1
|
Zhang M, Tang C, Wang Z, Chen S, Zhang D, Li K, Sun K, Zhao C, Wang Y, Xu M, Dai L, Lu G, Shi H, Ren H, Chen L, Geng J. Real-time detection of 20 amino acids and discrimination of pathologically relevant peptides with functionalized nanopore. Nat Methods 2024; 21:609-618. [PMID: 38443507 PMCID: PMC11009107 DOI: 10.1038/s41592-024-02208-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/12/2024] [Indexed: 03/07/2024]
Abstract
Precise identification and quantification of amino acids is crucial for many biological applications. Here we report a copper(II)-functionalized Mycobacterium smegmatis porin A (MspA) nanopore with the N91H substitution, which enables direct identification of all 20 proteinogenic amino acids when combined with a machine-learning algorithm. The validation accuracy reaches 99.1%, with 30.9% signal recovery. The feasibility of ultrasensitive quantification of amino acids was also demonstrated at the nanomolar range. Furthermore, the capability of this system for real-time analyses of two representative post-translational modifications (PTMs), one unnatural amino acid and ten synthetic peptides using exopeptidases, including clinically relevant peptides associated with Alzheimer's disease and cancer neoantigens, was demonstrated. Notably, our strategy successfully distinguishes peptides with only one amino acid difference from the hydrolysate and provides the possibility to infer the peptide sequence.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Chao Tang
- Biosafety Laboratory of West China Hospital, West China Hospital, Sichuan University, Chengdu, China
| | - Zichun Wang
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Shanchuan Chen
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Kaiju Li
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ke Sun
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Changjian Zhao
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Wang
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Mengying Xu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Lunzhi Dai
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Guangwen Lu
- West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hubing Shi
- Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Haiyan Ren
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Lu Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China.
| | - Jia Geng
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China.
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu, China.
| |
Collapse
|
2
|
Zhang Y, Yi Y, Li Z, Zhou K, Liu L, Wu HC. Peptide sequencing based on host-guest interaction-assisted nanopore sensing. Nat Methods 2024; 21:102-109. [PMID: 37957431 DOI: 10.1038/s41592-023-02095-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023]
Abstract
Direct protein sequencing technologies with improved sensitivity and throughput are still needed. Here, we propose an alternative method for peptide sequencing based on enzymatic cleavage and host-guest interaction-assisted nanopore sensing. We serendipitously discovered that the identity of any proteinogenic amino acid in a particular position of a phenylalanine-containing peptide could be determined via current blockage during translocation of the peptide through α-hemolysin nanopores in the presence of cucurbit[7]uril. Building upon this, we further present a proof-of-concept demonstration of peptide sequencing by sequentially cleaving off amino acids from C terminus of a peptide with carboxypeptidases, and then determining their identities and sequence with a peptide probe in nanopore. With future optimization, our results point to a different way of nanopore-based protein sequencing.
Collapse
Affiliation(s)
- Yun Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yakun Yi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ziyi Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ke Zhou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Lei Liu
- Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China.
| | - Hai-Chen Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Wei X, Penkauskas T, Reiner JE, Kennard C, Uline MJ, Wang Q, Li S, Aksimentiev A, Robertson JW, Liu C. Engineering Biological Nanopore Approaches toward Protein Sequencing. ACS NANO 2023; 17:16369-16395. [PMID: 37490313 PMCID: PMC10676712 DOI: 10.1021/acsnano.3c05628] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Biotechnological innovations have vastly improved the capacity to perform large-scale protein studies, while the methods we have for identifying and quantifying individual proteins are still inadequate to perform protein sequencing at the single-molecule level. Nanopore-inspired systems devoted to understanding how single molecules behave have been extensively developed for applications in genome sequencing. These nanopore systems are emerging as prominent tools for protein identification, detection, and analysis, suggesting realistic prospects for novel protein sequencing. This review summarizes recent advances in biological nanopore sensors toward protein sequencing, from the identification of individual amino acids to the controlled translocation of peptides and proteins, with attention focused on device and algorithm development and the delineation of molecular mechanisms with the aid of simulations. Specifically, the review aims to offer recommendations for the advancement of nanopore-based protein sequencing from an engineering perspective, highlighting the need for collaborative efforts across multiple disciplines. These efforts should include chemical conjugation, protein engineering, molecular simulation, machine-learning-assisted identification, and electronic device fabrication to enable practical implementation in real-world scenarios.
Collapse
Affiliation(s)
- Xiaojun Wei
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, United States
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, United States
| | - Tadas Penkauskas
- Biophysics and Biomedical Measurement Group, Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States
- School of Engineering, Brown University, Providence, RI 02912, United States
| | - Joseph E. Reiner
- Department of Physics, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Celeste Kennard
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, United States
| | - Mark J. Uline
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, United States
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, United States
| | - Qian Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States
| | - Sheng Li
- School of Data Science, University of Virginia, Charlottesville, VA 22903, United States
| | - Aleksei Aksimentiev
- Department of Physics and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Joseph W.F. Robertson
- Biophysics and Biomedical Measurement Group, Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States
| | - Chang Liu
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, United States
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, United States
| |
Collapse
|
4
|
Bohmer M, Bhullar AS, Weitao T, Zhang L, Lee JH, Guo P. Revolving hexameric ATPases as asymmetric motors to translocate double-stranded DNA genome along one strand. iScience 2023; 26:106922. [PMID: 37305704 PMCID: PMC10250835 DOI: 10.1016/j.isci.2023.106922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023] Open
Abstract
DsDNA translocation through nanoscale pores is generally accomplished by ATPase biomotors. The discovery of the revolving dsDNA translocation mechanism, as opposed to rotation, in bacteriophage phi29 elucidated how ATPase motors move dsDNA. Revolution-driven, hexameric dsDNA motors have been reported in herpesvirus, bacterial FtsK, Streptomyces TraB, and T7 phage. This review explores the common relationship between their structure and mechanisms. Commonalities include moving along the 5'→3' strand, inchworm sequential action leading to an asymmetrical structure, channel chirality, channel size, and 3-step channel gating for controlling motion direction. The revolving mechanism and contact with one of the dsDNA strands addresses the historic controversy of dsDNA packaging using nicked, gapped, hybrid, or chemically modified DNA. These controversies surrounding dsDNA packaging activity using modified materials can be answered by whether the modification was introduced into the 3'→5' or 5'→3' strand. Perspectives concerning solutions to the controversy of motor structure and stoichiometry are also discussed.
