1
|
Li Y, Li XM, Wei LS, Ye JF. Advancements in mitochondrial-targeted nanotherapeutics: overcoming biological obstacles and optimizing drug delivery. Front Immunol 2024; 15:1451989. [PMID: 39483479 PMCID: PMC11524880 DOI: 10.3389/fimmu.2024.1451989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/19/2024] [Indexed: 11/03/2024] Open
Abstract
In recent decades, nanotechnology has significantly advanced drug delivery systems, particularly in targeting subcellular organelles, thus opening new avenues for disease treatment. Mitochondria, critical for cellular energy and health, when dysfunctional, contribute to cancer, neurodegenerative diseases, and metabolic disorders. This has propelled the development of nanomedicines aimed at precise mitochondrial targeting to modulate their function, marking a research hotspot. This review delves into the recent advancements in mitochondrial-targeted nanotherapeutics, with a comprehensive focus on targeting strategies, nanocarrier designs, and their therapeutic applications. It emphasizes nanotechnology's role in enhancing drug delivery by overcoming biological barriers and optimizing drug design for specific mitochondrial targeting. Strategies exploiting mitochondrial membrane potential differences and specific targeting ligands improve the delivery and mitochondrial accumulation of nanomedicines. The use of diverse nanocarriers, including liposomes, polymer nanoparticles, and inorganic nanoparticles, tailored for effective mitochondrial targeting, shows promise in anti-tumor and neurodegenerative treatments. The review addresses the challenges and future directions in mitochondrial targeting nanotherapy, highlighting the need for precision, reduced toxicity, and clinical validation. Mitochondrial targeting nanotherapy stands at the forefront of therapeutic strategies, offering innovative treatment perspectives. Ongoing innovation and research are crucial for developing more precise and effective treatment modalities.
Collapse
Affiliation(s)
- Yang Li
- General Surgery Center, First Hospital of Jilin University, Changchun, China
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Xiao-meng Li
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Li-si Wei
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Jun-feng Ye
- General Surgery Center, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Fu Y, Zhu X, Ren L, Wan J, Wang H. Syringeable Near-Infrared Light-Activated In Situ Immunogenic Hydrogel Boosts the Cancer-Immunity Cycle to Enhance Anticancer Immunity. ACS NANO 2024; 18:14877-14892. [PMID: 38809421 DOI: 10.1021/acsnano.3c08425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Effective anticancer immunity depends on properly activating multiple stepwise events in the cancer-immunity cycle. An immunologically "cold" tumor microenvironment (TME) engenders immune evasion and refractoriness to conventional checkpoint blockade immunotherapy. Here, we combine nanoparticle formulations and an in situ formed hydrogel scaffold to treat accessible tumors locally and to stimulate systemic immunity against metastatic tumor lesions. The nanoparticles encapsulate poly(ε-caprolactone)-derived cytotoxic chemotherapy and adjuvant of Toll-like receptor 7/8 through a reactive oxygen species (ROS)-cleavable linker that can be self-activated by the coassembled neighboring photosensitizer following near-infrared (NIR) laser irradiation. Further development results in syringeable, NIR light-responsive, and immunogenic hydrogel (iGEL) that can be implanted peritumorally and deposited into the tumor surgical bed. Upon NIR laser irradiation, the generated ROS induces iGEL degradation and bond cleavage in the polymer-drug conjugates, triggering the immunogenic cell death cascade in cancer cells and spontaneously releasing encapsulated agents to rewire the cancer-immunity cycle. Notably, upon application in multiple preclinical models of melanoma and triple-negative breast cancer, which are aggressive and refractory to conventional immunotherapy, iGEL induces durable remission of established tumors, extends postsurgical tumor-free survival, and inhibits metastatic burden. The result of this study is a locally administrable immunogenic hydrogel for triggering host systemic immunity to improve immunotherapeutic efficacy with minimal off-target side effects.
Collapse
Affiliation(s)
- Yang Fu
- The First Affiliated Hospital; NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, P. R. China
| | - Xiaoxiao Zhu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310016, P. R. China
| | - Lulu Ren
- The First Affiliated Hospital; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, P. R. China
| | - Jianqin Wan
- The First Affiliated Hospital; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, P. R. China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong Province 250117, P. R. China
| | - Hangxiang Wang
- The First Affiliated Hospital; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, P. R. China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong Province 250117, P. R. China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province 325000, P. R. China
| |
Collapse
|
3
|
Wang M, Chen G, Hu B, Zhang F, Xu Q, Li L, Xi Q, Liu J, Yu Z, Cao P, Wang Y, Yu M. Electrically activated polymetallic nanocrystals for long-term tumor suppression via oxygen-independent ROS generation and electro-immunotherapy. J Control Release 2024; 370:677-690. [PMID: 38740093 DOI: 10.1016/j.jconrel.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
The low oxidation level and immunosuppressive microenvironment within hypoxic tumor tissue are critical factors contributing to the inefficacy of various anti-tumor strategies. Herein, we have designed a novel intravenous injection nanoplatform to conduct electro-immunotherapy, based on phospholipid-modified PtPd nanocrystals loaded with the immunoregulator IPI549 (LP@Pt-Pd@IPI549 nanoparticles, LPPI). LPPI responds to reactive oxygen species (ROS), triggering a cascade of therapeutic effects that overcome hypoxia-related resistance and effectively eradicate hypoxic tumors. Firstly, under electric field exposure, LPPI relied on water rather than oxygen to generate abundant ROS under hypoxic conditions for tumor electrodynamic therapy (EDT). Moreover, the generated ROS further induced the disintegration of the outer phospholipid membrane of LPPI, leading to the release of the immunoregulator and inhibition of myeloid-derived suppressor cells (MDSCs), triggering cascade immune responses. Additionally, the immunomodulatory effects of IPI549, in synergy with the immunogenic cell death (ICD) induced by EDT, reversed the immunosuppressive microenvironment contributing to tumor resistance. In summary, EDT transiently killed tumor cells while simultaneously generating antigen release, instigating an adaptive immune response for electro-immunotherapy, resulting in a potent and long-lasting tumor inhibition effect.
Collapse
Affiliation(s)
- Manchun Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Gui Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital of Southern Medical University (Dongguan people's hospital), Dongguan 523018, China
| | - Ben Hu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Fengling Zhang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qinqin Xu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lei Li
- Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Qiye Xi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jun Liu
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang 110000, China
| | - Zhiqiang Yu
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital of Southern Medical University (Dongguan people's hospital), Dongguan 523018, China
| | - Peng Cao
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang 110000, China.
| | - Yongxia Wang
- Breast Department, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan 523018, China.
| | - Meng Yu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| |
Collapse
|
4
|
Shu J, Wang Y, Zhang G, Shu X, Xu T, Zhang J, Wu F, He J. Fructose-mineralized black phosphorus for syncretic bone regeneration and tumor suppression. J Mater Chem B 2024; 12:4882-4898. [PMID: 38682491 DOI: 10.1039/d4tb00564c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Black phosphorus (BPs) nanosheets with their inherent and selective chemotherapeutic effects have recently been identified as promising cancer therapeutic agents, but challenges in surface functionalization hinder satisfactory enhancement of their selectivity between tumors and normal cells. To address this issue, we developed a novel biomineralization-inspired strategy to synthesize CaBPs-Na2FDP@CaCl2 nanosheets, aiming to achieve enhanced and selective anticancer bioactivity along with accelerated osteoblast activity. Benefiting from the in situ mineralization and fructose modification, CaBPs-Na2FDP@CaCl2 exhibited improved pH-responsive degradation behavior and targeted therapy for osteosarcoma. The in vitro results indicated that CaBPs-Na2FDP@CaCl2 exhibited efficient uptake and quick degradation by GLUT5-positive 143B osteosarcoma cells, enhancing BPs-driven chemotherapeutic effects through ATP level disturbance-mediated apoptosis of tumor cells. Moreover, CaBPs-Na2FDP@CaCl2 underwent gradual degradation into PO43-, Ca2+ and fructose in MC3T3-E1 cells, eliminating systemic toxicity. Intracellular Ca2+ bound to calmodulin (CaM), activating Ca2+/CaM-dependent signaling cascades, thereby enhancing osteoblast differentiation and mineralization in pro-osteoblastic cells. In vivo experiments affirmed the anti-tumor capability, inhibition of tumor recurrence and bone repair promotion of CaBPs-Na2FDP@CaCl2. This study not only broadens the application of BPs in bone tumor therapy but also provides a versatile surface functionalization strategy for nanotherapeutic agents.
Collapse
Affiliation(s)
- Jun Shu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China.
| | - Yao Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China.
| | - Guangpeng Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China.
| | - Xuedong Shu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China.
| | - Tingting Xu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China.
| | - Junwei Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China.
| | - Fang Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China.
| | - Jing He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China.
| |
Collapse
|
5
|
Liu J, Han Y, Zhao M, Wang L, Hu H, Chen D. Unlocking the power of immunotherapy: Combinatorial delivery of plasmid IL-15 and gemcitabine to synergistically remodeling the tumor microenvironment. Int J Pharm 2024; 655:124027. [PMID: 38554742 DOI: 10.1016/j.ijpharm.2024.124027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/03/2024] [Accepted: 03/19/2024] [Indexed: 04/02/2024]
Abstract
Cancer immunotherapy has emerged as a promising clinical treatment strategy in recent years. Unfortunately, the satisfactory antitumor therapeutic efficacy of immunotherapy is limited by intricate immunosuppressive tumor microenvironment (ITM). To remodel the ITM and alleviate the immune evasion, we constructed FA-PEG-modified liposomes to deliver plasmid IL-15 (pIL-15) and gemcitabine (GEM) (FPCL@pIL-15 + FPGL), respectively. The FPCL@pIL-15 (150 nm) and FPGL (120 nm) exhibited symmetrically spherical structures as well as desirable penetration and accumulation on tumor tissue depending on folic acid (FA) specialized targeting function. The transfected expression of IL-15 efficiently fosters the proliferation and co-activation of Natural killer (NK) cells and CD8+T cells through binding to IL-15R. FPGL upregulated the expression of Natural killer group 2 member D ligands (NKG2DLs) and reinforced recognition by NK cells to alleviate the immune evasion, and simultaneously promoted activation of CD8+T cells through immunogenic cell death (ICD) effects. More importantly, the combinatorial administration achieved intended anti-tumor efficacy in the subcutaneous 4T1 tumor model. In essence, we demonstrated that combining FPCL@pIL-15 with FPGL synergistically stimulates and mobilizes the immune system to reverse the ITM and trigger an anti-tumor immune response, indicating a tremendous potential for application in immunotherapy.
Collapse
Affiliation(s)
- Jingwen Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, PR China
| | - Yanyan Han
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, PR China
| | - Ming Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, PR China
| | - Leyuan Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, PR China
| | - Haiyang Hu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, PR China.
| | - Dawei Chen
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, PR China.
| |
Collapse
|
6
|
Lu Q, Kou D, Lou S, Ashrafizadeh M, Aref AR, Canadas I, Tian Y, Niu X, Wang Y, Torabian P, Wang L, Sethi G, Tergaonkar V, Tay F, Yuan Z, Han P. Nanoparticles in tumor microenvironment remodeling and cancer immunotherapy. J Hematol Oncol 2024; 17:16. [PMID: 38566199 PMCID: PMC10986145 DOI: 10.1186/s13045-024-01535-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
Cancer immunotherapy and vaccine development have significantly improved the fight against cancers. Despite these advancements, challenges remain, particularly in the clinical delivery of immunomodulatory compounds. The tumor microenvironment (TME), comprising macrophages, fibroblasts, and immune cells, plays a crucial role in immune response modulation. Nanoparticles, engineered to reshape the TME, have shown promising results in enhancing immunotherapy by facilitating targeted delivery and immune modulation. These nanoparticles can suppress fibroblast activation, promote M1 macrophage polarization, aid dendritic cell maturation, and encourage T cell infiltration. Biomimetic nanoparticles further enhance immunotherapy by increasing the internalization of immunomodulatory agents in immune cells such as dendritic cells. Moreover, exosomes, whether naturally secreted by cells in the body or bioengineered, have been explored to regulate the TME and immune-related cells to affect cancer immunotherapy. Stimuli-responsive nanocarriers, activated by pH, redox, and light conditions, exhibit the potential to accelerate immunotherapy. The co-application of nanoparticles with immune checkpoint inhibitors is an emerging strategy to boost anti-tumor immunity. With their ability to induce long-term immunity, nanoarchitectures are promising structures in vaccine development. This review underscores the critical role of nanoparticles in overcoming current challenges and driving the advancement of cancer immunotherapy and TME modification.
Collapse
Affiliation(s)
- Qiang Lu
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an, 710038, China
| | - Dongquan Kou
- Department of Rehabilitation Medicine, Chongqing Public Health Medical Center, Chongqing, China
| | - Shenghan Lou
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Milad Ashrafizadeh
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250000, Shandong, China
| | - Amir Reza Aref
- Xsphera Biosciences, Translational Medicine Group, 6 Tide Street, Boston, MA, 02210, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Israel Canadas
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Yu Tian
- School of Public Health, Benedictine University, Lisle, USA
| | - Xiaojia Niu
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Pedram Torabian
- Cumming School of Medicine, Arnie Charbonneau Cancer Research Institute, University of Calgary, Calgary, AB, T2N 4Z6, Canada
- Department of Medical Sciences, University of Calgary, Calgary, AB, T2N 4Z6, Canada
| | - Lingzhi Wang
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore, 117600, Singapore
| | - Gautam Sethi
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore, 117600, Singapore.
