue engineering materials. Fabrication techniques such as 3D printing, electrostatic spinning and artificial intelligence are appraised in the context of how the use of these adjunctive techniques may improve treatment efficacy. The limitations of existing biomaterials are critically analyzed, together with deliberation of the future directions in biomaterials-based therapies. The latter include discussion on the use of combination strategies to enhance therapeutic efficacy in the osteoporosis niche.
Collapse
Affiliation(s)
- Chen Lei
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jing-Han Song
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Song Li
- School of Stomatology, Xinjiang Medical University. Urumqi 830011, China
| | - Yi-Na Zhu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Ming-Yi Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Mei-Chen Wan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zhao Mu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Franklin R Tay
- The Dental College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - Li-Na Niu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
35
|
Cui J, Zhang S, Cheng S, Shen H. Current and future outlook of loaded components in hydrogel composites for the treatment of chronic diabetic ulcers. Front Bioeng Biotechnol 2023; 11:1077490. [PMID: 36860881 PMCID: PMC9968980 DOI: 10.3389/fbioe.2023.1077490] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/17/2023] [Indexed: 02/16/2023] Open
Abstract
Due to recalcitrant microangiopathy and chronic infection, traditional treatments do not easily produce satisfactory results for chronic diabetic ulcers. In recent years, due to the advantages of high biocompatibility and modifiability, an increasing number of hydrogel materials have been applied to the treatment of chronic wounds in diabetic patients. Research on composite hydrogels has received increasing attention since loading different components can greatly increase the ability of composite hydrogels to treat chronic diabetic wounds. This review summarizes and details a variety of newly loaded components currently used in hydrogel composites for the treatment of chronic diabetic ulcers, such as polymer/polysaccharides/organic chemicals, stem cells/exosomes/progenitor cells, chelating agents/metal ions, plant extracts, proteins (cytokines/peptides/enzymes) and nucleoside products, and medicines/drugs, to help researchers understand the characteristics of these components in the treatment of diabetic chronic wounds. This review also discusses a number of components that have not yet been applied but have the potential to be loaded into hydrogels, all of which play roles in the biomedical field and may become important loading components in the future. This review provides a "loading component shelf" for researchers of composite hydrogels and a theoretical basis for the future construction of "all-in-one" hydrogels.
Collapse
Affiliation(s)
- Jiaming Cui
- Sichuan Provincial Orthopaedic Hospital, Chengdu, Sichuan, China,*Correspondence: Jiaming Cui,
| | - Siqi Zhang
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Songmiao Cheng
- Sichuan Provincial Orthopaedic Hospital, Chengdu, Sichuan, China
| | - Hai Shen
- Sichuan Provincial Orthopaedic Hospital, Chengdu, Sichuan, China
| |
Collapse
|
36
|
Li G, Li Y, Zhang X, Gao P, Xia X, Xiao S, Wen J, Guo T, Yang W, Li J. Strontium and simvastatin dual loaded hydroxyapatite microsphere reinforced poly(ε-caprolactone) scaffolds promote vascularized bone regeneration. J Mater Chem B 2023; 11:1115-1130. [PMID: 36636931 DOI: 10.1039/d2tb02309a] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The promotion of vascular network formation in the early stages of implantation is considered a prerequisite for successful functional bone regeneration. In this study, we successfully constructed 3D printed scaffolds with strong mechanical strength and a controllable pore structure that can sustainably release strontium (Sr) ions and simvastatin (SIM) for up to 28 days by incorporation of Sr2+ and SIM-loaded hydroxyapatite microspheres (MHA) into a poly(ε-caprolactone) (PCL) matrix. In vitro cell experiments showed that Sr-doped scaffolds were beneficial to the proliferation and osteogenic differentiation of bone mesenchymal stem cells (BMSCs), an appropriate dose of SIM was beneficial to cell proliferation and angiogenesis, and a high dose of SIM was cytotoxic. The Sr- and SIM-dual-loaded scaffolds with an appropriate dose significantly induced osteogenic differentiation of BMSCs and tube formation of human umbilical vein endothelial cells (HUVECs) in vitro and promoted vascular network and functional bone formation in vivo. Ribose nucleic acid (RNA) sequencing analysis suggested that the mechanism of promotion of vascularized bone regeneration by fabricated scaffolds is that dual-loaded Sr2+ and SIM can upregulate osteogenic and vasculogenic-related genes and downregulate osteoclast-related genes, which is beneficial for vascular and new bone regeneration. The 3D printed composite scaffolds loaded with high-stability and low-cost inorganic Sr2+ ions and SIM small-molecule drugs hold great promise in the field of promoting vascularized bone regeneration.