Collapse
Affiliation(s)
- Margaret Bohmer
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH, USA
- College of Pharmacy, Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH, USA
- College of Medicine, Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Abhjeet S. Bhullar
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH, USA
- College of Pharmacy, Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH, USA
- College of Medicine, Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Interdisciplinary Biophysics Graduate Program, College of Art and Science, The Ohio State University, Columbus, OH 43210, USA
| | - Tao Weitao
- Center for the Genetics of Host Defense UT Southwestern Medical Center, Dallas, TX, USA
| | - Long Zhang
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH, USA
- College of Pharmacy, Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH, USA
- College of Medicine, Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Jing-Huei Lee
- Department of Biomedical Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, USA
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH, USA
- College of Pharmacy, Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH, USA
- College of Medicine, Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Interdisciplinary Biophysics Graduate Program, College of Art and Science, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
5
|
Weitao T, Grandinetti G, Guo P. Revolving ATPase motors as asymmetrical hexamers in translocating lengthy dsDNA via conformational changes and electrostatic interactions in phi29, T7, herpesvirus, mimivirus, E. coli, and Streptomyces. EXPLORATION (BEIJING, CHINA) 2023; 3:20210056. [PMID: 37324034 PMCID: PMC10191066 DOI: 10.1002/exp.20210056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 04/28/2022] [Indexed: 06/17/2023]
Abstract
Investigations of the parallel architectures of biomotors in both prokaryotic and eukaryotic systems suggest a similar revolving mechanism in the use of ATP to drive translocation of the lengthy double-stranded (ds)DNA genomes. This mechanism is exemplified by the dsDNA packaging motor of bacteriophage phi29 that operates through revolving but not rotating dsDNA to "Push through a one-way valve". This unique and novel revolving mechanism discovered in phi29 DNA packaging motor was recently reported in other systems including the dsDNA packaging motor of herpesvirus, the dsDNA ejecting motor of bacteriophage T7, the plasmid conjugation machine TraB in Streptomyces, the dsDNA translocase FtsK of gram-negative bacteria, and the genome-packaging motor in mimivirus. These motors exhibit an asymmetrical hexameric structure for transporting the genome via an inch-worm sequential action. This review intends to delineate the revolving mechanism from a perspective of conformational changes and electrostatic interactions. In phi29, the positively charged residues Arg-Lys-Arg in the N-terminus of the connector bind the negatively charged interlocking domain of pRNA. ATP binding to an ATPase subunit induces the closed conformation of the ATPase. The ATPase associates with an adjacent subunit to form a dimer facilitated by the positively charged arginine finger. The ATP-binding induces a positive charging on its DNA binding surface via an allostery mechanism and thus the higher affinity for the negatively charged dsDNA. ATP hydrolysis induces an expanded conformation of the ATPase with a lower affinity for dsDNA due to the change of the surface charge, but the (ADP+Pi)-bound subunit in the dimer undergoes a conformational change that repels dsDNA. The positively charged lysine rings of the connector attract dsDNA stepwise and periodically to keep its revolving motion along the channel wall, thus maintaining the one-way translocation of dsDNA without reversal and sliding out. The finding of the presence of the asymmetrical hexameric architectures of many ATPases that use the revolving mechanism may provide insights into the understanding of translocation of the gigantic genomes including chromosomes in complicated systems without coiling and tangling to speed up dsDNA translocation and save energy.
Collapse
Affiliation(s)
- Tao Weitao
- UT Southwestern Medical CenterCenter for the Genetics of Host DefenseDallasTXUSA
- College of Science and MathematicsSouthwest Baptist UniversityBolivarMOUSA
| | - Giovanna Grandinetti
- Center for Electron Microscopy and AnalysisThe Ohio State UniversityColumbusOHUSA
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and NanomedicineDivision of Pharmaceutics and Pharmacology, College of PharmacyDorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of MedicineThe Ohio State UniversityColumbusOHUSA
| |
Collapse
|
6
|
Kang X, Wu C, Alibakhshi MA, Liu X, Yu L, Walt DR, Wanunu M. Nanopore-Based Fingerprint Immunoassay Based on Rolling Circle Amplification and DNA Fragmentation. ACS NANO 2023; 17:5412-5420. [PMID: 36877993 PMCID: PMC10629239 DOI: 10.1021/acsnano.2c09889] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
In recent years, nanopore-based sequencers have become robust tools with unique advantages for genomics applications. However, progress toward applying nanopores as highly sensitive, quantitative diagnostic tools has been impeded by several challenges. One major limitation is the insufficient sensitivity of nanopores in detecting disease biomarkers, which are typically present at pM or lower concentrations in biological fluids, while a second limitation is the general absence of unique nanopore signals for different analytes. To bridge this gap, we have developed a strategy for nanopore-based biomarker detection that utilizes immunocapture, isothermal rolling circle amplification, and sequence-specific fragmentation of the product to release multiple DNA reporter molecules for nanopore detection. These DNA fragment reporters produce sets of nanopore signals that form distinctive fingerprints, or clusters. This fingerprint signature therefore allows the identification and quantification of biomarker analytes. As a proof of concept, we quantify human epididymis protein 4 (HE4) at low pM levels in a few hours. Future improvement of this method by integration with a nanopore array and microfluidics-based chemistry can further reduce the limit of detection, allow multiplexed biomarker detection, and further reduce the footprint and cost of existing laboratory and point-of-care devices.