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, 138673, Singapore, Republic of Singapore
| | - Franklin Tay
- The Graduate School, Augusta University, 30912, Augusta, GA, USA
| | - Zhennan Yuan
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Peng Han
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China.
| |
Collapse
|
7
|
Liu J, Yang T, Dai L, Shi K, Hao Y, Chu B, Hu D, Bei Z, Yuan L, Pan M, Qian Z. Intravesical chemotherapy synergize with an immune adjuvant by a thermo-sensitive hydrogel system for bladder cancer. Bioact Mater 2024; 31:315-332. [PMID: 37663619 PMCID: PMC10468327 DOI: 10.1016/j.bioactmat.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/12/2023] [Accepted: 08/12/2023] [Indexed: 09/05/2023] Open
Abstract
Surgical resection remains the prefer option for bladder cancer treatment. However, the effectiveness of surgery is usually limited for the high recurrence rate and poor prognosis. Consequently, intravesical chemotherapy synergize with immunotherapy in situ is an attractive way to improve therapeutic effect. Herein, a combined strategy based on thermo-sensitive PLEL hydrogel drug delivery system was developed. GEM loaded PLEL hydrogel was intravesical instilled to kill tumor cells directly, then PLEL hydrogel incorporated with CpG was injected into both groins subcutaneously to promote immune responses synergize with GEM. The results demonstrated that drug loaded PLEL hydrogel had a sol-gel phase transition behavior in response to physiological temperature and presented sustained drug release, and the PLEL-assisted combination therapy could have better tumor suppression effect and stronger immunostimulating effect in vivo. Hence, this combined treatment with PLEL hydrogel system has great potential and suggests a clinically-relevant and valuable option for bladder cancer.
Collapse
Affiliation(s)
- J. Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - T.Y. Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - L.Q. Dai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - K. Shi
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Y. Hao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - B.Y. Chu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - D.R. Hu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Z.W. Bei
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - L.P. Yuan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - M. Pan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Z.Y. Qian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
8
|
Zhao S, Zhu Y, Liu H, He X, Xie J. System analysis based on the pyroptosis-related genes identifes GSDMD as a novel therapy target for skin cutaneous melanoma. J Transl Med 2023; 21:801. [PMID: 37950289 PMCID: PMC10636830 DOI: 10.1186/s12967-023-04513-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/08/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Skin cutaneous melanoma (SKCM) is the most aggressive skin cancer, accounting for more than 75% mortality rate of skin-related cancers. As a newly identified programmed cell death, pyroptosis has been found to be closely associated with tumor progression. Nevertheless, the prognostic significance of pyroptosis in SKCM remains elusive. METHODS A total of 469 SKCM samples and 812 normal samples were obtained from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases. Firstly, differentially expressed pyroptosis-related genes (PRGs) between normal samples and SKCM samples were identified. Secondly, we established a prognostic model based on univariate Cox and LASSO Cox regression analyses, which was validated in the test cohort from GSE65904. Thirdly, a nomogram was used to predict the survival probability of SKCM patients. The R package "pRRophetic" was utilized to identify the drug sensitivity between the low- and high-risk groups. Tumor immune infiltration was evaluated using "immuneeconv" R package. Finally, the function of GSDMD and SB525334 was explored in A375 and A2058 cells. RESULTS Based on univariate Cox and LASSO regression analyses, we established a prognostic model with identified eight PRGs (AIM2, CASP3, GSDMA, GSDMC, GSDMD, IL18, NLRP3, and NOD2), which was validated in the test cohort. SKCM patients were divided into low- and high-risk groups based on the median of risk score. Kaplan-Meier survival analysis showed that high-risk patients had shorter overall survival than low-risk patients. Additionally, time-dependent ROC curves validated the accuracy of the risk model in predicting the prognosis of SKCM. More importantly, 4 small molecular compounds (SB525334, SR8278, Gemcitabine, AT13387) were identified, which might be potential drugs for patients in different risk groups. Finally, overexpression of GSDMD and SB525334 treatment inhibit the proliferation, migration, and invasion of SKCM cells. CONCLUSION In this study, we constructed a prognostic model based on PRGs and identified GSDMD as a potential therapeutic target, which provide new insights into SKCM treatment.
Collapse
Affiliation(s)
- Shixin Zhao
- Department of Burns, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yongkang Zhu
- Department of Burns, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Hengdeng Liu
- Department of Burns, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xuefeng He
- Department of Burns, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Julin Xie
- Department of Burns, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
9
|
Fang G, Zhang Z, Jiang B, Zheng Y, Xiao X, Wang T, Zhang Z, Zhao J. Immunologically active ferumoxytol-poly(I : C) nanomaterials inhibit metastatic melanoma by regulating myeloid-derived suppressor cell differentiation. Biomater Sci 2023. [PMID: 37366334 DOI: 10.1039/d3bm00416c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Nanomaterials have been identified as a potential therapeutic option for targeting myeloid-derived suppressor cells (MDSCs), which are known to play a crucial role in tumor metastasis and treatment resistance. Here, we report a unique immunologically active nanomaterial composed of ferumoxytol and poly(I : C) (FP-NPs) and investigate its immunoregulatory activities on MDSCs in metastatic melanoma. In vivo assays demonstrated that FP-NPs had the ability to significantly impede the progression of metastatic melanoma and decrease the MDSC population in the lungs, spleen, and bone marrow of mice. Both in vivo and in vitro experiments revealed that FP-NPs reduced the number of granulocytic MDSCs and promoted the differentiation of monocytic MDSCs into anti-tumor M1 macrophages. Transcriptome sequencing indicated that FP-NPs significantly altered the expression of several genes involved in immunity. Analysis of Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and quantitative real-time PCR revealed that FP-NPs significantly increased the expression of the myeloid cell differentiation-related gene interferon regulatory factor 7 and activated interferon beta-related signaling pathways, which stimulated the differentiation of MDSCs into M1 macrophages. These findings suggest that FP-NPs, a unique nanomaterial with immunological properties, can induce MDSCs to differentiate into M1 macrophages, potentially offering new treatment prospects for metastatic melanoma in the future.
Collapse
Affiliation(s)
- Gaochuan Fang
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Jiangsu Joint International Center of Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China.
| | - Zhonghai Zhang
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Jiangsu Joint International Center of Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China.
| | - Bo Jiang
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Jiangsu Joint International Center of Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China.
- Department of Urology, Xuzhou Central Hospital, Xuzhou, 221009, China
| | - Yunuo Zheng
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Jiangsu Joint International Center of Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China.
| | - Xufeng Xiao
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Jiangsu Joint International Center of Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China.
| | - Tianlong Wang
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Jiangsu Joint International Center of Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China.
| | - Zhengkui Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China.
| | - Jiaojiao Zhao
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Jiangsu Joint International Center of Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China.
| |
Collapse
|
10
|
Zhou M, Wang J, Pan J, Wang H, Huang L, Hou B, Lai Y, Wang F, Guan Q, Wang F, Xu Z, Yu H. Nanovesicles loaded with a TGF-β receptor 1 inhibitor overcome immune resistance to potentiate cancer immunotherapy. Nat Commun 2023; 14:3593. [PMID: 37328484 PMCID: PMC10275881 DOI: 10.1038/s41467-023-39035-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 05/26/2023] [Indexed: 06/18/2023] Open
Abstract
The immune-excluded tumors (IETs) show limited response to current immunotherapy due to intrinsic and adaptive immune resistance. In this study, it is identified that inhibition of transforming growth factor-β (TGF-β) receptor 1 can relieve tumor fibrosis, thus facilitating the recruitment of tumor-infiltrating T lymphocytes. Subsequently, a nanovesicle is constructed for tumor-specific co-delivery of a TGF-β inhibitor (LY2157299, LY) and the photosensitizer pyropheophorbide a (PPa). The LY-loaded nanovesicles suppress tumor fibrosis to promote intratumoral infiltration of T lymphocytes. Furthermore, PPa chelated with gadolinium ion is capable of fluorescence, photoacoustic and magnetic resonance triple-modal imaging-guided photodynamic therapy, to induce immunogenic death of tumor cells and elicit antitumor immunity in preclinical cancer models in female mice. These nanovesicles are further armored with a lipophilic prodrug of the bromodomain-containing protein 4 inhibitor (i.e., JQ1) to abolish programmed death ligand 1 expression of tumor cells and overcome adaptive immune resistance. This study may pave the way for nanomedicine-based immunotherapy of the IETs.
Collapse
Affiliation(s)
- Mengxue Zhou
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jiaxin Wang
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Huhhot, 010021, China
| | - Jiaxing Pan
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hui Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Huhhot, 010021, China
| | - Lujia Huang
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Bo Hou
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yi Lai
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Fengyang Wang
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Qingxiang Guan
- School of Pharmacy, Jilin University, Changchun, 130021, China
| | - Feng Wang
- Department of Gastroenterology, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Zhiai Xu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Haijun Yu
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
11
|
Fan S, Han H, Yan Z, Lu Y, He B, Zhang Q. Lipid-based nanoparticles for cancer immunotherapy. MEDICAL REVIEW (2021) 2023; 3:230-269. [PMID: 37789955 PMCID: PMC10542882 DOI: 10.1515/mr-2023-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/07/2023] [Indexed: 10/05/2023]
Abstract
As the fourth most important cancer management strategy except surgery, chemotherapy and radiotherapy, cancer immunotherapy has been confirmed to elicit durable antitumor effects in the clinic by leveraging the patient's own immune system to eradicate the cancer cells. However, the limited population of patients who benefit from the current immunotherapies and the immune related adverse events hinder its development. The immunosuppressive microenvironment is the main cause of the failure, which leads to cancer immune evasion and immunity cycle blockade. Encouragingly, nanotechnology has been engineered to enhance the efficacy and reduce off-target toxicity of their therapeutic cargos by spatiotemporally controlling the biodistribution and release kinetics. Among them, lipid-based nanoparticles are the first nanomedicines to make clinical translation, which are now established platforms for diverse areas. In this perspective, we discuss the available lipid-based nanoparticles in research and market here, then describe their application in cancer immunotherapy, with special emphasis on the T cells-activated and macrophages-targeted delivery system. Through perpetuating each step of cancer immunity cycle, lipid-based nanoparticles can reduce immunosuppression and promote drug delivery to trigger robust antitumor response.
Collapse
Affiliation(s)
- Shumin Fan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Huize Han
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zhicheng Yan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yao Lu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Ningbo Institute of Marine Medicine, Peking University, Ningbo, Zhejiang Province, China
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Ningbo Institute of Marine Medicine, Peking University, Ningbo, Zhejiang Province, China
| |
Collapse
|
12
|
Yamaki H, Kono M, Wakisaka R, Komatsuda H, Kumai T, Hayashi R, Sato R, Nagato T, Ohkuri T, Kosaka A, Ohara K, Kishibe K, Takahara M, Hayashi T, Kobayashi H, Katada A. Brachyury-targeted immunotherapy combined with gemcitabine against head and neck cancer. Cancer Immunol Immunother 2023:10.1007/s00262-023-03460-0. [PMID: 37173455 DOI: 10.1007/s00262-023-03460-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
Brachyury is a transcription factor belonging to the T-box gene family and is involved in the posterior formation of the mesoderm and differentiation of chordates. As the overexpression of Brachyury is a poor prognostic factor in a variety of cancers, the establishment of Brachyury-targeted therapy would be beneficial for the treatment of aggressive tumors. Because transcription factors are difficult to treat with a therapeutic antibody, peptide vaccines are a feasible approach for targeting Brachyury. In this study, we identified Brachyury-derived epitopes that elicit antigen-specific and tumor-reactive CD4+ T cells that directly kill tumors. T cells recognizing Brachyury epitopes were present in patients with head and neck squamous cell carcinoma. Next, we focused on gemcitabine (GEM) as an immunoadjuvant to augment the efficacy of antitumor responses by T cells. Interestingly, GEM upregulated HLA class I and HLA-DR expression in tumor, followed by the upregulation of anti-tumor T cell responses. As tumoral PD-L1 expression was also augmented by GEM, PD-1/PD-L1 blockade and GEM synergistically enhanced the tumor-reactivity of Brachyury-reactive T cells. The synergy between the PD-1/PD-L1 blockade and GEM was also confirmed in a mouse model of head and neck squamous cell carcinoma. These results suggest that the combined treatment of Brachyury peptide with GEM and immune checkpoint blockade could be a promising immunotherapy against head and neck cancer.
Collapse
Affiliation(s)
- Hidekiyo Yamaki
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa, 078-8510, Japan
| | - Michihisa Kono
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa, 078-8510, Japan
| | - Risa Wakisaka
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa, 078-8510, Japan
| | - Hiroki Komatsuda
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa, 078-8510, Japan
| | - Takumi Kumai
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa, 078-8510, Japan.
