1
|
Zhang Y, Sun N, Hu F, Zhang W, Gao Q, Bai Q, Zheng C, Chen Q, Han Y, Lu T. Combined release of LL37 peptide and zinc ion from a mussel-inspired coating on porous titanium for infected bone defect repairing. Colloids Surf B Biointerfaces 2024; 244:114181. [PMID: 39216443 DOI: 10.1016/j.colsurfb.2024.114181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/07/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Implant-associated infections impose great burden on patient health and public healthcare. Antimicrobial peptides and metal ions are generally incorporated onto implant surface to deter bacteria colonization. However, it is still challenging to efficiently prevent postoperative infections at non-cytotoxic dosages. Herein, a scaffold based on porous titanium coated with a mussel-inspired dual-diameter TiO2 nanotubes is developed for loading dual drugs of LL37 peptide and Zn2+ with different sizes and characteristics. Benefiting from in-situ formed polydopamine layer and dual-diameter nanotubular structure, the scaffold provides an efficient platform for controllable drugs elution: accelerated release under acidic condition and sustained release for up to 28 days under neutral/alkalescent circumstances. Such combination of dual drugs simultaneously enhanced antibacterial efficacy and osteogenesis. In antibacterial test, LL37 peptide serving as bacteria membrane puncture agent, and Zn2+ acting as ROS generator, cooperatively destroyed bacterial membrane integrity and subsequently damaged bacterial DNA, endowing dual-drug loaded scaffold with remarkable bactericidal efficiency of > 92 % in vitro and > 99 % in vivo. Noteworthily, dual-drug loaded scaffold promoted bone-implant osteointegration under infectious microenvironment, overmatching single-drug load ones. It provides a promising strategy on surface modification of implant for infected bone defect repairing.
Collapse
Affiliation(s)
- Yanni Zhang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Na Sun
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Fangfang Hu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Wenhui Zhang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Qian Gao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Que Bai
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Caiyun Zheng
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Qiang Chen
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Yong Han
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Tingli Lu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
2
|
Dong Y, Hu Y, Hu X, Wang L, Shen X, Tian H, Li M, Luo Z, Cai C. Synthetic nanointerfacial bioengineering of Ti implants: on-demand regulation of implant-bone interactions for enhancing osseointegration. MATERIALS HORIZONS 2024. [PMID: 39480512 DOI: 10.1039/d4mh01237b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Titanium and its alloys are the most commonly used biometals for developing orthopedic implants to treat various forms of bone fractures and defects, but their clinical performance is still challenged by the unfavorable mechanical and biological interactions at the implant-tissue interface, which substantially impede bone healing at the defects and reduce the quality of regenerated bones. Moreover, the impaired osteogenesis capacity of patients under certain pathological conditions such as diabetes and osteoporosis may further impair the osseointegration of Ti-based implants and increase the risk of treatment failure. To address these issues, various modification strategies have been developed to regulate the implant-bone interactions for improving bone growth and remodeling in situ. In this review, we provide a comprehensive analysis on the state-of-the-art synthetic nanointerfacial bioengineering strategies for designing Ti-based biofunctional orthopedic implants, with special emphasis on the contributions to (1) promotion of new bone formation and binding at the implant-bone interface, (2) bacterial elimination for preventing peri-implant infection and (3) overcoming osseointegration resistance induced by degenerative bone diseases. Furthermore, a perspective is included to discuss the challenges and potential opportunities for the interfacial engineering of Ti implants in a translational perspective. Overall, it is envisioned that the insights in this review may guide future research in the area of biometallic orthopedic implants for improving bone repair with enhanced efficacy and safety.
Collapse
Affiliation(s)
- Yilong Dong
- Ruian People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325016, China.
| | - Yan Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Xinqiang Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Lingshuang Wang
- School of Life Sciences, Chongqing University, Chongqing, 400044, China.
| | - Xinkun Shen
- Ruian People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325016, China.
| | - Hao Tian
- Kairui Stomatological Hospital, Chengdu 610211, China
| | - Menghuan Li
- School of Life Sciences, Chongqing University, Chongqing, 400044, China.
| | - Zhong Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
- School of Life Sciences, Chongqing University, Chongqing, 400044, China.
| | - Chunyuan Cai
- Ruian People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325016, China.