Collapse
Affiliation(s)
- Xinqi Kang
- Departments
of Bioengineering, Physics, and Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Connie Wu
- Department
of Pathology, Brigham and Women’s Hospital, Harvard Medical School and Wyss Institute for Biologically Inspired
Engineering at Harvard University, Boston, Massachusetts 02115, United States
| | - Mohammad Amin Alibakhshi
- Departments
of Bioengineering, Physics, and Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Xingyan Liu
- Departments
of Bioengineering, Physics, and Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Luning Yu
- Departments
of Bioengineering, Physics, and Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - David R. Walt
- Department
of Pathology, Brigham and Women’s Hospital, Harvard Medical School and Wyss Institute for Biologically Inspired
Engineering at Harvard University, Boston, Massachusetts 02115, United States
| | - Meni Wanunu
- Departments
of Bioengineering, Physics, and Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| |
Collapse
|
7
|
Zhang L, Burns N, Ji Z, Sun S, Deutscher SL, Carson WE, Guo P. Nipple fluid for breast cancer diagnosis using the nanopore of Phi29 DNA-packaging motor. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 48:102642. [PMID: 36581256 PMCID: PMC10035634 DOI: 10.1016/j.nano.2022.102642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/14/2022] [Accepted: 12/02/2022] [Indexed: 12/27/2022]
Abstract
Detection of cancer in its early stage is a challenging task for oncologists. Inflammatory breast cancer has symptoms that are similar to mastitis and can be mistaken for microbial infection. Currently, the differential diagnosis between mastitis and Inflammatory breast cancer via nipple aspirate fluid (NAF) is difficult. Here, we report a label-free and amplification-free detection platform using an engineered nanopore of the phi29 DNA-packaging motor with biomarker Galectin3 (GAL3), Thomsen-Friedenreich (TF) binding peptide as the probe fused at its C-terminus. The binding of the biomarker in NAF samples from breast cancer patients to the probe results in the connector's conformational change with a current blockage of 32 %. Utilization of dwell time, blockage ratio, and peak signature enable us to detect basal levels of biomarkers from patient NAF samples at the single-molecule level. This platform will allow for breast cancers to be resolved at an early stage with accuracy and thoroughness.
Collapse
Affiliation(s)
- Long Zhang
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Nicolas Burns
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Zhouxiang Ji
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Steven Sun
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Susan L Deutscher
- Department of Biochemistry, University of Missouri, Harry S. Truman Memorial VA Hospital, Columbia, MO 65211, USA.
| | - William E Carson
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
8
|
Bhullar AS, Zhang L, Burns N, Cheng X, Guo P. Voltage controlled shutter regulates channel size and motion direction of protein aperture as durable nano-electric rectifier-----An opinion in biomimetic nanoaperture. Biomaterials 2022; 291:121863. [PMID: 36356474 PMCID: PMC9766157 DOI: 10.1016/j.biomaterials.2022.121863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/30/2022] [Accepted: 10/15/2022] [Indexed: 11/09/2022]
Abstract
In optical devices such as camera or microscope, an aperture is used to regulate light intensity for imaging. Here we report the discovery and construction of a durable bio-aperture at nanometerscale that can regulate current at the pico-ampere scale. The nano-aperture is made of 12 identical protein subunits that form a 3.6-nm channel with a shutter and "one-way traffic" property. This shutter responds to electrical potential differences across the aperture and can be turned off for double stranded DNA translocation. This voltage enables directional control, and three-step regulation for opening and closing. The nano-aperture was constructed in vitro and purified into homogeneity. The aperture was stable at pH2-12, and a temperature of -85C-60C. When an electrical potential was held, three reproducible discrete steps of current flowing through the channel were recorded. Each step reduced 32% of the channel dimension evident by the reduction of the measured current flowing through the aperture. The current change is due to the change of the resistance of aperture size. The transition between these three distinct steps and the direction of the current was controlled via the polarity of the voltage applied across the aperture. When the C-terminal of the aperture was fused to an antigen, the antibody and antigen interaction resulted in a 32% reduction of the channel size. This phenomenon was used for disease diagnosis since the incubation of the antigen-nano-aperture with a specific cancer antibody resulted in a change of 32% of current. The purified truncated cone-shape aperture automatically self-assembled efficiently into a sheet of the tetragonal array via head-to-tail self-interaction. The nano-aperture discovery with a controllable shutter, discrete-step current regulation, formation of tetragonal sheet, and one-way current traffic provides a nanoscale electrical circuit rectifier for nanodevices and disease diagnosis.