Collapse
Affiliation(s)
- Gen Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China.
| | - Yubao Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China.
| | - Xianhui Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Pengfei Gao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Xue Xia
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China.
| | - Shiqi Xiao
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China.
| | - Jing Wen
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China.
| | - Tao Guo
- Department of Orthopaedics, Guizhou Provincial People's hospital, Guiyang 550002, China
| | - Weihu Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Jidong Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
37
|
Chen Y, Xu W, Shafiq M, Song D, Wang T, Yuan Z, Xie X, Yu X, Shen Y, Sun B, Liu Y, Mo X. Injectable nanofiber microspheres modified with metal phenolic networks for effective osteoarthritis treatment. Acta Biomater 2023; 157:593-608. [PMID: 36435438 DOI: 10.1016/j.actbio.2022.11.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/31/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
Osteoarthritis (OA) is one of the most common chronic musculoskeletal diseases, which accounts for a large proportion of physical disabilities worldwide. Herein, we fabricated injectable gelatin/poly(L-lactide)-based nanofibrous microspheres (MS) via electrospraying technology, which were further modified with tannic acid (TA) named as TMS or metal phenolic networks (MPNs) consisting of TA and strontium ions (Sr2+) and named as TSMS to enhance their bioactivity for OA therapy. The TA-modified microspheres exhibited stable porous structure and anti-oxidative activity. Notably, TSMS showed a sustained release of TA as compared to TMS, which exhibited a burst release of TA. While all types of microspheres exhibited good cytocompatibility, TSMS displayed good anti-inflammatory properties with higher cell viability and cartilage-related extracellular matrix (ECM) secretion. The TSMS microspheres also showed less apoptosis of chondrocytes in the hydrogen peroxide (H2O2)-induced inflammatory environment. The TSMS also inhibited the degradation of cartilage along with the considerable repair outcome in the papain-induced OA rabbit model in vivo as well as suppressed the expression level of inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α) and interleukin-1-beta (IL-1β). Taken together, TSMS may provide a highly desirable therapeutic option for intra-articular treatment of OA. STATEMENT OF SIGNIFICANCE: Osteoarthritis (OA) is a chronic disease, which is caused by the inflammation of joint. Current treatments for OA achieve pain relief but hardly prevent or slow down the disease progression. Microspheres are at the forefront of drug delivery and tissue engineering applications, which can also be minimal-invasively injected into the joint. Polyphenols and therapeutic ions have been shown to be beneficial for the treatment of diseases related to the joints, including OA. Herein, we prepared gelatin/poly(L-lactide)-based nanofibrous microspheres (MS) via electrospinning incorporated electrospraying technology and functionalized them with the metal phenolic networks (MPNs) consisting of TA and strontium ions (Sr2+), and assessed their potential for OA therapy both in vitro and in vivo.
Collapse
Affiliation(s)
- Yujie Chen
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Songjiang, Shanghai 201600, China
| | - Wei Xu
- Research Institute of Plastic Surgery, Wei Fang Medical College, Weifang 261000, China; Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine, Huangpu, Shanghai 200001, China; Department of Plastic Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, Shandong 266035, China
| | - Muhammad Shafiq
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Songjiang, Shanghai 201600, China; Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Daiying Song
- Research Institute of Plastic Surgery, Wei Fang Medical College, Weifang 261000, China; Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine, Huangpu, Shanghai 200001, China
| | - Tao Wang
- Department of Plastic and Cosmetic Surgery, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai 200001, China
| | - Zhengchao Yuan
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Songjiang, Shanghai 201600, China
| | - Xianrui Xie
- School of Pharmacy, Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai 264003, China
| | - Xiao Yu
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Songjiang, Shanghai 201600, China
| | - Yihong Shen
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Songjiang, Shanghai 201600, China
| | - Binbin Sun
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Songjiang, Shanghai 201600, China
| | - Yu Liu
- Research Institute of Plastic Surgery, Wei Fang Medical College, Weifang 261000, China; Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine, Huangpu, Shanghai 200001, China.