- Department of Innovative Head and Neck Cancer Research and Treatment, Asahikawa Medical University, Asahikawa, Japan.
| | - Ryusuke Hayashi
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa, 078-8510, Japan
| | - Ryosuke Sato
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa, 078-8510, Japan
| | - Toshihiro Nagato
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Takayuki Ohkuri
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Akemi Kosaka
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Kenzo Ohara
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa, 078-8510, Japan
| | - Kan Kishibe
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa, 078-8510, Japan
| | - Miki Takahara
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa, 078-8510, Japan
- Department of Innovative Head and Neck Cancer Research and Treatment, Asahikawa Medical University, Asahikawa, Japan
| | - Tatsuya Hayashi
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa, 078-8510, Japan
| | - Hiroya Kobayashi
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Akihiro Katada
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa, 078-8510, Japan
| |
Collapse
|
13
|
Li ZZ, He JY, Wu Q, Liu B, Bu LL. Recent advances in targeting myeloid-derived suppressor cells and their applications to radiotherapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 378:233-264. [PMID: 37438019 DOI: 10.1016/bs.ircmb.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a group of heterogenous immature myeloid cells with potent immune suppressive properties that not only constrain anti-tumor immune activation and functions, promote tumor progression, but also contribute to treatment resistance and tumor relapse. Targeting MDSCs may be a promising new cancer treatment method, but there is still a problem of low treatment efficiency. Combined application with radiotherapy may be a potential method to solve this problem. Drug delivery systems (DDSs) provide more efficient targeted drug delivery capability and can reduce the toxicity and side effects of drugs. Recent advance in DDSs targeting development, recruitment, differentiation, and elimination of MDSCs have shown promising effect in reversing immune inhibition and in overcoming radiotherapy resistance. In this review, we systematically summarized DDSs applied to target MDSCs for the first time, and classified and discussed it according to its different mechanisms of action. In addition, this paper also reviewed the biological characteristics of MDSCs and their role in the initiation, progression, and metastasis of cancer. Moreover, this review also summarizes the role of DDSs targeting MDSCs in radiosensitization. Finally, the future development of DDSs targeting MDSCs is also prospected.
Collapse
Affiliation(s)
- Zi-Zhan Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China; Department of Oral & Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Jing-Yu He
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Qiuji Wu
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Bing Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China; Department of Oral & Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China.
| | - Lin-Lin Bu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China; Department of Oral & Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
14
|
Fernandes PD, Magalhães FD, Pereira RF, Pinto AM. Metal-Organic Frameworks Applications in Synergistic Cancer Photo-Immunotherapy. Polymers (Basel) 2023; 15:polym15061490. [PMID: 36987269 PMCID: PMC10053741 DOI: 10.3390/polym15061490] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
Conventional cancer therapies, such as radiotherapy and chemotherapy, can have long-term side effects. Phototherapy has significant potential as a non-invasive alternative treatment with excellent selectivity. Nevertheless, its applicability is restricted by the availability of effective photosensitizers and photothermal agents, and its low efficacy when it comes to avoiding metastasis and tumor recurrence. Immunotherapy can promote systemic antitumoral immune responses, acting against metastasis and recurrence; however, it lacks the selectivity displayed by phototherapy, sometimes leading to adverse immune events. The use of metal-organic frameworks (MOFs) in the biomedical field has grown significantly in recent years. Due to their distinct properties, including their porous structure, large surface area, and inherent photo-responsive properties, MOFs can be particularly useful in the fields of cancer phototherapy and immunotherapy. MOF nanoplatforms have successfully demonstrated their ability to address several drawbacks associated with cancer phototherapy and immunotherapy, enabling an effective and low-side-effect combinatorial synergistical treatment for cancer. In the coming years, new advancements in MOFs, particularly regarding the development of highly stable multi-function MOF nanocomposites, may revolutionize the field of oncology.
Collapse
Affiliation(s)
- Pedro D. Fernandes
- LEPABE, Faculdade de Engenharia, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto, Portugal
- AliCE—Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Fernão D. Magalhães
- LEPABE, Faculdade de Engenharia, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto, Portugal
- AliCE—Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
| | - Rúben F. Pereira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Artur M. Pinto
- LEPABE, Faculdade de Engenharia, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto, Portugal
- AliCE—Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Correspondence:
| |
Collapse
|
15
|
Pereira I, Monteiro C, Pereira-Silva M, Peixoto D, Nunes C, Reis S, Veiga F, Hamblin MR, Paiva-Santos AC. Nanodelivery systems for cutaneous melanoma treatment. Eur J Pharm Biopharm 2023; 184:214-247. [PMID: 36773725 DOI: 10.1016/j.ejpb.2023.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 10/03/2022] [Accepted: 02/06/2023] [Indexed: 02/12/2023]
Abstract
Cutaneous melanoma (CM) is a multifactorial disease whose treatment still presents challenges: the rapid progression to advanced CM, which leads to frequent recurrences even after surgical excision and, notably, the low response rates and resistance to the available therapies, particularly in the case of unresectable metastatic CM. Thereby, alternative innovative therapeutic approaches for CM continue to be searched. In this review we discuss relevant preclinical research studies, and provide a broad-brush analysis of patents and clinical trials which involve the application of nanotechnology-based delivery systems in CM therapy. Nanodelivery systems have been developed for the delivery of anticancer biomolecules to CM, which can be administered by different routes. Overall, nanosystems could promote technological advances in several therapeutic modalities and can be used in combinatorial therapies. Nevertheless, the results of these preclinical studies have not been translated to clinical applications. Thus, concerted and collaborative research studies involving basic, applied, translational, and clinical scientists need to be performed to allow the development of effective and safe nanomedicines to treat CM.
Collapse
Affiliation(s)
- Irina Pereira
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; LAQV, REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; LAQV, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Carina Monteiro
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal
| | - Miguel Pereira-Silva
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; LAQV, REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal
| | - Diana Peixoto
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal
| | - Cláudia Nunes
- LAQV, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Salette Reis
- LAQV, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; LAQV, REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa.
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; LAQV, REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal.
| |
Collapse
|
16
|
Wang Y, Chen W, Wang Z, Zhu Y, Zhao H, Wu K, Wu J, Zhang W, Zhang Q, Guo H, Ju H, Liu Y. NIR-II Light Powered Asymmetric Hydrogel Nanomotors for Enhanced Immunochemotherapy. Angew Chem Int Ed Engl 2023; 62:e202212866. [PMID: 36401612 DOI: 10.1002/anie.202212866] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022]
Abstract
Nanomotors are appealing drug carriers, and the strength of the propelling force is important for their motion capability. Though high motion efficiency has been achieved with 808 nm light driven Janus-structured noble metal nanomotors, the NIR-I light penetration depth and material biocompatibility limit their broad application. Herein, we develop a 1064 nm NIR-II light driven asymmetric hydrogel nanomotor (AHNM) with high motion capability and load it with doxorubicin for enhanced immunochemotherapy. Magnetic field assisted photopolymerization generates an asymmetric distribution of Fe3 O4 @Cu9 S8 nanoparticles in the AHNM, producing self-thermophoresis as driving force under NIR-II irradiation. The AHNM is also functionalized with dopamine for the capture and retention of tumor-associated antigens to boost immune activation. The as-obtained NIR-II light driven AHNM has a high tumor tissue penetration capability and enhances immunochemotherapy, providing a promising strategy for cancer therapy.
Collapse
Affiliation(s)
- Yingfei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Wei Chen
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, 210008, China
| | - Zhong Wang
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, MOE Key Laboratory of Intelligent Optical Sensing and Manipulation, State Key Laboratory of Analytical Chemistry for Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yu Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hongxia Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Kun Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jie Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Weihua Zhang
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, MOE Key Laboratory of Intelligent Optical Sensing and Manipulation, State Key Laboratory of Analytical Chemistry for Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Qing Zhang
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, 210008, China
| | - Hongqian Guo
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, 210008, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Ying Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.,Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
17
|
Shi MY, Liu HG, Chen XH, Tian Y, Chen ZN, Wang K. The application basis of immuno-checkpoint inhibitors combined with chemotherapy in cancer treatment. Front Immunol 2023; 13:1088886. [PMID: 36703971 PMCID: PMC9871553 DOI: 10.3389/fimmu.2022.1088886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
Immuno-checkpoint inhibitors (ICIs) bring a promising prospect for patients with cancers, which restrains the growth of tumor cells by enhancing anti-tumor activity. Nevertheless, not all patients benefit from the administration of ICIs monotherapy. The partial response or resistance to ICIs is mainly due to the complex and heterogenous tumor microenvironment (TME). The combined therapy is necessary for improving the efficacy of tumor treatment. Chemotherapy is reported not only to kill tumor cells directly, but also to stimulate effective anti-tumor immune responses. Several combined therapies of ICIs and chemotherapeutic agents have been approved for the first-line treatment of cancers, including PD-1/PD-L1 inhibitors. This review summarizes the potential mechanisms of the combined therapy of ICIs and chemotherapeutic agents in inducing immunogenic cell death (ICD) and reprogramming TME, and elucidates the possible anti-tumor effects of combined therapy from the perspective of metabolic reprogramming and microbiome reprogramming.
Collapse
Affiliation(s)
| | | | | | | | | | - Ke Wang
- *Correspondence: Ke Wang, ; Zhi-Nan Chen,
| |
Collapse
|
18
|
Li L, You W, Wang X, Zou Y, Yao H, Lan H, Lin X, Zhang Q, Chen B. Delicaflavone reactivates anti-tumor immune responses by abrogating monocytic myeloid cell-mediated immunosuppression. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154508. [PMID: 36332384 DOI: 10.1016/j.phymed.2022.154508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/21/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Myeloid cell-mediated immunosuppression is a major obstacle to checkpoint blockade immunotherapy. We previously reported that total biflavonoids extract from Selaginella doederleinii (TBESD) and a flavone monomer isolated from TBESD, named Delicaflavone, have favorable anti-tumor activity. However, whether TBESD and Delicaflavone could affect the tumor microenvironment (TME) remains unclear. PURPOSE In this study, we focused on the TME to determine whether TBESD and Delicaflavone could restore anti-tumor immune response. METHODS 4T1 tumor-bearing immunocompetent BALB/c mice and T cell-deficient nude mice were used to examine the effect of TBESD on T cell-mediated immunity in vivo. Multi-parameter flow cytometry was conducted to evaluate the impacts of TBESD on TME. Primary cells, including murine CD8+ T cells, tumor associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs) were prepared to investigate the modulatory activities of TBESD on immune cells. It was further determined whether Delicaflavone or Amentoflavone, two typical functional biflavones from TBESD, mediated those effects of TBESD. Finally, the impacts of TBESD and Delicaflavone on Jak1/STAT6 signaling pathway were explored via western blot. RESULTS We found that TBESD significantly reduced 4T1 tumor growth in immunocompetent BALB/c mice, but not in nude mice. This effect was associated with the regulation of TME, shown as an increase in functional T cells and M1 phenotype TAMs (M1-TAMs), and a decrease in M2 phenotype TAMs (M2-TAMs), monocytic-MDSCs (M-MDSCs) and regulatory T cells (Tregs) in TBESD-treated BALB/c mouse 4T1 tumors. It was found ex vivo that TBESD restrained the viability and immunosuppressive properties of M2-TAMs and M-MDSCs, especially for the loss of arginase-1 expression. Additionally, TBESD re-educated M2-TAMs to an M1 like phenotype. Further investigations determined that Delicaflavone predominantly mediated the immuno-modulatory activities of TBESD both ex vivo and in vivo. Finally, Delicaflavone and TBESD blocked Jak1/STAT6 signaling pathway in M2-TAMs and MDSCs. CONCLUSION The present study suggests Delicaflavone as a potent natural inhibitor of M2-TAMs and MDSCs, which fills the gap in knowledge on the immuno-modulatory effects of TBESD and Delicaflavone, and could have translational implications to improve the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Lijun Li
- Institute of Immunotherapy, Fujian Medical University, Fuzhou, China
| | - Wenjie You
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China; Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xuewen Wang
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), School of Pharmacy, Nano Medical Technology Research Institute, Fujian Medical University, Fuzhou, China; Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Yulian Zou
- Institute of Immunotherapy, Fujian Medical University, Fuzhou, China
| | - Hong Yao
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), School of Pharmacy, Nano Medical Technology Research Institute, Fujian Medical University, Fuzhou, China; Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Hailin Lan
- Institute of Immunotherapy, Fujian Medical University, Fuzhou, China
| | - Xinhua Lin
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), School of Pharmacy, Nano Medical Technology Research Institute, Fujian Medical University, Fuzhou, China; Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China.
| | - Qiuyu Zhang
- Institute of Immunotherapy, Fujian Medical University, Fuzhou, China.
| | - Bing Chen
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), School of Pharmacy, Nano Medical Technology Research Institute, Fujian Medical University, Fuzhou, China; Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
19
|
Chen X, Zhou R, Li Y, Qu X, Qu YC, Li WZ, Ye YS, Liu LR, Zhu YJ, Zhang HB. Case report: A case of duodenal adenocarcinoma achieving significantly long survival treating with immune checkpoint inhibitors and chemotherapy without positive biomarkers. Front Immunol 2022; 13:1046513. [PMID: 36531985 PMCID: PMC9755197 DOI: 10.3389/fimmu.2022.1046513] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/22/2022] [Indexed: 12/04/2022] Open
Abstract
Small bowel adenocarcinoma (SBA), particularly duodenal adenocarcinoma (DA), is a rare gastrointestinal cancer with a dismal prognosis. Data on SBA treatments are limited, and the therapeutic strategy remains uncertain. Currently, chemotherapy is the most used treatment; however, it has a poor median progression-free survival (mPFS) of no more than five months in the second-line setting. We report a case with DA that responded well to the immune checkpoint inhibitor (ICI) tislelizumab plus irinotecan in the second-line treatment. To our knowledge, this is the first report of administering ICIs plus chemotherapy to SBA. Despite the absence of microsatellite instability-high (MSI-H) and high tumor mutational burden (TMB), the patient with TP53/KRAS mutation achieved a significantly long PFS of 17 months, and the benefit is still ongoing. The mechanism of this remarkable efficacy might be associated with an increase in tumor immunogenicity after chemotherapy. The current study presents a promising effect of ICIs plus chemotherapy on SBA, affirming the need to investigate the clinical value of this combination in SBA and the underlying mechanism behind it.