Collapse
Affiliation(s)
- Abhjeet S Bhullar
- Center for RNA Nanobiotechnology and Nanomedicine; College of Pharmacy; College of Medicine; Dorothy M. Davis Heart and Lung Research Institute; And Comprehensive Cancer Center. The Ohio State University, Columbus, OH, 43210, USA; Biophysics Graduate Program, The Ohio State University, Columbus, OH, 43210, USA
| | - Long Zhang
- Center for RNA Nanobiotechnology and Nanomedicine; College of Pharmacy; College of Medicine; Dorothy M. Davis Heart and Lung Research Institute; And Comprehensive Cancer Center. The Ohio State University, Columbus, OH, 43210, USA
| | - Nicolas Burns
- Center for RNA Nanobiotechnology and Nanomedicine; College of Pharmacy; College of Medicine; Dorothy M. Davis Heart and Lung Research Institute; And Comprehensive Cancer Center. The Ohio State University, Columbus, OH, 43210, USA
| | - Xiaolin Cheng
- Biophysics Graduate Program, The Ohio State University, Columbus, OH, 43210, USA; College of Pharmacy, Translational Data Analytics Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine; College of Pharmacy; College of Medicine; Dorothy M. Davis Heart and Lung Research Institute; And Comprehensive Cancer Center. The Ohio State University, Columbus, OH, 43210, USA; Biophysics Graduate Program, The Ohio State University, Columbus, OH, 43210, USA; College of Pharmacy, Translational Data Analytics Institute, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
9
|
Bakshloo MA, Yahiaoui S, Ouldali H, Pastoriza-Gallego M, Piguet F, Oukhaled A. On possible trypsin-induced biases in peptides analysis with Aerolysin nanopore. Proteomics 2022; 22:e2100056. [PMID: 35357771 DOI: 10.1002/pmic.202100056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 11/06/2022]
Abstract
Nanopore-based single-molecule analysis technique is a promising approach in the field of proteomics. In this Technical Brief, the interaction between the biological nanopore of Aerolysin (AeL) and peptides is investigated, focusing on potential biases depending on the AeL activation protocol. Our results reveal that residual trypsin, which may be unintentionally introduced in analyte solution when using a classical AeL activation protocol, can induce a significant formation of shorter peptides by enzymatic degradation of longer ones, which may lead to unwanted effects and/or misinterpretations. AeL free-trypsin activation protocol eliminates this bias and appears more appropriate for peptide/proteins analysis, specifically in the perspective of nanopore-based molecular fingerprinting or of low-abundance species characterization. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mazdak Afshar Bakshloo
- CY Cergy Paris Université, CNRS, LAMBE, Cergy, France.,Université Paris-Saclay, Univ Evry, CNRS, LAMBE, Evry-Courcouronnes, France
| | - Safia Yahiaoui
- CY Cergy Paris Université, CNRS, LAMBE, Cergy, France.,Université Paris-Saclay, Univ Evry, CNRS, LAMBE, Evry-Courcouronnes, France
| | - Hadjer Ouldali
- CY Cergy Paris Université, CNRS, LAMBE, Cergy, France.,Université Paris-Saclay, Univ Evry, CNRS, LAMBE, Evry-Courcouronnes, France
| | - Manuela Pastoriza-Gallego
- CY Cergy Paris Université, CNRS, LAMBE, Cergy, France.,Université Paris-Saclay, Univ Evry, CNRS, LAMBE, Evry-Courcouronnes, France
| | - Fabien Piguet
- CY Cergy Paris Université, CNRS, LAMBE, Cergy, France.,Université Paris-Saclay, Univ Evry, CNRS, LAMBE, Evry-Courcouronnes, France
| | - Abdelghani Oukhaled
- CY Cergy Paris Université, CNRS, LAMBE, Cergy, France.,Université Paris-Saclay, Univ Evry, CNRS, LAMBE, Evry-Courcouronnes, France
| |
Collapse
|
10
|
Zhang L, Burns N, Jordan M, Jayasinghe L, Guo P. Macromolecule sensing and tumor biomarker detection by harnessing terminal size and hydrophobicity of viral DNA packaging motor channels into membranes and flow cells. Biomater Sci 2021; 10:167-177. [PMID: 34812812 DOI: 10.1039/d1bm01264a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Biological nanopores for single-pore sensing have the advantage of size homogeneity, structural reproducibility, and channel amenability. In order to translate this to clinical applications, the functional biological nanopore must be inserted into a stable system for high-throughput analysis. Here we report factors that control the rate of pore insertion into polymer membrane and analyte translocation through the channel of viral DNA packaging motors of Phi29, T3 and T7. The hydrophobicity of aminol or carboxyl terminals and their relation to the analyte translocation were investigated. It was found that both the size and the hydrophobicity of the pore terminus are critical factors for direct membrane insertion. An N-terminus or C-terminus hydrophobic mutation is crucial for governing insertion orientation and subsequent macromolecule translocation due to the one-way traffic property. The N- or C-modification led to two different modes of application. The C-terminal insertion permits translocation of analytes such as peptides to enter the channel through the N terminus, while N-terminus insertion prevents translocation but offers the measurement of gating as a sensing parameter, thus generating a tool for detection of markers. A urokinase-type Plasminogen Activator Receptor (uPAR) binding peptide was fused into the C-terminal of Phi29 nanopore to serve as a probe for uPAR protein detection. The uPAR has proven to be a predictive biomarker in several types of cancer, including breast cancer. With an N-terminal insertion, the binding of the uPAR antigen to individual peptide probe induced discretive steps of current reduction due to the induction of channel gating. The distinctive current signatures enabled us to distinguish uPAR positive and negative tumor cell lines. This finding provides a theoretical basis for a robust biological nanopore sensing system for high-throughput macromolecular sensing and tumor biomarker detection.