| |
Collapse
|
3
|
Ming Y, He X, Zhao Z, Meng X, Zhu Y, Tan H, Yang G, Hu Y, Zheng L. Nanocarrier-Assisted Delivery of Berberine Promotes Diabetic Alveolar Bone Regeneration by Scavenging ROS and Improving Mitochondrial Dysfunction. Int J Nanomedicine 2024; 19:10263-10282. [PMID: 39399826 PMCID: PMC11471107 DOI: 10.2147/ijn.s475320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/15/2024] [Indexed: 10/15/2024] Open
Abstract
Purpose Oxidative stress and mitochondrial dysfunction are potential contributors to the compromised tissue regeneration capacity of alveolar bone in diabetic patients. Berberine, an active plant alkaloid, exhibits multiple pharmacological effects including antioxidation, blood glucose- and blood lipid-lowering properties. However, it remains uncertain whether berberine can improve impaired osteogenesis in type 2 diabetes mellitus (T2DM), and its poor solubility and oral bioavailability also constrain its applications in bone regeneration. Thus, our study aimed to probe the effects of berberine on bone marrow stem cells (BMSCs) in a diabetic microenvironment, with a greater emphasis on developing a suitable nano-delivery system for berberine and assessing its capability to repair diabetic alveolar bone defects. Methods Firstly, BMSCs were exposed to berberine within a high glucose and palmitate (HG+PA) environment. Reactive oxygen species levels, mitochondrial membrane potential, ATP generation, cell apoptosis, and osteogenic potential were subsequently assessed. Next, we explored the regulatory mechanism of autophagy flux in the positive effects of berberine. Furthermore, a nanocarrier based on emulsion electrospinning for sustained local delivery of berberine (Ber@SF/PCL) was established. We assessed its capacity to enhance bone healing in the alveolar bone defect of T2DM rats through micro-computed tomography and histology analysis. Results Berberine treatment could inhibit reactive oxygen species overproduction, mitochondrial dysfunction, apoptosis, and improve osteogenesis differentiation by restoring autophagy flux under HG+PA conditions. Notably, Ber@SF/PCL electrospun nanofibrous membrane with excellent physicochemical properties and good biological safety had the potential to promote alveolar bone remodeling in T2DM rats. Conclusion Our study shed new lights into the protective role of berberine on BMSCs under T2DM microenvironment. Furthermore, berberine-loaded composite electrospun membrane may serve as a promising approach for regenerating alveolar bone in diabetic patients.
Collapse
Affiliation(s)
- Ye Ming
- College of Stomatology, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People’s Republic of China
| | - Xinyi He
- College of Stomatology, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People’s Republic of China
| | - Zhenxing Zhao
- College of Stomatology, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People’s Republic of China
| | - Xuehuan Meng
- College of Stomatology, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People’s Republic of China
| | - Ye Zhu
- College of Stomatology, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People’s Republic of China
| | - Hao Tan
- College of Stomatology, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People’s Republic of China
| | - Guoyin Yang
- College of Stomatology, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People’s Republic of China
| | - Yun Hu
- College of Stomatology, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People’s Republic of China
| | - Leilei Zheng
- College of Stomatology, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People’s Republic of China
| |
Collapse
|
4
|
Che Z, Sun Q, Zhao Z, Wu Y, Xing H, Song K, Chen A, Wang B, Cai M. Growth factor-functionalized titanium implants for enhanced bone regeneration: A review. Int J Biol Macromol 2024; 274:133153. [PMID: 38897500 DOI: 10.1016/j.ijbiomac.2024.133153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/02/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
Titanium and titanium alloys are widely favored materials for orthopedic implants due to their exceptional mechanical properties and biological inertness. The additional benefit of sustained local release of bioactive substances further promotes bone tissue formation, thereby augmenting the osseointegration capacity of titanium implants and attracting increasing attention in bone tissue engineering. Among these bioactive substances, growth factors have shown remarkable osteogenic and angiogenic induction capabilities. Consequently, researchers have developed various physical, chemical, and biological loading techniques to incorporate growth factors into titanium implants, ensuring controlled release kinetics. In contrast to conventional treatment modalities, the localized release of growth factors from functionalized titanium implants not only enhances osseointegration but also reduces the risk of complications. This review provides a comprehensive examination of the types and mechanisms of growth factors, along with a detailed exploration of the methodologies used to load growth factors onto the surface of titanium implants. Moreover, it highlights recent advancements in the application of growth factors to the surface of titanium implants (Scheme 1). Finally, the review discusses current limitations and future prospects for growth factor-functionalized titanium implants. In summary, this paper presents cutting-edge design strategies aimed at enhancing the bone regenerative capacity of growth factor-functionalized titanium implants-a significant advancement in the field of enhanced bone regeneration.