| | - Xiumei Mo
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Songjiang, Shanghai 201600, China.
| |
Collapse
|
38
|
Zeng X, Chen B, Wang L, Sun Y, Jin Z, Liu X, Ouyang L, Liao Y. Chitosan@Puerarin hydrogel for accelerated wound healing in diabetic subjects by miR-29ab1 mediated inflammatory axis suppression. Bioact Mater 2023; 19:653-665. [PMID: 35600974 PMCID: PMC9109129 DOI: 10.1016/j.bioactmat.2022.04.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 02/06/2023] Open
Abstract
Wound healing is one of the major global health concerns in patients with diabetes. Overactivation of pro-inflammatory M1 macrophages is associated with delayed wound healing in diabetes. miR-29ab1 plays a critical role in diabetes-related macrophage inflammation. Hence, inhibition of inflammation and regulation of miR-29 expression have been implicated as new points for skin wound healing. In this study, the traditional Chinese medicine, puerarin, was introduced to construct an injectable and self-healing chitosan@puerarin (C@P) hydrogel. The C@P hydrogel promoted diabetic wound healing and accelerated angiogenesis, which were related to the inhibition of the miR-29 mediated inflammation response. Compared to healthy subjects, miR-29a and miR-29b1 were ectopically increased in the skin wound of the diabetic model, accompanied by upregulated M1-polarization, and elevated levels of IL-1β and TNF-α. Further evaluations by miR-29ab1 knockout mice exhibited superior wound healing and attenuated inflammation. The present results suggested that miR-29ab1 is essential for diabetic wound healing by regulating the inflammatory response. Suppression of miR-29ab1 by the C@P hydrogel has the potential for improving medical approaches for wound repair. A chitosan based hydrogel containing puerarin was constructed for promoting diabetic wound healing. Chitosan@Puerarin hydrogel accelerated skin repair through inhibiting M1-polarization and reducing IL-1β and TNF-α. miR-29 a/b1 was found to be ectopic increased in the skin-wound of diabetic model. miR-29 a/b1 was inhibited by Chitosan@Puerarin in diabetic wound healing.
Collapse
|
39
|
Xiong H, Zhao F, Peng Y, Li M, Qiu H, Chen K. Easily attainable and low immunogenic stem cells from exfoliated deciduous teeth enhanced the in vivo bone regeneration ability of gelatin/bioactive glass microsphere composite scaffolds. Front Bioeng Biotechnol 2022; 10:1049626. [PMID: 36568292 PMCID: PMC9780285 DOI: 10.3389/fbioe.2022.1049626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022] Open
Abstract
Repair of critical-size bone defects remains a considerable challenge in the clinic. The most critical cause for incomplete healing is that osteoprogenitors cannot migrate to the central portion of the defects. Herein, stem cells from exfoliated deciduous teeth (SHED) with the properties of easy attainability and low immunogenicity were loaded into gelatin/bioactive glass (GEL/BGM) scaffolds to construct GEL/BGM + SHED engineering scaffolds. An in vitro study showed that BGM could augment the osteogenic differentiation of SHED by activating the AMPK signaling cascade, as confirmed by the elevated expression of osteogenic-related genes, and enhanced ALP activity and mineralization formation in SHED. After implantation in the critical bone defect model, GEL/BGM + SHED scaffolds exhibited low immunogenicity and significantly enhanced new bone formation in the center of the defect. These results indicated that GEL/BGM + SHED scaffolds present a new promising strategy for critical-size bone healing.