Collapse
Affiliation(s)
- Long Zhang
- Center for RNA Nanobiotechnology and Nanomedicine; College of Pharmacy; Dorothy M. Davis Heart and Lung Research Institute; James Comprehensive Cancer Center; College of Medicine; The Ohio State University, Columbus, OH 43210, USA.
| | - Nicolas Burns
- Center for RNA Nanobiotechnology and Nanomedicine; College of Pharmacy; Dorothy M. Davis Heart and Lung Research Institute; James Comprehensive Cancer Center; College of Medicine; The Ohio State University, Columbus, OH 43210, USA.
| | - Michael Jordan
- Oxford Nanopore Technologies Ltd, Gosling Building, Edmund Halley Road, Oxford Science Park, Oxford, OX4 4DQ, UK
| | - Lakmal Jayasinghe
- Oxford Nanopore Technologies Ltd, Gosling Building, Edmund Halley Road, Oxford Science Park, Oxford, OX4 4DQ, UK
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine; College of Pharmacy; Dorothy M. Davis Heart and Lung Research Institute; James Comprehensive Cancer Center; College of Medicine; The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
11
|
Chen X, Zhang Y, Guan X. Simultaneous detection of multiple proteases using a non-array nanopore platform. NANOSCALE 2021; 13:13658-13664. [PMID: 34477641 PMCID: PMC8485758 DOI: 10.1039/d1nr04085e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Multiplexing methods which are capable of measurement of multiple analytes in a single assay are of great importance in many fields. The conventional strategy for simultaneous detection of multiple species is to construct a sensor array. Herein, we report an innovative multiplex multi-analyte detection platform in a non-array format for protease measurement. By monitoring protease degradation of a single peptide substrate containing two cleavage sites for a disintegrin and metalloproteinase 10 (ADAM10) and a disintegrin and metalloproteinase 10 (ADAM17) in a single nanopore, simultaneous detection and quantification of these two model proteases in mixture samples could satisfactorily be accomplished. Our developed multiplexing sensing platform has the potential to be coupled with the traditional sensor array to further improve the multiplexing capability of the sensor, which may find useful applications in clinical diagnosis and prognosis.
Collapse
Affiliation(s)
- Xiaohan Chen
- Department of Chemistry, Illinois Institute of Technology, 3101 S Dearborn St, Chicago, IL 60616, USA.
| | | | | |
Collapse
|
12
|
Miyagi M, Takiguchi S, Hakamada K, Yohda M, Kawano R. Single polypeptide detection using a translocon EXP2 nanopore. Proteomics 2021; 22:e2100070. [PMID: 34411416 DOI: 10.1002/pmic.202100070] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 01/18/2023]
Abstract
DNA sequencing using nanopores has already been achieved and commercialized; the next step in advancing nanopore technology is towards protein sequencing. Although trials have been reported for discriminating the 20 amino acids using biological nanopores and short peptide carriers, it remains challenging. The size compatibility between nanopores and peptides is one of the issues to be addressed. Therefore, exploring biological nanopores that are suitable for peptide sensing is key in achieving amino acid sequence determination. Here, we focus on EXP2, the transmembrane protein of a translocon from malaria parasites, and describe its pore-forming properties in the lipid bilayer. EXP2 mainly formed a nanopore with a diameter of 2.5 nm assembled from 7 monomers. Using the EXP2 nanopore allowed us to detect poly-L-lysine (PLL) at a single-molecule level. Furthermore, the EXP2 nanopore has sufficient resolution to distinguish the difference in molecular weight between two individual PLL, long PLL (Mw: 30,000-70,000) and short PLL (Mw: 10,000). Our results contribute to the accumulation of information for peptide-detectable nanopores.
Collapse
Affiliation(s)
- Mitsuki Miyagi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo, Japan
| | - Sotaro Takiguchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo, Japan
| | - Kazuaki Hakamada
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo, Japan
| | - Masafumi Yohda
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo, Japan
| | - Ryuji Kawano
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo, Japan
| |
Collapse
|
13
|
Detection of single peptide with only one amino acid modification via electronic fingerprinting using reengineered durable channel of Phi29 DNA packaging motor. Biomaterials 2021; 276:121022. [PMID: 34298441 DOI: 10.1016/j.biomaterials.2021.121022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/21/2021] [Accepted: 07/08/2021] [Indexed: 12/22/2022]
Abstract
Protein post-translational modification (PTM) is crucial to modulate protein interactions and activity in various biological processes. Emerging evidence has revealed PTM patterns participate in the pathology onset and progression of various diseases. Current PTM identification relies mainly on mass spectrometry-based approaches that limit the assessment to the entire protein population in question. Here we report a label-free method for the detection of the single peptide with only one amino acid modification via electronic fingerprinting using reengineered durable channel of phi29 DNA packaging motor, which bears the deletion of 25-amino acids (AA) at the C-terminus or 17-AA at the internal loop of the channel. The mutant channels were used to detect propionylation modification via single-molecule fingerprinting in either the traditional patch-clamp or the portable MinION™ platform of Oxford Nanopore Technologies. Up to 2000 channels are available in the MinION™ Flow Cells. The current signatures and dwell time of individual channels were identified. Peptides with only one propionylation were differentiated. Excitingly, identification of single or multiple modifications on the MinION™ system was achieved. The successful application of PTM differentiation on the MinION™ system represents a significant advance towards developing a label-free and high-throughput detection platform utilizing nanopores for clinical diagnosis based on PTM.
Collapse
|
14
|
Pan M, Cai J, Li S, Xu L, Ma W, Xu C, Kuang H. Aptamer-Gated Ion Channel for Ultrasensitive Mucin 1 Detection. Anal Chem 2021; 93:4825-4831. [PMID: 33688720 DOI: 10.1021/acs.analchem.0c04137] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Detection of cancer markers is important for early diagnosis and timely treatment of cancer. In this study, we fabricated a tailorable gold nanofilm-anodized aluminum oxide (Au-AAO) ion channel through nanoparticle self-assembly and proposed a highly sensitive and selective Mucin 1 (MUC1) detection method. By engineering the optimal layers of the Au-AAO ion channel and encoding the aptamer between the interlayers, a highly controllable ion rectification phenomenon was observed. From this, the relationship between the rectification ratio (RR) and the concentration of MUC1 was established and the highly sensitive detection of MUC1 is achieved. We found that the aptamer-modified Au-AAO ion channel has a good linear range within the MUC1 concentration of 1-104 fg mL-1 and the limit of detection (LOD) was as low as 0.0364 fg mL-1 (0.0025 aM). Thus, this research opens a new horizon for fabricating multi-functional ion channels as well as developing ultrasensitive detection technologies.