Collapse
Affiliation(s)
- Xian Chen
- The Second Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China,Department of Oncology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Rui Zhou
- The Second Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yong Li
- Department of Oncology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Xin Qu
- Department of Oncology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Yan-chun Qu
- Department of Oncology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Wen-zhu Li
- Department of Oncology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Yong-song Ye
- Department of Image, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Li-rong Liu
- Department of Oncology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Yan-juan Zhu
- Department of Oncology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hai-bo Zhang
- Department of Oncology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China,State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China,*Correspondence: Hai-bo Zhang,
| |
Collapse
|
20
|
Fan Z, Wang Y, Li L, Zeng F, Shang Q, Liao Y, Liang C, Nie L. Tumor-Homing and Immune-Reprogramming Cellular Nanovesicles for Photoacoustic Imaging-Guided Phototriggered Precise Chemoimmunotherapy. ACS NANO 2022; 16:16177-16190. [PMID: 36136614 DOI: 10.1021/acsnano.2c04983] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Many studies have focused on developing effective therapeutic strategies to selectively destroy primary tumors, eliminate metastatic lesions, and prevent tumor recurrence with minimal side effects on normal tissues. In this work, we synthesized engineered cellular nanovesicles (ECNVs) with tumor-homing and immune-reprogramming functions for photoacoustic (PA) imaging-guided precision chemoimmunotherapy. M1-macrophage-derived cellular nanovesicles (CNVs) were loaded with gold nanorods (GNRs), gemcitabine (GEM), CpG ODN, and PD-L1 aptamer. The good histocompatibility and tumor-homing effect of CNVs improved drug retention in the bloodstream and led to their enrichment in tumor tissues. Furthermore, the photothermal ability of GNRs enabled PA imaging-guided drug release. GEM induced tumor immunogenic cell death (ICD), and CpG ODN promoted an immune response to the antigens released by ICD, leading to long-term specific antitumor immunity. In addition, the PD-L1 aptamer relieved the inhibitory effect of the PD1/PD-L1 checkpoint on CD8+ T-cells and augmented the immunotherapeutic effect. The synergistic innate and adaptive immune responses enhanced the antitumor effect of ECNVs. In summary, this nanoplatform integrates local targeted photothermal therapy with extensive progressive chemotherapy and uses ICD to reshape the immune microenvironment for tumor ablation.
Collapse
Affiliation(s)
- Zhijin Fan
- School of Medicine, South China University of Technology, Guangzhou 510006, People's Republic of China
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, People's Republic of China
| | - Yichao Wang
- Department of Clinical Laboratory Medicine, Tai Zhou Central Hospital (Taizhou University Hospital), No.999 Donghai Road, Jiaojiang District, Taizhou, Zhejiang 318000, People's Republic of China
| | - Lanqing Li
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, People's Republic of China
| | - Fanchu Zeng
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, People's Republic of China
| | - Qiuping Shang
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou 510091, People's Republic of China
| | - Yuhui Liao
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou 510091, People's Republic of China
| | - Changhong Liang
- School of Medicine, South China University of Technology, Guangzhou 510006, People's Republic of China
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, People's Republic of China
| | - Liming Nie
- School of Medicine, South China University of Technology, Guangzhou 510006, People's Republic of China
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, People's Republic of China
| |
Collapse
|
21
|
Zhuo S, Yang L, Chen S, Tang C, Li W, Gao Z, Feng J, Yang K. Ferroptosis: A potential opportunity for intervention of pre-metastatic niche. Front Oncol 2022; 12:980620. [PMID: 36158661 PMCID: PMC9500500 DOI: 10.3389/fonc.2022.980620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022] Open
Abstract
It is widely thought that the tumor microenvironment (TME) provides the "soil" for malignant tumors to survive. Prior to metastasis, the interaction at the host site between factors secreted by primary tumors, bone-marrow-derived cells, with stromal components initiates and establishes a pre-metastatic niche (PMN) characterized by immunosuppression, inflammation, angiogenesis and vascular permeability, as well as lymphangiogenesis, reprogramming and organotropism. Ferroptosis is a non-apoptotic cell death characterized by iron-dependent lipid peroxidation and metabolic constraints. Ferroptotic cancer cells release various signal molecules into the TME to either suppress or promote tumor progression. This review highlights the important role played by ferroptosis in PMN, focusing on the relationship between ferroptosis and PMN characteristics, and discusses future research directions.
Collapse
Affiliation(s)
- Shenghua Zhuo
- Department of Neurosurgery, First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Liangwang Yang
- Department of Neurosurgery, First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Shenbo Chen
- Department of Neurosurgery, First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Caiying Tang
- Department of Neurosurgery, First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Weicheng Li
- Department of Neurosurgery, First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Zhenzhong Gao
- Department of Neurosurgery, First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jigao Feng
- Department of Neurosurgery, Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Kun Yang
- Department of Neurosurgery, First Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
22
|
Movahedi F, Liu J, Sun B, Cao P, Sun L, Howard C, Gu W, Xu ZP. PD-L1-Targeted Co-Delivery of Two Chemotherapeutics for Efficient Suppression of Skin Cancer Growth. Pharmaceutics 2022; 14:pharmaceutics14071488. [PMID: 35890381 PMCID: PMC9318418 DOI: 10.3390/pharmaceutics14071488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/05/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022] Open
Abstract
To overcome the severe side effects of cancer chemotherapy, it is vital to develop targeting chemotherapeutic delivery systems with the potent inhibition of tumour growth, angiogenesis, invasion and migration at low drug dosages. For this purpose, we co-loaded a conventional antiworm drug, albendazole (ABZ), and a TOPK inhibitor, OTS964, into lipid-coated calcium phosphate (LCP) nanoparticles for skin cancer treatment. OTS- and ABZ-loaded LCP (OTS-ABZ-LCP) showed a synergistic cytotoxicity against skin cancer cells through their specific cancerous pathways, without obvious toxicity to healthy cell lines. Moreover, dual-targeting the programmed death ligand-1 (PD-L1) and folate receptor overexpressed on the surface of skin cancer cells completely suppressed the skin tumour growth at low doses of ABZ and OTS. In summary, ABZ and OTS co-loaded dual-targeting LCP NPs represent a promising platform with high potentials against complicated cancers where PD-L1/FA dual targeting appears as an effective approach for efficient and selective cancer therapy.
Collapse
|
23
|
Long Q, Li L, Yang H, Lu Y, Yang H, Zhu Y, Tang Y, Liu C, Yuan J. SGLT2 inhibitor, canagliflozin, ameliorates cardiac inflammation in experimental autoimmune myocarditis. Int Immunopharmacol 2022; 110:109024. [PMID: 35841866 DOI: 10.1016/j.intimp.2022.109024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 12/19/2022]
Abstract
Myocarditis is an inflammatory cardiovascular disease which contributes to dilated cardiomyopathy (DCM) and heart failure. Canagliflozin (CANA) exerts anti-inflammatory and cardioprotective effects in heart failure besides its hypoglycemic effect. However, the role of CANA in myocarditis has not been elucidated. In this work, CANA treatment markedly alleviated cardiac inflammation and improved cardiac function in experimental autoimmune myocarditis (EAM) mice induced by α-myosin-heavy chain peptides. The expressions of NLRP3 inflammasome complexes (NLRP3, ASC, and Caspase-1) and their downstream molecules (IL-1β, IL-18) were significantly downregulated by CANA, accompanied with reduced Th17 cell infiltration in hearts. Furthermore, Bax/Bcl-2 ratio, Cleaved Caspase-3 protein level and the percentage of TUNEL-positive myocardial cells, which usually indicated apoptosis, were reduced by CANA treatment. These findings suggest CANA could be a valuable medication for myocarditis treatment.
Collapse
Affiliation(s)
- Qi Long
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Lixia Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongmin Yang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Lu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Han Yang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaoxi Zhu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaohan Tang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Changhu Liu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Yuan
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
24
|
Zheng Y, Han Y, Sun Q, Li Z. Harnessing anti-tumor and tumor-tropism functions of macrophages via nanotechnology for tumor immunotherapy. EXPLORATION (BEIJING, CHINA) 2022; 2:20210166. [PMID: 37323705 PMCID: PMC10190945 DOI: 10.1002/exp.20210166] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/10/2022] [Indexed: 06/15/2023]
Abstract
Reprogramming the immunosuppressive tumor microenvironment by modulating macrophages holds great promise in tumor immunotherapy. As a class of professional phagocytes and antigen-presenting cells in the innate immune system, macrophages can not only directly engulf and clear tumor cells, but also play roles in presenting tumor-specific antigen to initiate adaptive immunity. However, the tumor-associated macrophages (TAMs) usually display tumor-supportive M2 phenotype rather than anti-tumor M1 phenotype. They can support tumor cells to escape immunological surveillance, aggravate tumor progression, and impede tumor-specific T cell immunity. Although many TAMs-modulating agents have shown great success in therapy of multiple tumors, they face enormous challenges including poor tumor accumulation and off-target side effects. An alternative solution is the use of advanced nanostructures, which not only can deliver TAMs-modulating agents to augment therapeutic efficacy, but also can directly serve as modulators of TAMs. Another important strategy is the exploitation of macrophages and macrophage-derived components as tumor-targeting delivery vehicles. Herein, we summarize the recent advances in targeting and engineering macrophages for tumor immunotherapy, including (1) direct and indirect effects of macrophages on the augmentation of immunotherapy and (2) strategies for engineering macrophage-based drug carriers. The existing perspectives and challenges of macrophage-based tumor immunotherapies are also highlighted.
Collapse
Affiliation(s)
- Yanhui Zheng
- Center for Molecular Imaging and Nuclear MedicineState Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouChina
| | - Yaobao Han
- Center for Molecular Imaging and Nuclear MedicineState Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouChina
| | - Qiao Sun
- Center for Molecular Imaging and Nuclear MedicineState Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouChina
| | - Zhen Li
- Center for Molecular Imaging and Nuclear MedicineState Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouChina
| |
Collapse
|
25
|
Guo B, Wei J, Wang J, Sun Y, Yuan J, Zhong Z, Meng F. CD44-targeting hydrophobic phosphorylated gemcitabine prodrug nanotherapeutics augment lung cancer therapy. Acta Biomater 2022; 145:200-209. [PMID: 35430336 DOI: 10.1016/j.actbio.2022.04.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/02/2022] [Accepted: 04/08/2022] [Indexed: 12/14/2022]
Abstract
Gemcitabine (GEM) is among the most used chemotherapies for advanced malignancies including non-small cell lung cancer. The clinical efficacy of GEM is, however, downplayed by its poor bioavailability, short half-life, drug resistance, and dose-limiting toxicities (e.g. myelosuppression). In spite of many approaches exploited to improve the efficacy and safety of GEM, limited success was achieved. The short A6 peptide (sequence: Ac-KPSSPPEE-NH2) is clinically validated for specific binding to CD44 on metastatic tumors. Here, we designed a robust and CD44-specific GEM nanotherapeutics by encapsulating hydrophobic phosphorylated gemcitabine prodrug (HPG) into the core of A6 peptide-functionalized disulfide-crosslinked micelles (A6-mHPG), which exhibited reduction-triggered HPG release and specific targetability to CD44 overexpressing tumor cells. Interestingly, A6 greatly enhanced the internalization and inhibitory activity of micellar HPG (mHPG) in CD44 positive A549 cells, and increased its accumulation in A549 cancerous lung, leading to potent repression of orthotopic tumor growth, depleted toxicity, and marked survival benefits compared to free HPG and mHPG (median survival time: 59 days versus 30 and 45 days, respectively). The targeted delivery of gemcitabine prodrug with disulfide-crosslinked biodegradable micelles appears to be a highly appealing strategy to boost gemcitabine therapy for advance tumors. STATEMENT OF SIGNIFICANCE: Gemcitabine (GEM) though widely used in clinics for treating advanced tumors is associated with poor bioavailability, short half-life and dose-limiting toxicities. Development of clinically translatable GEM formulations to improve its anti-tumor efficacy and safety is of great interest. Here, we report on CD44-targeting GEM nanotherapeutics obtained by encapsulating hydrophobic phosphorylated GEM prodrug (HPG), a single isomer of NUC-1031, into A6 peptide-functionalized disulfide-crosslinked micelles (A6-mHPG). A6-mHPG demonstrates stability against degradation, enhanced internalization and inhibition toward CD44+ cells, and increased accumulation in A549 lung tumor xenografts, leading to potent repression of orthotopic tumor growth, depleted toxicity and marked survival benefits. The targeted delivery of GEM prodrug using A6-mHPG is a highly appealing strategy to GEM cancer therapy.