Collapse
|
40
|
Biodegradable Mg-Sc-Sr Alloy Improves Osteogenesis and Angiogenesis to Accelerate Bone Defect Restoration. J Funct Biomater 2022; 13:jfb13040261. [PMID: 36547521 PMCID: PMC9787880 DOI: 10.3390/jfb13040261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/23/2022] Open
Abstract
Magnesium (Mg) and its alloys are considered to be biodegradable metallic biomaterials for potential orthopedic implants. While the osteogenic properties of Mg alloys have been widely studied, few reports focused on developing a bifunctional Mg implant with osteogenic and angiogenic properties. Herein, a Mg-Sc-Sr alloy was developed, and this alloy's angiogenesis and osteogenesis effects were evaluated in vitro for the first time. X-ray Fluorescence (XRF), X-ray diffraction (XRD), and metallography images were used to evaluate the microstructure of the developed Mg-Sc-Sr alloy. Human umbilical vein/vascular endothelial cells (HUVECs) were used to evaluate the angiogenic character of the prepared Mg-Sc-Sr alloy. A mix of human bone-marrow-derived mesenchymal stromal cells (hBM-MSCs) and HUVEC cell cultures were used to assess the osteogenesis-stimulating effect of Mg-Sc-Sr alloy through alkaline phosphatase (ALP) and Von Kossa staining. Higher ALP activity and the number of calcified nodules (27% increase) were obtained for the Mg-Sc-Sr-treated groups compared to Mg-treated groups. In addition, higher VEGF expression (45.5% increase), tube length (80.8% increase), and number of meshes (37.9% increase) were observed. The Mg-Sc-Sr alloy showed significantly higher angiogenesis and osteogenic differentiation than pure Mg and the control group, suggesting such a composition as a promising candidate in bone implants.
Collapse
|
41
|
Filip DG, Surdu VA, Paduraru AV, Andronescu E. Current Development in Biomaterials-Hydroxyapatite and Bioglass for Applications in Biomedical Field: A Review. J Funct Biomater 2022; 13:248. [PMID: 36412889 PMCID: PMC9680477 DOI: 10.3390/jfb13040248] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Inorganic biomaterials, including different types of metals and ceramics are widely used in various fields due to their biocompatibility, bioactivity, and bioresorbable capacity. In recent years, biomaterials have been used in biomedical and biological applications. Calcium phosphate (CaPs) compounds are gaining importance in the field of biomaterials used as a standalone material or in more complex structures, especially for bone substitutes and drug delivery systems. The use of multiple dopants into the structure of CaPs compounds can significantly improve their in vivo and in vitro activity. Among the general information included in the Introduction section, in the first section of this review paper, the authors provided a background on the development of hydroxyapatite, methods of synthesis, and its applications. The advantages of using different ions and co-ions for substitution into the hydroxyapatite lattice and their influence on physicochemical, antibacterial, and biological properties of hydroxyapatite are also presented in this section of the review paper. Larry Hench's 45S5 Bioglass®, commercially named 45S5, was the first bioactive glass that revealed a chemical bond with bone, highlighting the potential of this biomaterial to be widely used in biomedicine for bone regeneration. The second section of this article is focused on the development and current products based on 45S5 Bioglass®, covering the historical evolution, importance of the sintering method, hybrid bioglass composites, and applications. To overcome the limitations of the original biomaterials, studies were performed to combine hydroxyapatite and 45S5 Bioglass® into new composites used for their high bioactivity and improved properties. This particular type of combined hydroxyapatite/bioglass biomaterial is discussed in the last section of this review paper.
Collapse
Affiliation(s)
- Diana Georgiana Filip
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Vasile-Adrian Surdu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Centre for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Andrei Viorel Paduraru
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Centre for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 50085 Bucharest, Romania
| |
Collapse
|
42
|
Lv B, Wu J, Xiong Y, Xie X, Lin Z, Mi B, Liu G. Functionalized multidimensional biomaterials for bone microenvironment engineering applications: Focus on osteoimmunomodulation. Front Bioeng Biotechnol 2022; 10:1023231. [PMID: 36406210 PMCID: PMC9672076 DOI: 10.3389/fbioe.2022.1023231] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/20/2022] [Indexed: 09/26/2023] Open
Abstract
As bone biology develops, it is gradually recognized that bone regeneration is a pathophysiological process that requires the simultaneous participation of multiple systems. With the introduction of osteoimmunology, the interplay between the immune system and the musculoskeletal diseases has been the conceptual framework for a thorough understanding of both systems and the advancement of osteoimmunomodulaty biomaterials. Various therapeutic strategies which include intervention of the surface characteristics or the local delivery systems with the incorporation of bioactive molecules have been applied to create an ideal bone microenvironment for bone tissue regeneration. Our review systematically summarized the current research that is being undertaken in the field of osteoimmunomodulaty bone biomaterials on a case-by-case basis, aiming to inspire more extensive research and promote clinical conversion.