Collapse
Affiliation(s)
- Mengying Pan
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Jiarong Cai
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Si Li
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Wei Ma
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|
15
|
Crnković A, Srnko M, Anderluh G. Biological Nanopores: Engineering on Demand. Life (Basel) 2021; 11:life11010027. [PMID: 33466427 PMCID: PMC7824896 DOI: 10.3390/life11010027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/24/2020] [Accepted: 12/31/2020] [Indexed: 12/17/2022] Open
Abstract
Nanopore-based sensing is a powerful technique for the detection of diverse organic and inorganic molecules, long-read sequencing of nucleic acids, and single-molecule analyses of enzymatic reactions. Selected from natural sources, protein-based nanopores enable rapid, label-free detection of analytes. Furthermore, these proteins are easy to produce, form pores with defined sizes, and can be easily manipulated with standard molecular biology techniques. The range of possible analytes can be extended by using externally added adapter molecules. Here, we provide an overview of current nanopore applications with a focus on engineering strategies and solutions.
Collapse
|
16
|
R SK, Puthumadathil N, Shaji AH, Santhosh Kumar K, Mohan G, Mahendran KR. Designed alpha-helical barrels for charge-selective peptide translocation. Chem Sci 2020; 12:639-649. [PMID: 34163795 PMCID: PMC8178987 DOI: 10.1039/d0sc04856a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/04/2020] [Indexed: 11/21/2022] Open
Abstract
Synthetic alpha-helix based pores for selective sensing of peptides have not been characterized previously. Here, we report large transmembrane pores, pPorA formed from short synthetic alpha-helical peptides of tunable conductance and selectivity for single-molecule sensing of peptides. We quantified the selective translocation kinetics of differently charged cationic and anionic peptides through these synthetic pores at single-molecule resolution. The charged peptides are electrophoretically pulled into the pores resulting in an increase in the dissociation rate with the voltage indicating successful translocation of peptides. More specifically, we elucidated the charge pattern lining the pore lumen and the orientation of the pores in the membrane based on the asymmetry in the peptide-binding kinetics. The salt and pH-dependent measurements confirm the electrostatic dominance and charge selectivity in controlling target peptide interaction with the pores. Remarkably, we tuned the selectivity of the pores to charged peptides by modifying the charge composition of the pores, thus establishing the molecular and electrostatic basis of peptide translocation. We suggest that these synthetic pores that selectively conduct specific ions and biomolecules are advantageous for nanopore proteomics analysis and synthetic nanobiotechnology applications.
Collapse
Affiliation(s)
- Smrithi Krishnan R
- Membrane Biology Laboratory, Transdisciplinary Research Program, Rajiv Gandhi Centre for Biotechnology Thiruvananthapuram 695014 India
- Manipal Academy of Higher Education Manipal Karnataka India-576104
| | - Neethu Puthumadathil
- Membrane Biology Laboratory, Transdisciplinary Research Program, Rajiv Gandhi Centre for Biotechnology Thiruvananthapuram 695014 India
- Manipal Academy of Higher Education Manipal Karnataka India-576104
| | - Amina H Shaji
- Membrane Biology Laboratory, Transdisciplinary Research Program, Rajiv Gandhi Centre for Biotechnology Thiruvananthapuram 695014 India
| | - K Santhosh Kumar
- Membrane Biology Laboratory, Transdisciplinary Research Program, Rajiv Gandhi Centre for Biotechnology Thiruvananthapuram 695014 India
| | - Gayathri Mohan
- Membrane Biology Laboratory, Transdisciplinary Research Program, Rajiv Gandhi Centre for Biotechnology Thiruvananthapuram 695014 India
| | - Kozhinjampara R Mahendran
- Membrane Biology Laboratory, Transdisciplinary Research Program, Rajiv Gandhi Centre for Biotechnology Thiruvananthapuram 695014 India
| |
Collapse
|
17
|
Wei X, Ma D, Jing L, Wang LY, Wang X, Zhang Z, Lenhart BJ, Yin Y, Wang Q, Liu C. Enabling nanopore technology for sensing individual amino acids by a derivatization strategy. J Mater Chem B 2020; 8:6792-6797. [PMID: 32495805 PMCID: PMC7429270 DOI: 10.1039/d0tb00895h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanopore technology holds remarkable promise for sequencing proteins and peptides. To achieve this, it is necessary to establish a characteristic profile for each individual amino acid through the statistical description of its translocation process. However, the subtle molecular differences among all twenty amino acids along with their unpredictable conformational changes at the nanopore sensing region result in very low distinguishability. Here we report the electrical sensing of individual amino acids using an α-hemolysin nanopore based on a derivatization strategy. Using derivatized amino acids as detection surrogates not only prolongs their interactions with the sensing region, but also improves their conformational variation. Furthermore, we show that distinct characteristics including current blockades and dwell times can be observed among all three classes of amino acids after 2,3-naphthalenedicarboxaldehyde (NDA)- and 2-naphthylisothiocyanate (NITC)-derivatization, respectively. These observable characteristics were applied towards the identification and differentiation of 9 of the 20 natural amino acids using their NITC derivatives. The method demonstrated herein will pave the way for the identification of all amino acids and further protein and peptide sequencing.