Collapse
Affiliation(s)
- Beibei Guo
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China; College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Jingjing Wei
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Jingyi Wang
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Yinping Sun
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Jiandong Yuan
- BrightGene Bio-Medical Technology Co., Ltd., Suzhou, 215123, China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China; College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China.
| | - Fenghua Meng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
26
|
Barone A, d’Avanzo N, Cristiano MC, Paolino D, Fresta M. Macrophage-Derived Extracellular Vesicles: A Promising Tool for Personalized Cancer Therapy. Biomedicines 2022; 10:1252. [PMID: 35740274 PMCID: PMC9220135 DOI: 10.3390/biomedicines10061252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 12/12/2022] Open
Abstract
The incidence of cancer is increasing dramatically, affecting all ages of the population and reaching an ever higher worldwide mortality rate. The lack of therapies' efficacy is due to several factors such as a delay in diagnosis, tumor regrowth after surgical resection and the occurrence of multidrug resistance (MDR). Tumor-associated immune cells and the tumor microenvironment (TME) deeply affect the tumor's progression, leading to several physicochemical changes compared to physiological conditions. In this scenario, macrophages play a crucial role, participating both in tumor suppression or progression based on the polarization of onco-suppressive M1 or pro-oncogenic M2 phenotypes. Moreover, much evidence supports the pivotal role of macrophage-derived extracellular vesicles (EVs) as mediators in TME, because of their ability to shuttle the cell-cell and organ-cell communications, by delivering nucleic acids and proteins. EVs are lipid-based nanosystems with a broad size range distribution, which reflect a similar composition of native parent cells, thus providing a natural selectivity towards target sites. In this review, we discuss the impact of macrophage-derived EVs in the cancer's fate as well as their potential implications for the development of personalized anticancer nanomedicine.
Collapse
Affiliation(s)
- Antonella Barone
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro Campus Universitario-Germaneto, Viale Europa, 88100 Catanzaro, Italy; (A.B.); (M.C.C.)
| | - Nicola d’Avanzo
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini n.31, 66100 Chieti, Italy;
| | - Maria Chiara Cristiano
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro Campus Universitario-Germaneto, Viale Europa, 88100 Catanzaro, Italy; (A.B.); (M.C.C.)
| | - Donatella Paolino
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro Campus Universitario-Germaneto, Viale Europa, 88100 Catanzaro, Italy; (A.B.); (M.C.C.)
| | - Massimo Fresta
- Department of Health Science, University “Magna Græcia” of Catanzaro Campus Universitario-Germaneto, Viale Europa, 88100 Catanzaro, Italy;
| |
Collapse
|
27
|
Ferrari D, Gessi S, Merighi S, Nigro M, Travagli A, Burns JS. Potentiating Cancer Immune Therapy via Nanomaterials and Purinergic Signaling. Front Cell Dev Biol 2022; 10:893709. [PMID: 35602602 PMCID: PMC9114640 DOI: 10.3389/fcell.2022.893709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/28/2022] [Indexed: 12/02/2022] Open
Affiliation(s)
- Davide Ferrari
- Section of Microbiology and Applied Pathology, Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Stefania Gessi
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| | - Stefania Merighi
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| | - Manuela Nigro
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| | - Alessia Travagli
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| | - Jorge S. Burns
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
28
|
Aptamer–Gemcitabine Conjugates with Enzymatically Cleavable Linker for Targeted Delivery and Intracellular Drug Release in Cancer Cells. Pharmaceuticals (Basel) 2022; 15:ph15050558. [PMID: 35631384 PMCID: PMC9147807 DOI: 10.3390/ph15050558] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022] Open
Abstract
Gemcitabine is a chemotherapeutic used clinically to treat a variety of cancers. However, because it lacks tumor cell specificity, gemcitabine may cause off-target cytotoxicity and adversely impact patients. To impart cancer cell specificity to gemcitabine and improve its therapeutic efficacy, we synthesized a unique aptamer–drug conjugate that carries a high gemcitabine payload (three molecules) via a dendrimer structure and enzymatically cleavable linkers for controlled intracellular drug release. First, linker–gemcitabinedendrimer–linker–gemcitabine products were produced, which had significantly lower cytotoxicity than an equimolar amount of free drug. Biochemical analysis revealed that lysosomal cathepsin B protease rapidly cleaved the dendritic linkers and released the conjugated gemcitabine as a free drug. Subsequently, the dendrimer–linker–gemcitabine was coupled with a cell-specific aptamer to form aptamer–gemcitabine conjugates. Functional assays confirmed that, under aptamer guidance, aptamer–gemcitabine conjugates were selectively bound to and then internalized by triple-negative breast cancer cells. Cellular therapy studies indicated that the aptamer–gemcitabine conjugates potentiated cytotoxic activity to targeted cancer cells but did not affect off-target control cells. Our study demonstrates a novel approach to aptamer-mediated targeted drug delivery that combines a high drug payload and an enzymatically controlled drug release switch to achieve higher therapeutic efficacy and fewer off-target effects relative to free-drug chemotherapy.
Collapse
|
29
|
Yi M, Zheng X, Niu M, Zhu S, Ge H, Wu K. Combination strategies with PD-1/PD-L1 blockade: current advances and future directions. Mol Cancer 2022; 21:28. [PMID: 35062949 PMCID: PMC8780712 DOI: 10.1186/s12943-021-01489-2] [Citation(s) in RCA: 545] [Impact Index Per Article: 272.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/26/2021] [Indexed: 12/12/2022] Open
Abstract
Antibodies targeting programmed cell death protein-1 (PD-1) or its ligand PD-L1 rescue T cells from exhausted status and revive immune response against cancer cells. Based on the immense success in clinical trials, ten α-PD-1 (nivolumab, pembrolizumab, cemiplimab, sintilimab, camrelizumab, toripalimab, tislelizumab, zimberelimab, prolgolimab, and dostarlimab) and three α-PD-L1 antibodies (atezolizumab, durvalumab, and avelumab) have been approved for various types of cancers. Nevertheless, the low response rate of α-PD-1/PD-L1 therapy remains to be resolved. For most cancer patients, PD-1/PD-L1 pathway is not the sole speed-limiting factor of antitumor immunity, and it is insufficient to motivate effective antitumor immune response by blocking PD-1/PD-L1 axis. It has been validated that some combination therapies, including α-PD-1/PD-L1 plus chemotherapy, radiotherapy, angiogenesis inhibitors, targeted therapy, other immune checkpoint inhibitors, agonists of the co-stimulatory molecule, stimulator of interferon genes agonists, fecal microbiota transplantation, epigenetic modulators, or metabolic modulators, have superior antitumor efficacies and higher response rates. Moreover, bifunctional or bispecific antibodies containing α-PD-1/PD-L1 moiety also elicited more potent antitumor activity. These combination strategies simultaneously boost multiple processes in cancer-immunity cycle, remove immunosuppressive brakes, and orchestrate an immunosupportive tumor microenvironment. In this review, we summarized the synergistic antitumor efficacies and mechanisms of α-PD-1/PD-L1 in combination with other therapies. Moreover, we focused on the advances of α-PD-1/PD-L1-based immunomodulatory strategies in clinical studies. Given the heterogeneity across patients and cancer types, individualized combination selection could improve the effects of α-PD-1/PD-L1-based immunomodulatory strategies and relieve treatment resistance.
Collapse
Affiliation(s)
- Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Xiaoli Zheng
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008 China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Shuangli Zhu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Hong Ge
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008 China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008 China
| |
Collapse
|
30
|
Ma T, Renz BW, Ilmer M, Koch D, Yang Y, Werner J, Bazhin AV. Myeloid-Derived Suppressor Cells in Solid Tumors. Cells 2022; 11:cells11020310. [PMID: 35053426 PMCID: PMC8774531 DOI: 10.3390/cells11020310] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/03/2022] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are one of the main suppressive cell population of the immune system. They play a pivotal role in the establishment of the tumor microenvironment (TME). In the context of cancers or other pathological conditions, MDSCs can differentiate, expand, and migrate in large quantities during circulation, inhibiting the cytotoxic functions of T cells and NK cells. This process is regulated by ROS, iNOS/NO, arginase-1, and multiple soluble cytokines. The definition of MDSCs and their phenotypes in humans are not as well represented as in other organisms such as mice, owing to the absence of the cognate molecule. However, a comprehensive understanding of the differences between different species and subsets will be beneficial for clarifying the immunosuppressive properties and potential clinical values of these cells during tumor progression. Recently, experimental evidence and clinical investigations have demonstrated that MDSCs have a close relationship with poor prognosis and drug resistance, which is considered to be a leading marker for practical applications and therapeutic methods. In this review, we summarize the remarkable position of MDSCs in solid tumors, explain their classifications in different models, and introduce new treatment approaches to target MDSCs to better understand the advancement of new approaches to cancer treatment.
Collapse
Affiliation(s)
- Tianmiao Ma
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; (T.M.); (B.W.R.); (M.I.); (D.K.); (J.W.)
| | - Bernhard W. Renz
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; (T.M.); (B.W.R.); (M.I.); (D.K.); (J.W.)
- German Cancer Consortium (DKTK), Partner Site Munich, 81377 Munich, Germany
| | - Matthias Ilmer
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; (T.M.); (B.W.R.); (M.I.); (D.K.); (J.W.)
- German Cancer Consortium (DKTK), Partner Site Munich, 81377 Munich, Germany
| | - Dominik Koch
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; (T.M.); (B.W.R.); (M.I.); (D.K.); (J.W.)
| | - Yuhui Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China;
| | - Jens Werner
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; (T.M.); (B.W.R.); (M.I.); (D.K.); (J.W.)
- German Cancer Consortium (DKTK), Partner Site Munich, 81377 Munich, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Alexandr V. Bazhin
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; (T.M.); (B.W.R.); (M.I.); (D.K.); (J.W.)
- German Cancer Consortium (DKTK), Partner Site Munich, 81377 Munich, Germany
- Correspondence:
| |
Collapse
|
31
|
Dong P, Yan Y, Fan Y, Wang H, Wu D, Yang L, Zhang J, Yin X, Lv Y, Zhang J, Hou Y, Liu F, Yu X. The Role of Myeloid-Derived Suppressor Cells in the Treatment of Pancreatic Cancer. Technol Cancer Res Treat 2022; 21:15330338221142472. [PMID: 36573015 PMCID: PMC9806441 DOI: 10.1177/15330338221142472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/05/2022] [Accepted: 10/14/2022] [Indexed: 12/29/2022] Open
Abstract
Pancreatic cancer has the highest mortality rate of all major cancers, with a 5-year survival rate of about 10%. Early warning signs and symptoms of pancreatic cancer are vague or nonexistent, and most patients are diagnosed in Stage IV, when surgery is not an option for about 80%-85% of patients. For patients with inoperable pancreatic cancer, current conventional treatment modalities such as chemotherapy and radiotherapy (RT) have suboptimal efficacy. Tumor progression is closely associated with the tumor microenvironment, which includes peripheral blood vessels, bone marrow-derived inflammatory cells, fibroblasts, immune cells, signaling molecules, and extracellular matrix. Tumor cells affect the microenvironment by releasing extracellular signaling molecules, inducing peripheral immune tolerance, and promoting tumor angiogenesis. In turn, the immune cells of the tumor affect the survival and proliferation of cancer cells. Myeloid-derived suppressor cells are key cellular components in the tumor microenvironment and exert immunosuppressive functions by producing cytokines, recognizing other immune cells, and promoting tumor growth and metastasis. Myeloid-derived suppressor cells are the main regulator of the tumor immune response and a key target for tumor treatments. Since the combination of RT and immunotherapy is the main strategy for the treatment of pancreatic cancer, it is very important to understand the immune mechanisms which lead to MDSCs generation and the failure of current therapies in order to develop new target-based therapies. This review summarizes the research advances on the role of Myeloid-derived suppressor cells in the progression of pancreatic cancer and its treatment application in recent years.