Collapse
Affiliation(s)
| | | | | | | | | | - Bobin Mi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guohui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
43
|
Hoseinzadeh A, Ghoddusi Johari H, Anbardar MH, Tayebi L, Vafa E, Abbasi M, Vaez A, Golchin A, Amani AM, Jangjou A. Effective treatment of intractable diseases using nanoparticles to interfere with vascular supply and angiogenic process. Eur J Med Res 2022; 27:232. [PMID: 36333816 PMCID: PMC9636835 DOI: 10.1186/s40001-022-00833-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022] Open
Abstract
Angiogenesis is a vital biological process involving blood vessels forming from pre-existing vascular systems. This process contributes to various physiological activities, including embryonic development, hair growth, ovulation, menstruation, and the repair and regeneration of damaged tissue. On the other hand, it is essential in treating a wide range of pathological diseases, such as cardiovascular and ischemic diseases, rheumatoid arthritis, malignancies, ophthalmic and retinal diseases, and other chronic conditions. These diseases and disorders are frequently treated by regulating angiogenesis by utilizing a variety of pro-angiogenic or anti-angiogenic agents or molecules by stimulating or suppressing this complicated process, respectively. Nevertheless, many traditional angiogenic therapy techniques suffer from a lack of ability to achieve the intended therapeutic impact because of various constraints. These disadvantages include limited bioavailability, drug resistance, fast elimination, increased price, nonspecificity, and adverse effects. As a result, it is an excellent time for developing various pro- and anti-angiogenic substances that might circumvent the abovementioned restrictions, followed by their efficient use in treating disorders associated with angiogenesis. In recent years, significant progress has been made in different fields of medicine and biology, including therapeutic angiogenesis. Around the world, a multitude of research groups investigated several inorganic or organic nanoparticles (NPs) that had the potential to effectively modify the angiogenesis processes by either enhancing or suppressing the process. Many studies into the processes behind NP-mediated angiogenesis are well described. In this article, we also cover the application of NPs to encourage tissue vascularization as well as their angiogenic and anti-angiogenic effects in the treatment of several disorders, including bone regeneration, peripheral vascular disease, diabetic retinopathy, ischemic stroke, rheumatoid arthritis, post-ischemic cardiovascular injury, age-related macular degeneration, diabetic retinopathy, gene delivery-based angiogenic therapy, protein delivery-based angiogenic therapy, stem cell angiogenic therapy, and diabetic retinopathy, cancer that may benefit from the behavior of the nanostructures in the vascular system throughout the body. In addition, the accompanying difficulties and potential future applications of NPs in treating angiogenesis-related diseases and antiangiogenic therapies are discussed.