Collapse
Affiliation(s)
- Xiaojun Wei
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 20208, USA
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| | - Dumei Ma
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Lihong Jing
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China
| | - Leon Y. Wang
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| | - Xiaoqin Wang
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| | - Zehui Zhang
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 20208, USA
| | - Brian J. Lenhart
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| | - Yingwu Yin
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Qian Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Chang Liu
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 20208, USA
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
18
|
Translation of the long-term fundamental studies on viral DNA packaging motors into nanotechnology and nanomedicine. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1103-1129. [DOI: 10.1007/s11427-020-1752-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/04/2020] [Indexed: 02/07/2023]
|
19
|
Wei X, Ma D, Zhang Z, Wang LY, Gray JL, Zhang L, Zhu T, Wang X, Lenhart BJ, Yin Y, Wang Q, Liu C. N-Terminal Derivatization-Assisted Identification of Individual Amino Acids Using a Biological Nanopore Sensor. ACS Sens 2020; 5:1707-1716. [PMID: 32403927 PMCID: PMC7978492 DOI: 10.1021/acssensors.0c00345] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Nanopore technology has been employed as a powerful tool for DNA sequencing and analysis. To extend this method to peptide sequencing, a necessary step is to profile individual amino acids (AAs) through their nanopore stochastic signals, which remains a great challenge because of the low signal-to-noise ratio and unpredictable conformational changes of AAs during their translocation through nanopores. We showed that the combination of an N-terminal derivatization strategy of AAs with nanopore technology could lead to effective in situ differentiation of AAs. Four different derivatization reactions have been tested with five selected AAs: Ala, Phe, Tyr, His, and Asp. Using an α-hemolysin nanopore, we demonstrated the feasibility of derivatization-assisted identification of AAs regardless of their charge composition and polarity. The method was further applied to discriminate each individual AA in testing data sets using their established nanopore profiles from training data sets. We envision that this proof-of-concept study will not only pave a way for identification of individual AAs but also lead to future applications in protein/peptide sequencing using the nanopore technology.
Collapse
Affiliation(s)
- Xiaojun Wei
- Biomedical Engineering Program, University of South Carolina, Columbia, South Carolina 29208, United States
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Dumei Ma
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 Fujian, China
| | - Zehui Zhang
- Biomedical Engineering Program, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Leon Y Wang
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Jonathan L Gray
- Biomedical Engineering Program, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Libo Zhang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Tianyu Zhu
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Xiaoqin Wang
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Brian J Lenhart
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Yingwu Yin
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 Fujian, China
| | - Qian Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Chang Liu
- Biomedical Engineering Program, University of South Carolina, Columbia, South Carolina 29208, United States
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
20
|
Ji Z, Jordan M, Jayasinghe L, Guo P. Insertion of channel of phi29 DNA packaging motor into polymer membrane for high-throughput sensing. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 25:102170. [PMID: 32035271 DOI: 10.1016/j.nano.2020.102170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 10/25/2019] [Accepted: 01/29/2020] [Indexed: 11/19/2022]
Abstract
The connector channel of bacteriophage phi29 DNA packaging motor has been inserted into the lipid bilayer membrane and has shown potential for the sensing of DNA, RNA, chemicals, peptides, and antibodies. Properties such as high solubility and large channel size have made phi29 channel an advantageous system for those applications; however, previously studied lipid membranes have short lifetimes, and they are frangible and unstable under voltages higher than 200 mV. Thus, the application of this lipid membrane platform for clinical applications is challenging. Here we report the insertion of the connector into the stable polymer membrane in MinION flow cell that contains 2048 wells for high-throughput sensing by the liposome-polymer fusion process. The successful insertion of phi29 connector was confirmed by a unique gating phenomenon. Peptide translocation through the inserted phi29 connector was also observed, revealing the potential of applying phi29 connector for high-throughput peptide sensing.
Collapse
Affiliation(s)
- Zhouxiang Ji
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Michael Jordan
- Oxford Nanopore Technologies Limited, Oxford Science Park, UK
| | | | - Peixuan Guo
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA; Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH, USA; College of Medicine, The Ohio State University, Columbus, OH, USA; Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
21
|
Yuan B, Li S, Ying YL, Long YT. The analysis of single cysteine molecules with an aerolysin nanopore. Analyst 2020; 145:1179-1183. [DOI: 10.1039/c9an01965k] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Biological nanopore technology has the advantages of high selectivity and high reproducibility for characterizing single biomolecules.
Collapse
Affiliation(s)
- Bo Yuan
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P.R. China
- School of Chemistry and Chemical Engineering
| | - Shuang Li
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P.R. China
| | - Yi-Lun Ying
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P.R. China
- School of Chemistry and Chemical Engineering
| | - Yi-Tao Long
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- P.R. China
| |
Collapse
|
22
|
Kang X, Alibakhshi MA, Wanunu M. One-Pot Species Release and Nanopore Detection in a Voltage-Stable Lipid Bilayer Platform. NANO LETTERS 2019; 19:9145-9153. [PMID: 31724865 DOI: 10.1021/acs.nanolett.9b04446] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Biological nanopores have been used as powerful platforms for label-free detection and identification of a range of biomolecules for biosensing applications and single molecule biophysics studies. Nonetheless, high limit of detection (LOD) of analytes due to inefficient biomolecular capture into biological nanopores at low voltage poses practical limits on their biosensing efficacy. Several approaches have been proposed to improve the voltage stability of the membrane, including polymerization and hydrogel coating, however, these compromise the lipid fluidity. Here, we developed a chip-based platform that can be massively produced on a wafer scale that is capable of sustaining high voltages of 350 mV with comparable membrane areas to traditional systems. Using this platform, we demonstrate sensing of DNA hairpins in α-hemolysin nanopores at the nanomolar regime under high voltage. Further, we have developed a workflow for one-pot enzymatic release of DNA hairpins with different stem lengths from magnetic microbeads, followed by multiplexed nanopore-based quantification of the hairpins within minutes, paving the way for novel nanopore-based multiplexed biosensing applications.