Collapse
Affiliation(s)
- Peng Dong
- Department of oncology, The First affiliated hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Shandong, China
| | - Yu Yan
- Department of oncology, The First affiliated hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Shandong, China
| | - Yujun Fan
- Medical Management Center,Health Commission of Shandong Province, Jinan, Shandong, China
| | - Hui Wang
- Department of oncology, The First affiliated hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Shandong, China
| | - Danzhu Wu
- Department of oncology, The First affiliated hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Shandong, China
- Department of Oncology, Clinical Medical College of Jining Medical University, Jining, Shandong, China
| | - Liyuan Yang
- Department of oncology, The First affiliated hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Shandong, China
| | - Junpeng Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of Oncology, The Second Hospital, Cheeloo College of Medicine Shandong University, Jinan, China
| | - Xiaoyang Yin
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yajuan Lv
- Department of oncology, The First affiliated hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Shandong, China
| | - Jiandong Zhang
- Department of oncology, The First affiliated hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Shandong, China
| | - Yuzhu Hou
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, ShaanXi, China
| | - Fengjun Liu
- Department of oncology, The First affiliated hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Shandong, China
| | - Xinshuang Yu
- Department of oncology, The First affiliated hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Shandong, China
| |
Collapse
|
32
|
Identification of SHCBP1 as a potential biomarker involving diagnosis, prognosis, and tumor immune microenvironment across multiple cancers. Comput Struct Biotechnol J 2022; 20:3106-3119. [PMID: 35782736 PMCID: PMC9233189 DOI: 10.1016/j.csbj.2022.06.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/29/2022] [Accepted: 06/15/2022] [Indexed: 11/23/2022] Open
Abstract
Shc SH2-domain binding protein 1 (SHCBP1), a protein specific binding to SH2 domain of Src homolog and collagen homolog (Shc), takes part in the regulation of various signal transduction pathways, which has been reported to be associated with tumorigenesis and progression. However, the pathological mechanisms are not completely investigated. Thus, this study aimed to comprehensively elucidate the potential functions of SHCBP1 in multiple cancer types. The comprehensive analyses for SHCBP1 in various tumors, including gene expression, diagnosis, prognosis, immune-related features, genetic alteration, and function enrichment, were conducted based on multiple databases and analysis tools. SHCBP1 was upregulated in most types of cancers. The results of qRT-PCR had confirmed that SHCBP1 mRNA was significantly upregulated in lung adenocarcinoma (LUAD) and liver hepatocellular carcinoma (LIHC) cell lines. Based on the receiver operating characteristic (ROC) and survival analysis, SHCBP1 was considered as a potential diagnostic and prognostic biomarker. Furthermore, SHCBP1 expression was linked with tumor immunity and immunosuppressive microenvironment according to the correlation analysis of SHCBP1 expression with immune cells infiltration, immune checkpoint genes, and immune-related genes (MHC genes, chemokines, and chemokines receptors). Moreover, SHCBP1 expression correlated with tumor mutational burden (TMB), microsatellite instability (MSI), and neoantigens. The feature of SHCBP1 mutational landscape in pan-cancer was identified. Finally, we focused on investigating the clinical significance and the potential biological role of SHCBP1 in LUAD. Our study comprehensively uncovered that SHCBP1 could be identified as an immune-related biomarker for cancer diagnosis and prognosis, and a potential therapeutic target for tumor immunotherapy.
Collapse
|
33
|
Motofei IG. Nobel Prize for immune checkpoint inhibitors, understanding the immunological switching between immunosuppression and autoimmunity. Expert Opin Drug Saf 2021; 21:599-612. [PMID: 34937484 DOI: 10.1080/14740338.2022.2020243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Immune checkpoint inhibitors (ICIs) are a revolutionary form of immunotherapy in cancer. However, the percentage of patients responding to therapy is relatively low, while adverse effects occur in a large number of patients. In addition, the therapeutic mechanisms of ICIs are not yet completely described. AREAS COVERED The initial view (articles published in PubMed, Scopus, Web of Science, etc.) was that ICIs increase tumor-specific immunity. Recent data (collected from the same databases) suggest that the ICIs pharmacotherapy actually extends beyond the topic of immune reactivity, including additional immune pathways, such as disrupting immunosuppression and increasing tumor-specific autoimmunity. Unfortunately, there is no clear delimitation between these specific autoimmune reactions that are therapeutically beneficial, and nonspecific autoimmune reactions/toxicity that can be extremely severe side effects. EXPERT OPINION Immune checkpoint mechanisms perform a non-selective immune regulation, maintaining a dynamic balance between immunosuppression and autoimmunity. By blocking these mechanisms, ICIs actually perform an immunological reset, decreasing immunosuppression and increasing tumor-specific immunity and predisposition to autoimmunity. The predisposition to autoimmunity induces both side effects and beneficial autoimmunity. Consequently, further studies are necessary to maximize the beneficial tumor-specific autoimmunity, while reducing the counterproductive effect of associated autoimmune toxicity.
Collapse
Affiliation(s)
- Ion G Motofei
- Department of Surgery/ Oncology, Carol Davila University, Bucharest, Romania.,Department of Surgery/ Oncology, St. Pantelimon Hospital, Bucharest, Romania
| |
Collapse
|
34
|
Nair RS, Billa N, Mooi LY, Morris AP. Characterization and Ex vivo Evaluation of Curcumin Nanoethosomes for Melanoma treatment. Pharm Dev Technol 2021; 27:72-82. [PMID: 34957920 DOI: 10.1080/10837450.2021.2023568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This study aimed at developing curcumin nanoethosomes (Cur-Ets) with superior skin permeation intended for melanoma treatment. Although curcumin is active against many types of skin cancers, a suitable topical formulation is still lacking due to its hydrophobicity and poor skin permeation. The formulation was characterized using Scanning Transmission Electron Microscopy (STEM), atomic force microscopy (AFM), ATR-FTIR, DSC, and XRD. In vitro skin permeation was carried out using human skin, and the cytotoxicity of the formulation was evaluated on human melanoma cells (SK-MEL28). The vesicle size and zeta potential of the Cur-Ets were determined as 67 ± 1.6 nm and - 87.3 ± 3.3 mV, respectively. STEM and AFM analysis further support the size and morphology of the formulation. Curcumin's compatibility with formulation additives was confirmed by ATR-FTIR analysis. In addition, DSC and XRD analyses showed successful drug encapsulation in nanoethosomes. The drug encapsulation efficiency was determined as 87 ± 0.9%. The skin permeation of curcumin from Cur-Ets showed a superior flux (0.14 ± 0.03 µg cm-2 h-1) compared to the control (p < 0.05). Cytotoxicity of the formulation demonstrated a time-dependent and concentration-dependent antiproliferative activity against melanoma cells. The developed Cur-Ets is suggested as a promising topical formulation for melanoma treatment.
Collapse
Affiliation(s)
- Rajesh Sreedharan Nair
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.,School of Pharmacy, The University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Nashiru Billa
- College of Pharmacy, QU Health, Qatar University, Doha Qatar.,Biomedical and Pharmaceutical Research Unit (BPRU), QU Health, Qatar University, Doha, Qatar
| | - Lim Yang Mooi
- Centre for Cancer Research, Faculty of Medicine & Health Sciences, Universiti Tunku Abdul Rahman, LOT PT 21144, Jalan Sungai Long Bandar Sungai Long, Cheras, 43000 Kajang, Selangor
| | - Andrew P Morris
- School of Pharmacy, The University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.,Swansea University Medical School, Swansea University, Singleton Park, Swansea, UK
| |
Collapse
|
35
|
Matias M, Pinho JO, Penetra MJ, Campos G, Reis CP, Gaspar MM. The Challenging Melanoma Landscape: From Early Drug Discovery to Clinical Approval. Cells 2021; 10:3088. [PMID: 34831311 PMCID: PMC8621991 DOI: 10.3390/cells10113088] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 02/06/2023] Open
Abstract
Melanoma is recognized as the most dangerous type of skin cancer, with high mortality and resistance to currently used treatments. To overcome the limitations of the available therapeutic options, the discovery and development of new, more effective, and safer therapies is required. In this review, the different research steps involved in the process of antimelanoma drug evaluation and selection are explored, including information regarding in silico, in vitro, and in vivo experiments, as well as clinical trial phases. Details are given about the most used cell lines and assays to perform both two- and three-dimensional in vitro screening of drug candidates towards melanoma. For in vivo studies, murine models are, undoubtedly, the most widely used for assessing the therapeutic potential of new compounds and to study the underlying mechanisms of action. Here, the main melanoma murine models are described as well as other animal species. A section is dedicated to ongoing clinical studies, demonstrating the wide interest and successful efforts devoted to melanoma therapy, in particular at advanced stages of the disease, and a final section includes some considerations regarding approval for marketing by regulatory agencies. Overall, considerable commitment is being directed to the continuous development of optimized experimental models, important for the understanding of melanoma biology and for the evaluation and validation of novel therapeutic strategies.
Collapse
Affiliation(s)
- Mariana Matias
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Jacinta O. Pinho
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Maria João Penetra
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Gonçalo Campos
- CICS–UBI–Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal;
| | - Catarina Pinto Reis
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Maria Manuela Gaspar
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| |
Collapse
|
36
|
Zhou B, Lawrence T, Liang Y. The Role of Plasmacytoid Dendritic Cells in Cancers. Front Immunol 2021; 12:749190. [PMID: 34737750 PMCID: PMC8560733 DOI: 10.3389/fimmu.2021.749190] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/05/2021] [Indexed: 11/13/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are a special subtype of dendritic cells with the morphology of plasma cells. pDCs produce massive amounts of type I interferon (IFN-I), which was originally found to play an extremely pivotal role in antiviral immunity. Interestingly, accumulated evidence indicates that pDCs can also play an important role in tumorigenesis. In the human body, most of the IFN-α is secreted by activated pDCs mediated by toll-like receptor (TLR) stimulation. In many types of cancer, tumors are infiltrated by a large number of pDCs, however, these pDCs exhibit no response to TLR stimulation, and reduced or absent IFN-α production. In addition, tumor-infiltrating pDCs promote recruitment of regulatory T cells (Tregs) into the tumor microenvironment, leading to immunosuppression and promoting tumor growth. In this review, we discuss recent insights into the development of pDCs and their roles in a variety of malignancies, with special emphasis on the basic mechanisms.
Collapse
Affiliation(s)
- Binhui Zhou
- Laboratory of Mouse Genetics, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Henan, China.,Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Henan, China
| | - Toby Lawrence
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Henan, China.,Centre for Inflammation Biology and Cancer Immunology, King's College London, London, United Kingdom
| | - Yinming Liang
- Laboratory of Mouse Genetics, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Henan, China.,Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Henan, China.,Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Henan, China
| |
Collapse
|
37
|
Therapeutic Values of Myeloid-Derived Suppressor Cells in Hepatocellular Carcinoma: Facts and Hopes. Cancers (Basel) 2021; 13:cancers13205127. [PMID: 34680276 PMCID: PMC8534227 DOI: 10.3390/cancers13205127] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Myeloid-derived suppressor cells restrict the effectiveness of immune-checkpoint inhibitors for a subset of patients mainly through thwarting T cell infiltration into tumor sites. Treatments targeting MDSCs have shown potent inhibitory effects on multiple tumors, including hepatocellular carcinoma. In this review, we summarize the pathological mechanisms of MDSCs and their clinical significance as prognostic and predictive biomarkers for HCC patients, and we provide the latest progress of MDSCs-targeting treatment in HCC. Abstract One of the major challenges in hepatocellular carcinoma (HCC) treatment is drug resistance and low responsiveness to systemic therapies, partly due to insufficient T cell infiltration. Myeloid-derived suppressor cells (MDSCs) are immature marrow-derived cell populations with heterogeneity and immunosuppression characteristics and are essential components of the suppressive tumor immune microenvironment (TIME). Increasing evidence has demonstrated that MDSCs are indispensable contributing factors to HCC development in a T cell-dependent or non-dependent manner. Clinically, the frequency of MDSCs is firmly linked to HCC clinical outcomes and the effectiveness of immune checkpoint inhibitors (ICIs) and tyrosine kinase inhibitors (TKIs). Furthermore, MDSCs can also be used as prognostic and predictive biomarkers for patients with HCC. Therefore, treatments reprograming MDSCs may offer potential therapeutic opportunities in HCC. Here, we recapitulated the dynamic relevance of MDSCs in the initiation and development of HCC and paid special attention to the effect of MDSCs on T cells infiltration in HCC. Finally, we pointed out the potential therapeutic effect of targeting MDSCs alone or in combination, hoping to provide new insights into HCC treatment.
Collapse
|
38
|
Hofer F, Di Sario G, Musiu C, Sartoris S, De Sanctis F, Ugel S. A Complex Metabolic Network Confers Immunosuppressive Functions to Myeloid-Derived Suppressor Cells (MDSCs) within the Tumour Microenvironment. Cells 2021; 10:cells10102700. [PMID: 34685679 PMCID: PMC8534848 DOI: 10.3390/cells10102700] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 12/19/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) constitute a plastic and heterogeneous cell population among immune cells within the tumour microenvironment (TME) that support cancer progression and resistance to therapy. During tumour progression, cancer cells modify their metabolism to sustain an increased energy demand to cope with uncontrolled cell proliferation and differentiation. This metabolic reprogramming of cancer establishes competition for nutrients between tumour cells and leukocytes and most importantly, among tumour-infiltrating immune cells. Thus, MDSCs that have emerged as one of the most decisive immune regulators of TME exhibit an increase in glycolysis and fatty acid metabolism and also an upregulation of enzymes that catabolise essential metabolites. This complex metabolic network is not only crucial for MDSC survival and accumulation in the TME but also for enhancing immunosuppressive functions toward immune effectors. In this review, we discuss recent progress in the field of MDSC-associated metabolic pathways that could facilitate therapeutic targeting of these cells during cancer progression.