Collapse
Affiliation(s)
- Ahmad Hoseinzadeh
- Thoracic and Vascular Surgery Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Surgery, School of Medicine, Namazi Teaching Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamed Ghoddusi Johari
- Thoracic and Vascular Surgery Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Surgery, School of Medicine, Namazi Teaching Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, 53233, USA
| | - Ehsan Vafa
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Milad Abbasi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Golchin
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry and Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Jangjou
- Department of Emergency Medicine, School of Medicine, Namazi Teaching Hospital, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
44
|
Zhao F, Yang Z, Xiong H, Yan Y, Chen X, Shao L. A bioactive glass functional hydrogel enhances bone augmentation via synergistic angiogenesis, self-swelling and osteogenesis. Bioact Mater 2022; 22:201-210. [PMID: 36246665 PMCID: PMC9535384 DOI: 10.1016/j.bioactmat.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/28/2022] [Accepted: 09/12/2022] [Indexed: 12/03/2022] Open
Abstract
Bone augmentation materials usually cannot provide enough new bone for dental implants due to the material degradation and mucosal pressure. The use of hydrogels with self-swelling properties may provide a higher bone augmentation, although swelling is generally considered to be a disadvantage in tissue engineering. Herein, a double-crosslinked gelatin-hyaluronic acid hydrogels (GH) with self-swelling properties were utilized. Meanwhile, niobium doped bioactive glasses (NbBG) was dispersed in the hydrogel network to prepare the GH-NbBG hydrogel. The composite hydrogel exhibited excellent biocompatibility and the addition of NbBG significantly improved the mechanical properties of the hydrogel. In vivo results found that GH-NbBG synergistically promoted angiogenesis and increased bone augmentation by self-swelling at the early stage of implantation. In addition, at the late stage after implantation, GH-NbBG significantly promoted new bone formation by activating RUNX2/Bglap signaling pathway. Therefore, this study reverses the self-swelling disadvantage of hydrogels into advantage and provides novel ideas for the application of hydrogels in bone augmentation.
Collapse
Affiliation(s)
- Fujian Zhao
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Zhen Yang
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Huacui Xiong
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yang Yan
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Xiaofeng Chen
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China,Corresponding author. Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China.
| | - Longquan Shao
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, 510515, China,Corresponding author. Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China.
| |
Collapse
|
45
|
Zhang J, Tong D, Song H, Ruan R, Sun Y, Lin Y, Wang J, Hou L, Dai J, Ding J, Yang H. Osteoimmunity-Regulating Biomimetically Hierarchical Scaffold for Augmented Bone Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202044. [PMID: 35785450 DOI: 10.1002/adma.202202044] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/14/2022] [Indexed: 05/22/2023]
Abstract
Engineering a proper immune response following biomaterial implantation is essential to bone tissue regeneration. Herein, a biomimetically hierarchical scaffold composed of deferoxamine@poly(ε-caprolactone) nanoparticles (DFO@PCL NPs), manganese carbonyl (MnCO) nanosheets, gelatin methacryloyl hydrogel, and a polylactide/hydroxyapatite (HA) matrix is fabricated to augment bone repair by facilitating the balance of the immune system and bone metabolism. First, a 3D printed stiff scaffold with a well-organized gradient structure mimics the cortical and cancellous bone tissues; meanwhile, an inside infusion of a soft hydrogel further endows the scaffold with characteristics of the extracellular matrix. A Fenton-like reaction between MnCO and endogenous hydrogen peroxide generated at the implant-tissue site triggers continuous release of carbon monoxide and Mn2+ , thus significantly lessening inflammatory response by upregulating the M2 phenotype of macrophages, which also secretes vascular endothelial growth factor to induce vascular formation. Through activating the hypoxia-inducible factor-1α pathway, Mn2+ and DFO@PCL NP further promote angiogenesis. Moreover, DFO inhibits osteoclast differentiation and synergistically collaborates with the osteoinductive activity of HA. Based on amounts of data in vitro and in vivo, strong immunomodulatory, intensive angiogenic, weak osteoclastogenic, and superior osteogenic abilities of such an osteoimmunity-regulating scaffold present a profound effect on improving bone regeneration, which puts forward a worthy base and positive enlightenment for large-scale bone defect repair.