Collapse
|
23
|
Ji Z, Guo P. Channel from bacterial virus T7 DNA packaging motor for the differentiation of peptides composed of a mixture of acidic and basic amino acids. Biomaterials 2019; 214:119222. [PMID: 31158604 DOI: 10.1016/j.biomaterials.2019.119222] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/11/2019] [Accepted: 05/21/2019] [Indexed: 12/20/2022]
Abstract
Protein mutations can result in dysfunctional cell signaling pathways; therefore it is of significance to develop a robust platform for the detection of protein mutations. Here, we report that the channel of bacterial virus T7 DNA packaging motor is able to discriminate peptides containing a mixture of acidic (negatively charged) and basic (positively charged) amino acids. Peptides were differentiated based on their current signatures created by their unique charge compositions. In combination with protease digestion, peptides with the locational differences of single amino acid were also identified. The results suggest that the T7 motor channel has the potential for peptide differentiation, mutation verification, and analysis of protein sequence.
Collapse
Affiliation(s)
- Zhouxiang Ji
- Center for RNA Nanobiotechnology and Nanomedicine; Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy; College of Medicine, Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center; The Ohio State University, Columbus, OH, USA
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine; Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy; College of Medicine, Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center; The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
24
|
Chen Q, Liu Z. Fabrication and Applications of Solid-State Nanopores. SENSORS 2019; 19:s19081886. [PMID: 31010038 PMCID: PMC6515193 DOI: 10.3390/s19081886] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/14/2019] [Accepted: 04/17/2019] [Indexed: 12/25/2022]
Abstract
Nanopores fabricated from synthetic materials (solid-state nanopores), platforms for characterizing biological molecules, have been widely studied among researchers. Compared with biological nanopores, solid-state nanopores are mechanically robust and durable with a tunable pore size and geometry. Solid-state nanopores with sizes as small as 1.3 nm have been fabricated in various films using engraving techniques, such as focused ion beam (FIB) and focused electron beam (FEB) drilling methods. With the demand of massively parallel sensing, many scalable fabrication strategies have been proposed. In this review, typical fabrication technologies for solid-state nanopores reported to date are summarized, with the advantages and limitations of each technology discussed in detail. Advanced shrinking strategies to prepare nanopores with desired shapes and sizes down to sub-1 nm are concluded. Finally, applications of solid-state nanopores in DNA sequencing, single molecule detection, ion-selective transport, and nanopatterning are outlined.
Collapse
Affiliation(s)
- Qi Chen
- Institute of Microelectronics, Tsinghua University, Beijing 100084, China.
| | - Zewen Liu
- Institute of Microelectronics, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
25
|
Huang G, Voet A, Maglia G. FraC nanopores with adjustable diameter identify the mass of opposite-charge peptides with 44 dalton resolution. Nat Commun 2019; 10:835. [PMID: 30783102 PMCID: PMC6381162 DOI: 10.1038/s41467-019-08761-6] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 01/29/2019] [Indexed: 12/26/2022] Open
Abstract
A high throughput single-molecule method for identifying peptides and sequencing proteins based on nanopores could reduce costs and increase speeds of sequencing, allow the fabrication of portable home-diagnostic devices, and permit the characterization of low abundance proteins and heterogeneity in post-translational modifications. Here we engineer the size of Fragaceatoxin C (FraC) biological nanopore to allow the analysis of a wide range of peptide lengths. Ionic blockades through engineered nanopores distinguish a variety of peptides, including two peptides differing only by the substitution of alanine with glutamate. We also find that at pH 3.8 the depth of the peptide current blockades scales with the mass of the peptides irrespectively of the chemical composition of the analyte. Hence, this work shows that FraC nanopores allow direct readout of the mass of single peptide in solution, which is a crucial step towards the developing of a real-time and single-molecule protein sequencing device.
Collapse
Affiliation(s)
- Gang Huang
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Arnout Voet
- Laboratory of Biomolecular Modelling and Design, Department of Chemistry, University of Leuven, Celestijnenlaan 200G, 3001, Heverlee, Belgium
| | - Giovanni Maglia
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
26
|
Chen X, Zhang Y, Roozbahani GM, Guan X. Salt-Mediated Nanopore Detection of ADAM-17. ACS APPLIED BIO MATERIALS 2018; 2:504-509. [PMID: 32529174 DOI: 10.1021/acsabm.8b00689] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
ADAM-17 (a disintegrin and metalloproteinase 17) plays an important role in various physiological and pathophysiological processes. Overexpression/underexpression of ADAM-17 could lead to various diseases. In this work, by taking advantage of ionic strength and salt gradient, and monitoring the cleavage of a substrate peptide by ADAM-17 in a nanopore, we developed a label-free sensor for the rapid detection of ADAM-17. The sensor was highly sensitive and selective: picomolar concentrations of ADAM-17 could be detected within minutes, while structure similar proteases such as ADAM-9 and MMP-9 did not interfere with its detection. Our developed nanopore sensing strategy should find useful applications in the development of nanopore sensors for other proteases of biological, pharmaceutical, and medical importance.
Collapse
Affiliation(s)
- Xiaohan Chen
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | - Youwen Zhang
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | | | - Xiyun Guan
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL, 60616, USA
| |
Collapse
|