Collapse
Affiliation(s)
| | | | | | | | | | - Stefano Ugel
- Correspondence: ; Tel.: +39-045-8126451; Fax: +39-045-8126455
| |
Collapse
|
39
|
Qiu Y, Chen T, Hu R, Zhu R, Li C, Ruan Y, Xie X, Li Y. Next frontier in tumor immunotherapy: macrophage-mediated immune evasion. Biomark Res 2021; 9:72. [PMID: 34625124 PMCID: PMC8501632 DOI: 10.1186/s40364-021-00327-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/15/2021] [Indexed: 12/16/2022] Open
Abstract
Tumor-associated macrophages (TAMs), at the core of immunosuppressive cells and cytokines networks, play a crucial role in tumor immune evasion. Increasing evidences suggest that potential mechanisms of macrophage-mediated tumor immune escape imply interpretation and breakthrough to bottleneck of current tumor immunotherapy. Therefore, it is pivotal to understand the interactions between macrophages and other immune cells and factors for enhancing existing anti-cancer treatments. In this review, we focus on the specific signaling pathways through which TAMs involve in tumor antigen recognition disorders, recruitment and function of immunosuppressive cells, secretion of immunosuppressive cytokines, crosstalk with immune checkpoints and formation of immune privileged sites. Furthermore, we summarize correlative pre-clinical and clinical studies to provide new ideas for immunotherapy. From our perspective, macrophage-targeted therapy is expected to be the next frontier of cancer immunotherapy.
Collapse
Affiliation(s)
- Yingqi Qiu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253 GongyeDadaoZhong, Guangzhou, Guangdong, 510280, P. R. China
| | - Tong Chen
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253 GongyeDadaoZhong, Guangzhou, Guangdong, 510280, P. R. China.,The Second School of Clinical Medicine, Southern Medical University, No. 1838 GuangzhongDadaoBei, Guangzhou, Guangdong, 510515, P. R. China
| | - Rong Hu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253 GongyeDadaoZhong, Guangzhou, Guangdong, 510280, P. R. China
| | - Ruiyi Zhu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253 GongyeDadaoZhong, Guangzhou, Guangdong, 510280, P. R. China.,The Second School of Clinical Medicine, Southern Medical University, No. 1838 GuangzhongDadaoBei, Guangzhou, Guangdong, 510515, P. R. China
| | - Chujun Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253 GongyeDadaoZhong, Guangzhou, Guangdong, 510280, P. R. China.,The Second School of Clinical Medicine, Southern Medical University, No. 1838 GuangzhongDadaoBei, Guangzhou, Guangdong, 510515, P. R. China
| | - Yingchen Ruan
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253 GongyeDadaoZhong, Guangzhou, Guangdong, 510280, P. R. China.,The Second School of Clinical Medicine, Southern Medical University, No. 1838 GuangzhongDadaoBei, Guangzhou, Guangdong, 510515, P. R. China
| | - Xiaoling Xie
- Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, 528308, China.
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253 GongyeDadaoZhong, Guangzhou, Guangdong, 510280, P. R. China. .,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, P. R. China.
| |
Collapse
|
40
|
He SW, Zhang Y, Chen L, Luo WJ, Li XM, Chen Y, Huang SY, He QM, Yang XJ, Li YQ, Liu N, Zhao Y, Ma J. Gemcitabine synergizes with cisplatin to inhibit nasopharyngeal carcinoma cell proliferation and tumor growth. FASEB J 2021; 35:e21885. [PMID: 34478585 DOI: 10.1096/fj.202100076rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 07/17/2021] [Accepted: 08/12/2021] [Indexed: 12/24/2022]
Abstract
In a recently published phase III clinical trial, gemcitabine (GEM) plus cisplatin (DDP) induction chemotherapy significantly improved recurrence-free survival and overall survival and became the standard of care among patients with locoregionally advanced NPC. However, the molecular mechanisms of GEM synergized with DPP in NPC cells remain elucidated. These findings prompt us to explore the effect of the combination between GEM and DDP in NPC cell lines through proliferative phenotype, immunofluorescence, flow cytometry, and western blotting assays. In vitro studies reveal that GEM or DPP treated alone induces cell cycle arrest, promotes cell apoptosis, forces DNA damage response, and GEM synergism with DDP significantly increases the above effects in NPC cells. In vivo studies indicate that GEM or DPP treated alone significantly inhibits the tumor growth and prolongs the survival time of mice injected with SUNE1 cells compared to the control group. Moreover, the mice treated with GEM combined with DDP have smaller tumors and survive longer than those in GEM or DPP treated alone group. In addition, P-gp may be the key molecule that regulates the synergistic effect of gemcitabine and cisplatin. GEM synergizes with DPP to inhibit NPC cell proliferation and tumor growth by inducing cell cycle arrest, cell apoptosis, and DNA damage response, which reveals the mechanisms of combined GEM and DDP induction chemotherapy in improving locoregionally advanced NPC.
Collapse
Affiliation(s)
- Shi-Wei He
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Yuan Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Lei Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Wei-Jie Luo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Xiao-Min Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Yang Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Sheng-Yan Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Qing-Mei He
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Xiao-Jing Yang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Ying-Qin Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Na Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Yin Zhao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Jun Ma
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| |
Collapse
|
41
|
Li T, Liu T, Zhu W, Xie S, Zhao Z, Feng B, Guo H, Yang R. Targeting MDSC for Immune-Checkpoint Blockade in Cancer Immunotherapy: Current Progress and New Prospects. CLINICAL MEDICINE INSIGHTS-ONCOLOGY 2021; 15:11795549211035540. [PMID: 34408525 PMCID: PMC8365012 DOI: 10.1177/11795549211035540] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 07/07/2021] [Indexed: 01/06/2023]
Abstract
Immune-checkpoint blockade (ICB) demonstrated inspiring effect and great promise in anti-cancer therapy. However, many obstacles, such as drug resistance and difficulty in patient selection, limited the efficacy of ICB therapy and awaited to be overcome. By timely identification and intervention of the key immune-suppressive promotors in the tumor microenvironment (TME), we may better understand the mechanisms of cancer immune-escape and use novel strategies to enhance the therapeutic effect of ICB. Myeloid-derived suppressor cell (MDSC) is recognized as a major immune suppressor in the TME. In this review, we summarized the roles MDSC played in the cancer context, focusing on its negative biologic functions in ICB therapy, discussed the strategies targeted on MDSC to optimize the diagnosis and therapy process of ICB and improve the efficacy of ICB therapy against malignancies.
Collapse
Affiliation(s)
- Tianhang Li
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, 210008, People's Republic of China
| | - Tianyao Liu
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, 210008, People's Republic of China
| | - Wenjie Zhu
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, 210008, People's Republic of China
| | - Shangxun Xie
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, 210008, People's Republic of China
| | - Zihan Zhao
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, 210008, People's Republic of China
| | - Baofu Feng
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, 210008, People's Republic of China
| | - Hongqian Guo
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, 210008, People's Republic of China
| | - Rong Yang
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, 210008, People's Republic of China
| |
Collapse
|
42
|
Lin X, Fang Y, Jin X, Zhang M, Shi K. Modulating Repolarization of Tumor-Associated Macrophages with Targeted Therapeutic Nanoparticles as a Potential Strategy for Cancer Therapy. ACS APPLIED BIO MATERIALS 2021; 4:5871-5896. [PMID: 35006894 DOI: 10.1021/acsabm.1c00461] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There are always some components in the tumor microenvironment (TME), such as tumor-associated macrophages (TAMs), that help tumor cells escape the body's immune surveillance. Therefore, this situation can lead to tumor growth, progression, and metastasis, resulting in low response rates for cancer therapy. Macrophages play an important role with strong plasticity and functional diversity. Facing different microenvironmental stimulations, macrophages undergo a dynamic change in phenotype and function into two major macrophage subpopulations, namely classical activation/inflammation (M1) and alternative activation/regeneration (M2) type. Through various signaling pathways, macrophages polarize into complex groups, which can perform different immune functions. In this review, we emphasize the use of nanopreparations for macrophage related immunotherapy based on the pathological knowledge of TAMs phenotype. These macrophages targeted nanoparticles re-edit and re-educate macrophages by attenuating M2 macrophages and reducing aggregation to the TME, thereby relieving or alleviating immunosuppression. Among them, we describe in detail the cellular mechanisms and regulators of several major signaling pathways involved in the plasticity and polarization functions of macrophages. The advantages and challenges of those nanotherapeutics for these pathways have been elucidated, providing the basis and insights for the diagnosis and treatment strategies of various diseases centered on macrophages.
Collapse
Affiliation(s)
- Xiaojie Lin
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 117004, P. R. China
| | - Yan Fang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 117004, P. R. China
| | - Xuechao Jin
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 117004, P. R. China
| | - Mingming Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 117004, P. R. China
| | - Kai Shi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 300350 Tianjin, China
| |
Collapse
|
43
|
Sequential Release of Paclitaxel and Imatinib from Core-Shell Microparticles Prepared by Coaxial Electrospray for Vaginal Therapy of Cervical Cancer. Int J Mol Sci 2021; 22:ijms22168760. [PMID: 34445466 PMCID: PMC8395827 DOI: 10.3390/ijms22168760] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/01/2021] [Accepted: 08/09/2021] [Indexed: 12/31/2022] Open
Abstract
To optimize the anti-tumor efficacy of combination therapy with paclitaxel (PTX) and imatinib (IMN), we used coaxial electrospray to prepare sequential-release core–shell microparticles composed of a PTX-loaded sodium hyaluronate outer layer and an IMN-loaded PLGA core. The morphology, size distribution, drug loading, differential scanning calorimetry (DSC), Fourier transform infrared spectra (FTIR), in vitro release, PLGA degradation, cellular growth inhibition, in vivo vaginal retention, anti-tumor efficacy, and local irritation in a murine orthotopic cervicovaginal tumor model after vaginal administration were characterized. The results show that such core–shell microparticles were of spherical appearance, with an average size of 14.65 μm and a significant drug-loading ratio (2.36% for PTX, 19.5% for IMN, w/w), which might benefit cytotoxicity against cervical-cancer-related TC-1 cells. The DSC curves indicate changes in the phase state of PTX and IMN after encapsulation in microparticles. The FTIR spectra show that drug and excipients are compatible with each other. The release profiles show sequential characteristics in that PTX was almost completely released in 1 h and IMN was continuously released for 7 days. These core–shell microparticles showed synergistic inhibition in the growth of TC-1 cells. Such microparticles exhibited prolonged intravaginal residence, a >90% tumor inhibitory rate, and minimal mucosal irritation after intravaginal administration. All results suggest that such microparticles potentially provide a non-invasive local chemotherapeutic delivery system for the treatment of cervical cancer by the sequential release of PTX and IMN.
Collapse
|
44
|
Stovgaard ES, Asleh K, Riaz N, Leung S, Gao D, Nielsen LB, Lænkholm AV, Balslev E, Jensen MB, Nielsen D, O Nielsen T. The immune microenvironment and relation to outcome in patients with advanced breast cancer treated with docetaxel with or without gemcitabine. Oncoimmunology 2021; 10:1924492. [PMID: 34026336 PMCID: PMC8118411 DOI: 10.1080/2162402x.2021.1924492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Preclinical studies suggest that some effects of conventional chemotherapy, and in particular, gemcitabine, are mediated through enhanced antitumor immune responses. The objective of this study was to use material from a randomized clinical trial to evaluate whether patients with preexisting immune infiltrates responded better to treatment with gemcitabine + docetaxel (GD) compared to docetaxel alone. Formalin fixed, paraffin-embedded breast cancer tissues from SBG0102 phase 3 trial patients randomly assigned to treatment with GD or docetaxel were used. Immunohistochemical staining for CD8, FOXP3, LAG3, PD-1, PD-L1 and CD163 was performed. Tumor infiltrating lymphocytes (TILs) and tumor associated macrophages were evaluated. Prespecified statistical analyses were performed in a formal prospective-retrospective design. Time to progression was primary endpoint and overall survival secondary endpoint. Correlations between biomarker status and endpoints were evaluated using the Kaplan–Meier method and Cox proportional hazards models. Biomarker data was obtained for 237 patients. There was no difference in treatment effect according to biomarker status for the whole cohort. In planned subgroup analysis by PAM50 subtype, in non-luminal (basal-like and HER2E) breast cancers FOXP3 was a significant predictor of treatment effect with GD compared to docetaxel, with a HR of 0.22 (0.09–0.52) for tumors with low FOXP3 compared to HR 0.92 (0.47–1.80) for high FOXP3 TILs (Pinteraction = 0.01). Immune biomarkers were not predictive of added benefit of gemcitabine in a cohort of mixed breast cancer subtypes. However, in non-luminal breast cancers, patients with low FOXP3+ TILs may have significant benefit from added gemcitabine.