Collapse
Affiliation(s)
- Jin Zhang
- College of Chemical Engineering, Qingyuan Innovation Laboratory, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, P. R. China
| | - Dongmei Tong
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, P. R. China
| | - Honghai Song
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun East Road, Hangzhou, 310016, P. R. China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Zhejiang University School of Medicine, 3 Qingchun East Road, Hangzhou, 310016, P. R. China
| | - Renjie Ruan
- College of Chemical Engineering, Qingyuan Innovation Laboratory, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, P. R. China
| | - Yifu Sun
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, P. R. China
| | - Yandai Lin
- College of Chemical Engineering, Qingyuan Innovation Laboratory, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, P. R. China
| | - Jun Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, P. R. China
| | - Linxi Hou
- College of Chemical Engineering, Qingyuan Innovation Laboratory, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, P. R. China
| | - Jiayong Dai
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun East Road, Hangzhou, 310016, P. R. China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Zhejiang University School of Medicine, 3 Qingchun East Road, Hangzhou, 310016, P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, P. R. China
| |
Collapse
|
46
|
Luo X, Xiao D, Zhang C, Wang G. The Roles of Exosomes upon Metallic Ions Stimulation in Bone Regeneration. J Funct Biomater 2022; 13:jfb13030126. [PMID: 36135561 PMCID: PMC9506099 DOI: 10.3390/jfb13030126] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/11/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Metallic ions have been widely investigated and incorporated into bone substitutes for bone regeneration owing to their superior capacity to induce angiogenesis and osteogenesis. Exosomes are key paracrine mediators that play a crucial role in cell-to-cell communication. However, the role of exosomes in metallic ion-induced bone formation and their underlying mechanisms remain unclear. Thus, this review systematically analyzes the effects of metallic ions and metallic ion-incorporated biomaterials on exosome secretion from mesenchymal stem cells (MSCs) and macrophages, as well as the effects of secreted exosomes on inflammation, angiogenesis, and osteogenesis. In addition, possible signaling pathways involved in metallic ion-mediated exosomes, followed by bone regeneration, are discussed. Despite limited investigation, metallic ions have been confirmed to regulate exosome production and function, affecting immune response, angiogenesis, and osteogenesis. Although the underlying mechanism is not yet clear, these insights enrich our understanding of the mechanisms of the metallic ion-induced microenvironment for bone regeneration, benefiting the design of metallic ion-incorporated implants.
Collapse
Affiliation(s)
- Xuwei Luo
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong 637000, China
| | - Dongqin Xiao
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong 637000, China
- Correspondence: (D.X.); (G.W.)
| | - Chengdong Zhang
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong 637000, China
| | - Guanglin Wang
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
- Correspondence: (D.X.); (G.W.)
| |
Collapse
|
47
|
Strontium-incorporated bioceramic scaffolds for enhanced osteoporosis bone regeneration. Bone Res 2022; 10:55. [PMID: 35999199 PMCID: PMC9399250 DOI: 10.1038/s41413-022-00224-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/15/2022] [Accepted: 05/29/2022] [Indexed: 11/23/2022] Open
Abstract
The restoration of bone defects caused by osteoporosis remains a challenge for surgeons. Strontium ranelate has been applied in preventative treatment approaches due to the biological functions of the trace element strontium (Sr). In this study, we aimed to fabricate bioactive scaffolds through Sr incorporation based on our previously developed modified amino-functional mesoporous bioactive glass (MBG) and to systematically investigate the bioactivity of the resulting scaffold in vitro and in vivo in an osteoporotic rat model. The results suggested that Sr-incorporated amino-functional MBG scaffolds possessed favorable biocompatibility. Moreover, with the incorporation of Sr, osteogenic and angiogenic capacities were upregulated in vitro. The in vivo results showed that the Sr-incorporated amino-functional MBG scaffolds achieved better bone regeneration and vessel formation. Furthermore, bioinformatics analysis indicated that the Sr-incorporated amino-functional MBG scaffolds could reduce reactive oxygen species levels in bone marrow mesenchymal stem cells in the osteoporotic model by activating the cAMP/PKA signaling pathway, thus playing an anti-osteoporosis role while promoting osteogenesis. This study demonstrated the feasibility of incorporating trace elements into scaffolds and provided new insights into biomaterial design for facilitating bone regeneration in the treatment of osteoporosis.