Collapse
Affiliation(s)
- Elisabeth S Stovgaard
- Department of Pathology, Herlev and Gentofte, University of Copenhagen, Herlev, Denmark
| | - Karama Asleh
- Genetic Pathology Evaluation Centre, University of British Columbia, Vancouver, BC, Canada
| | - Nazia Riaz
- Genetic Pathology Evaluation Centre, University of British Columbia, Vancouver, BC, Canada.,Centre for Regenerative Medicine and Stem Cell Research, Aga Khan University, Karachi, Pakistan
| | - Samuel Leung
- Genetic Pathology Evaluation Centre, University of British Columbia, Vancouver, BC, Canada
| | - Dongxia Gao
- Genetic Pathology Evaluation Centre, University of British Columbia, Vancouver, BC, Canada
| | - Lise B Nielsen
- Danish Breast Cancer Cooperative Group, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Anne-Vibeke Lænkholm
- Department of Surgical Pathology, Zealand University Hospital, Roskilde, Denmark
| | - Eva Balslev
- Department of Pathology, Herlev and Gentofte, University of Copenhagen, Herlev, Denmark
| | - Maj-Britt Jensen
- Danish Breast Cancer Cooperative Group, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Dorte Nielsen
- Department of Oncology, Herlev and Gentofte, University of Copenhagen, Herlev, Denmark
| | - Torsten O Nielsen
- Genetic Pathology Evaluation Centre, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, Vancouver General Hospital, Vancouver, BC, Canada
| |
Collapse
|
45
|
Comments on the ambiguity of selected surface markers, signaling pathways and omics profiles hampering the identification of myeloid-derived suppressor cells. Cell Immunol 2021; 364:104347. [PMID: 33838447 DOI: 10.1016/j.cellimm.2021.104347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022]
Abstract
Myeloid-derived suppressor cells (MDSC) are important immune-regulatory cells but their identification remains difficult. Here, we provide a critical view on selected surface markers, transcriptional and translational pathways commonly used to identify MDSC by specific, their developmental origin and new possibilities by transcriptional or proteomic profiling. Discrimination of MDSC from their non-suppressive counterparts is a prerequisite for the development of successful therapies. Understanding the switch mechanisms that direct granulocytic and monocytic development into a pro-inflammatory or anti-inflammatory direction will be crucial for therapeutic strategies. Manipulation of these myeloid checkpoints are exploited by tumors and pathogens, such as M. tuberculosis (Mtb), HIV or SARS-CoV-2, that induce MDSC for immune evasion. Thus, specific markers for MDSC identification may reveal also novel molecular candidates for therapeutic intervention at the level of MDSC.
Collapse
|
46
|
Wang Z, Gong X, Li J, Wang H, Xu X, Li Y, Sha X, Zhang Z. Oxygen-Delivering Polyfluorocarbon Nanovehicles Improve Tumor Oxygenation and Potentiate Photodynamic-Mediated Antitumor Immunity. ACS NANO 2021; 15:5405-5419. [PMID: 33625842 DOI: 10.1021/acsnano.1c00033] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hypoxia is a critical cause of tumor immunosuppression, and it significantly limits the efficacy of many anticancer modalities. Herein, we report an amphiphilic F11-derivative-based oxygen-delivering polyfluorocarbon nanovehicle loading photodynamic DiIC18(5) and reactive oxygen species (ROS)-sensitive prodrug of chemo-immunomodulatory gemcitabine (PF11DG), aimed at relieving tumor hypoxia and boosting antitumor immunity for cancer therapy. We optimized F11-based polyfluorocarbon nanovehicles with a 10-fold enhancement of tumor oxygenation. PF11DG exhibited intriguing capabilities, such as oxygen-dissolving, ROS production, and responsive drug release. In tumors, PF11DG exhibited flexible intratumoral permeation and boosted robust antitumor immune responses upon laser irradiation. Notably, the treatment of PF11DG plus laser irradiation (PF11DG+L) significantly retarded the tumor growth with an 82.96% inhibition in the 4T1 breast cancer model and a 93.6% inhibition in the PANC02 pancreatic cancer model with better therapeutic benefits than non-oxygen-delivering nanovehicles. Therefore, this study presents an encouraging polyfluorocarbon nanovehicle with deep tumor-penetrating and hypoxia-relieving capacity to boost antitumor immunity for cancer treatment.
Collapse
Affiliation(s)
- Zhiwan Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang Gong
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxuan Xu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianyi Sha
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Zhiwen Zhang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong 264000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
47
|
Chen Q, Sun T, Jiang C. Recent Advancements in Nanomedicine for 'Cold' Tumor Immunotherapy. NANO-MICRO LETTERS 2021; 13:92. [PMID: 34138315 PMCID: PMC8006526 DOI: 10.1007/s40820-021-00622-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/31/2021] [Indexed: 05/02/2023]
Abstract
Although current anticancer immunotherapies using immune checkpoint inhibitors (ICIs) have been reported with a high clinical success rate, numerous patients still bear 'cold' tumors with insufficient T cell infiltration and low immunogenicity, responding poorly to ICI therapy. Considering the advancements in precision medicine, in-depth mechanism studies on the tumor immune microenvironment (TIME) among cold tumors are required to improve the treatment for these patients. Nanomedicine has emerged as a promising drug delivery system in anticancer immunotherapy, activates immune function, modulates the TIME, and has been applied in combination with other anticancer therapeutic strategies. This review initially summarizes the mechanisms underlying immunosuppressive TIME in cold tumors and addresses the recent advancements in nanotechnology for cold TIME reversal-based therapies, as well as a brief talk about the feasibility of clinical translation.
Collapse
Affiliation(s)
- Qinjun Chen
- Key Laboratory of Smart Drug Delivery (Ministry of Education), State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Pharmaceutics, and School of Pharmacy, Research Center on Aging and Medicine, Fudan University, Shanghai, 201203, People's Republic of China
| | - Tao Sun
- Key Laboratory of Smart Drug Delivery (Ministry of Education), State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Pharmaceutics, and School of Pharmacy, Research Center on Aging and Medicine, Fudan University, Shanghai, 201203, People's Republic of China
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery (Ministry of Education), State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Pharmaceutics, and School of Pharmacy, Research Center on Aging and Medicine, Fudan University, Shanghai, 201203, People's Republic of China.
| |
Collapse
|
48
|
Habib S, Singh M. Recent Advances in Lipid-Based Nanosystems for Gemcitabine and Gemcitabine-Combination Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:597. [PMID: 33673636 PMCID: PMC7997169 DOI: 10.3390/nano11030597] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/18/2021] [Accepted: 02/25/2021] [Indexed: 12/25/2022]
Abstract
The anti-metabolite drug gemcitabine is widely used for the treatment of a variety of cancers. At present, gemcitabine is administered as a hydrochloride salt that is delivered by slow intravenous injection in cycles of three or four weeks. Although regarded as a 'front-line' chemotherapeutic agent, its efficacy is hampered by poor target cell specificity, sub-optimal cellular uptake, rapid clearance from circulation, the development of chemoresistance, and undesirable side-effects. The use of organic, inorganic, and metal-based nanoparticles as delivery agents presents an opportunity to overcome these limitations and safely harness optimal drug efficacy and enhance their therapeutic indices. Among the many and varied nano delivery agents explored, the greatest body of knowledge has been generated in the field of lipid-mediated delivery. We review here the liposomes, niosomes, solid lipid nanoparticles, nanostructured lipid carriers, exosomes, lipid-polymer hybrids, and other novel lipid-based agents that have been developed within the past six years for the delivery of gemcitabine and its co-drugs.
Collapse
Affiliation(s)
| | - Moganavelli Singh
- Nano-Gene and Drug Delivery Group, Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa;
| |
Collapse
|
49
|
Heyder RS, Sunbul FS, Almuqbil RM, Fines CB, da Rocha SRP. Poly(anhydride-ester) gemcitabine: Synthesis and particle engineering of a high payload hydrolysable polymeric drug for cancer therapy. J Control Release 2021; 330:1178-1190. [PMID: 33212118 PMCID: PMC10939058 DOI: 10.1016/j.jconrel.2020.11.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/24/2020] [Accepted: 11/12/2020] [Indexed: 12/25/2022]
Abstract
Gemcitabine (GMT) is a nucleoside analog used in the treatment of a variety of solid tumors. GMT was chemically modified with a hydrolysable linker, and subsequently incorporated into a poly(anhydride-ester) backbone via melt-polymerization, with the active antimetabolite GMT, thus, becoming the repeat unit that makes up this new material, a biodegradable polymer. Characterization of the structure of polymeric GMT (polyGMT) revealed the incorporation of an average 26 molecules of GMT per polymer chain, which corresponds to a drug loading of 58%w/w. The glass transition temperature of the formed polyGMT was determined to be 123 °C. PolyGMT was engineered into nanoparticles (NPs) using a dialysis-based method, with a resulting geometric diameter of 206 ± 38 nm. The particles are easily dispersible and stable in aqueous-based media, with a hydrodynamic diameter of 229 ± 28 nm. The prepared hydrolysable polyGMT NPs demonstrate ultra-long release profile due to the hydrophobic nature of the linker, and as per characteristic erosion behavior of polymers with anhydride-ester bonds. Accelerated in vitro release studies demonstrate the recovery of free GMT upon hydrolysis, with biological activity as assessed by cytotoxicity assays performed in adenocarcinoma human alveolar basal epithelial (A549) and highly metastatic murine osteosarcoma (K7M2) cells lines. The characteristics of polyGMT, including its thermal properties and built in hydrolysable structure, are thus conducive for use in the preparation of drug delivery systems. Engineered structures prepared with polyGMT can maintain their morphology at ambient and physiologically relevant conditions, and free GMT is recovered as the anhydride and ester bonds are hydrolyzed. This work is innovative as for the first time we demonstrate the ability to polymerize GMT in a hydrolysable polymer structure, and engineer NPs of this polymeric chemotherapy. The synthetic strategy allows for tuning of the polymer hydrophobicity and thus potentialize its behavior, including degradation profile, by varying the linker chemistry. Such controlled release hydrolysable polymers with very high drug loading and controlled erosion profiles are relevant as they may offer new opportunities in drug delivery applications for the treatment of malignant neoplasms.
Collapse
Affiliation(s)
- Rodrigo S Heyder
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences - School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Fatemah S Sunbul
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences - School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Rashed M Almuqbil
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences - School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Cory B Fines
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences - School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Sandro R P da Rocha
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences - School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23284, United States.
| |
Collapse
|
50
|
Dorhoi A, Kotzé LA, Berzofsky JA, Sui Y, Gabrilovich DI, Garg A, Hafner R, Khader SA, Schaible UE, Kaufmann SH, Walzl G, Lutz MB, Mahon RN, Ostrand-Rosenberg S, Bishai W, du Plessis N. Therapies for tuberculosis and AIDS: myeloid-derived suppressor cells in focus. J Clin Invest 2021; 130:2789-2799. [PMID: 32420917 DOI: 10.1172/jci136288] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The critical role of suppressive myeloid cells in immune regulation has come to the forefront in cancer research, with myeloid-derived suppressor cells (MDSCs) as a main oncology immunotherapeutic target. Recent improvement and standardization of criteria classifying tumor-induced MDSCs have led to unified descriptions and also promoted MDSC research in tuberculosis (TB) and AIDS. Despite convincing evidence on the induction of MDSCs by pathogen-derived molecules and inflammatory mediators in TB and AIDS, very little attention has been given to their therapeutic modulation or roles in vaccination in these diseases. Clinical manifestations in TB are consequences of complex host-pathogen interactions and are substantially affected by HIV infection. Here we summarize the current understanding and knowledge gaps regarding the role of MDSCs in HIV and Mycobacterium tuberculosis (co)infections. We discuss key scientific priorities to enable application of this knowledge to the development of novel strategies to improve vaccine efficacy and/or implementation of enhanced treatment approaches. Building on recent findings and potential for cross-fertilization between oncology and infection biology, we highlight current challenges and untapped opportunities for translating new advances in MDSC research into clinical applications for TB and AIDS.
Collapse
Affiliation(s)
- Anca Dorhoi
- Institute of Immunology, Friedrich-Loeffler-Institute, Greifswald-Insel Riems, Germany.,Faculty of Mathematics and Natural Sciences, University of Greifswald, Greifswald, Germany
| | - Leigh A Kotzé
- Centre for Tuberculosis Research, South African Medical Research Council, Cape Town, South Africa.,DST-NRF Centre of Excellence for Biomedical Tuberculosis Research (CBTBR) and.,Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Jay A Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Yongjun Sui
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | | | - Ankita Garg
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - Richard Hafner
- Division of AIDS, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Shabaana A Khader
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Ulrich E Schaible
- Cellular Microbiology, Priority Program Infections.,Thematic Translation Unit Tuberculosis, German Center for Infection Research, and.,Leibniz Research Alliance INFECTIONS'21, Research Center Borstel, Borstel, Germany
| | - Stefan He Kaufmann
- Max Planck Institute for Infection Biology, Berlin, Germany.,Hagler Institute for Advanced Study, Texas A&M University, College Station, Texas, USA
| | - Gerhard Walzl
- Centre for Tuberculosis Research, South African Medical Research Council, Cape Town, South Africa.,DST-NRF Centre of Excellence for Biomedical Tuberculosis Research (CBTBR) and.,Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Manfred B Lutz
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Robert N Mahon
- Division of AIDS, Columbus Technologies & Services Inc., Contractor to National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Suzanne Ostrand-Rosenberg
- Department of Pathology and Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - William Bishai
- Center for Tuberculosis Research, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Nelita du Plessis
- Centre for Tuberculosis Research, South African Medical Research Council, Cape Town, South Africa.,DST-NRF Centre of Excellence for Biomedical Tuberculosis Research (CBTBR) and.,Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|