Collapse
|
48
|
Ellistasari EY, Kariosentono H, Purwanto B, Wasita B, Riswiyant RCA, Pamungkasari EP, Soetrisno S. Exosomes Derived from Secretome Human Umbilical Vein Endothelial Cells (Exo-HUVEC) Ameliorate the Photo-Aging of Skin Fibroblast. Clin Cosmet Investig Dermatol 2022; 15:1583-1591. [PMID: 35967916 PMCID: PMC9374532 DOI: 10.2147/ccid.s371330] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/28/2022] [Indexed: 11/23/2022]
Abstract
Purpose This is an in-vitro experimental study to analyze the effect of Exo-HUVEC on endothelial cell (CD31), cell proliferation, matrix metalloproteinase 1 (MMP-1) and collagen type 1 on irradiated fibroblast with UVB as photo-aging model. Patients and Methods Fibroblast cultures were divided into 5 groups, namely without UVB exposure, UVB exposure 600mJ/cm2 for 80 seconds as photo-aging model, and UVB exposure +Exo-HUVEC exposure 0.1%, 0.5% and 1%. The endothelial cell was stained with a CD31 marker, MMP-1 were examined with ELISA, cell proliferation is detected using an MTT assay; meanwhile, collagen type 1 deposition and endothelial cell were measured using flowcytometry. Results This study found positive endothelial cell marker CD31. Significant difference was found in cell proliferation, MMP-1 and collagen type 1 level between the control group with UVB irradiation and the treatment group with Exo-HUVEC (p < 0.05). Conclusion Exo-HUVEC significantly increases cell proliferation and collagen type 1 level, while decrease MMP-1 levels on irradiated fibroblast; therefore, Exo-HUVEC ameliorate the photo-aging of skin fibroblast.
Collapse
Affiliation(s)
| | - Harijono Kariosentono
- Dermatology and Venereology Department, Sebelas Maret University, Surakarta, Indonesia
| | - Bambang Purwanto
- Internal Medicine Department, Sebelas Maret University, Surakarta, Indonesia
| | - Brian Wasita
- Anatomical Pathology Department, Sebelas Maret University, Surakarta, Indonesia
| | | | | | - Soetrisno Soetrisno
- Obstetric and Gynecology Department, Sebelas Maret University, Surakarta, Indonesia
| |
Collapse
|
49
|
Li G, Liu W, Liang L, Liu T, Tian Y, Wu H. Preparing Sr-containing nano-structures on micro-structured titanium alloy surface fabricated by additively manufacturing to enhance the anti-inflammation and osteogenesis. Colloids Surf B Biointerfaces 2022; 218:112762. [DOI: 10.1016/j.colsurfb.2022.112762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/29/2022] [Accepted: 08/05/2022] [Indexed: 10/15/2022]
|
50
|
You J, Zhang Y, Zhou Y. Strontium Functionalized in Biomaterials for Bone Tissue Engineering: A Prominent Role in Osteoimmunomodulation. Front Bioeng Biotechnol 2022; 10:928799. [PMID: 35875505 PMCID: PMC9298737 DOI: 10.3389/fbioe.2022.928799] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/13/2022] [Indexed: 12/24/2022] Open
Abstract
With the development of bone tissue engineering bio-scaffold materials by adding metallic ions to improve bone healing have been extensively explored in the past decades. Strontium a non-radioactive element, as an essential osteophilic trace element for the human body, has received widespread attention in the medical field due to its superior biological properties of inhibiting bone resorption and promoting osteogenesis. As the concept of osteoimmunology developed, the design of orthopedic biomaterials has gradually shifted from “immune-friendly” to “immunomodulatory” with the aim of promoting bone healing by modulating the immune microenvironment through implanted biomaterials. The process of bone healing can be regarded as an immune-induced procedure in which immune cells can target the effector cells such as macrophages, neutrophils, osteocytes, and osteoprogenitor cells through paracrine mechanisms, affecting pathological alveolar bone resorption and physiological bone regeneration. As a kind of crucial immune cell, macrophages play a critical role in the early period of wound repair and host defense after biomaterial implantation. Despite Sr-doped biomaterials being increasingly investigated, how extracellular Sr2+ guides the organism toward favorable osteogenesis by modulating macrophages in the bone tissue microenvironment has rarely been studied. This review focuses on recent knowledge that the trace element Sr regulates bone regeneration mechanisms through the regulation of macrophage polarization, which is significant for the future development of Sr-doped bone repair materials. We will also summarize the primary mechanism of Sr2+ in bone, including calcium-sensing receptor (CaSR) and osteogenesis-related signaling pathways.
Collapse
Affiliation(s)
- Jiaqian You
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yidi Zhang
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yanmin Zhou
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|