Collapse
Affiliation(s)
- Zhenjia Che
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China.
| | - Qi Sun
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Zhenyu Zhao
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Yanglin Wu
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Hu Xing
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Kaihang Song
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Aopan Chen
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Bo Wang
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China.
| | - Ming Cai
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China.
| |
Collapse
|
5
|
Shang Y, Zhu Q, Ding J, Zhao L, Zhang F, Lu J, Feng Y, Wang J, Liu Z, Kuang M, Li C. Bioactive peptide relieves glucocorticoid-induced osteoporosis by giant macrocyclic encapsulation. J Control Release 2024; 369:75-87. [PMID: 38458570 DOI: 10.1016/j.jconrel.2024.02.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Abstract
Bioactive peptides play a crucial role in the field of regenerative medicine and tissue engineering. However, their application in vivo and clinic is hindered by their poor stability, short half-life, and low retention rate. Herein, we propose a novel strategy for encapsulating bioactive peptides using giant macrocycles. Platelet-derived growth factor (PDGF) bioactive mimicking peptide Nap-FFGVRKKP (P) was selected as the representative of a bioactive peptide. Quaterphen[4]arene (4) exhibited extensive host-guest complexation with P, and the binding constant was (1.16 ± 0.10) × 107 M-1. In vitro cell experiments confirmed that P + 4 could promote the proliferation of BMSCs by 2.27 times. Even with the addition of the inhibitor dexamethasone (Dex), P + 4 was still able to save 76.94% of the cells in the control group. Compared to the Dex group, the bone mass of the mice with osteoporosis in the P + 4 group was significantly increased. The mean trabecular thickness (Tb.Th) increased by 17.03%, and the trabecular bone volume fraction (BV/TV) values increased by 40.55%. This supramolecular bioactive peptide delivery strategy provides a general approach for delivering bioactive peptides and opens up new opportunities for the development of peptide-based drugs.
Collapse
Affiliation(s)
- Yuna Shang
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Qingrun Zhu
- Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Jiaming Ding
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250014, China
| | - Liang Zhao
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Fan Zhang
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Jiayi Lu
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Yinyin Feng
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Jiayu Wang
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Zhixue Liu
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Mingjie Kuang
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250014, China.
| | - Chunju Li
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China.
| |
Collapse
|
6
|
Zhou Z, Zhang Y, Zeng Y, Yang D, Mo J, Zheng Z, Zhang Y, Xiao P, Zhong X, Yan W. Effects of Nanomaterials on Synthesis and Degradation of the Extracellular Matrix. ACS NANO 2024; 18:7688-7710. [PMID: 38436232 DOI: 10.1021/acsnano.3c09954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Extracellular matrix (ECM) remodeling is accompanied by the continuous synthesis and degradation of the ECM components. This dynamic process plays an important role in guiding cell adhesion, migration, proliferation, and differentiation, as well as in tissue development, body repair, and maintenance of homeostasis. Nanomaterials, due to their photoelectric and catalytic properties and special structure, have garnered much attention in biomedical fields for use in processes such as tissue engineering and disease treatment. Nanomaterials can reshape the cell microenvironment by changing the synthesis and degradation of ECM-related proteins, thereby indirectly changing the behavior of the surrounding cells. This review focuses on the regulatory role of nanomaterials in the process of cell synthesis of different ECM-related proteins and extracellular protease. We discuss influencing factors and possible related mechanisms of nanomaterials in ECM remodeling, which may provide different insights into the design and development of nanomaterials for the treatment of ECM disorder-related diseases.
Collapse
Affiliation(s)
- Zhiyan Zhou
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yanli Zhang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510260, China
| | - Yuting Zeng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Dehong Yang
- Department of Orthopedics - Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jiayao Mo
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ziting Zheng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yuxin Zhang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ping Xiao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xincen Zhong
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wenjuan Yan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
7
|
Zhou S, Xiao C, Fan L, Yang J, Ge R, Cai M, Yuan K, Li C, Crawford RW, Xiao Y, Yu P, Deng C, Ning C, Zhou L, Wang Y. Injectable ultrasound-powered bone-adhesive nanocomposite hydrogel for electrically accelerated irregular bone defect healing. J Nanobiotechnology 2024; 22:54. [PMID: 38326903 PMCID: PMC10851493 DOI: 10.1186/s12951-024-02320-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/26/2024] [Indexed: 02/09/2024] Open
Abstract
The treatment of critical-size bone defects with irregular shapes remains a major challenge in the field of orthopedics. Bone implants with adaptability to complex morphological bone defects, bone-adhesive properties, and potent osteogenic capacity are necessary. Here, a shape-adaptive, highly bone-adhesive, and ultrasound-powered injectable nanocomposite hydrogel is developed via dynamic covalent crosslinking of amine-modified piezoelectric nanoparticles and biopolymer hydrogel networks for electrically accelerated bone healing. Depending on the inorganic-organic interaction between the amino-modified piezoelectric nanoparticles and the bio-adhesive hydrogel network, the bone adhesive strength of the prepared hydrogel exhibited an approximately 3-fold increase. In response to ultrasound radiation, the nanocomposite hydrogel could generate a controllable electrical output (-41.16 to 61.82 mV) to enhance the osteogenic effect in vitro and in vivo significantly. Rat critical-size calvarial defect repair validates accelerated bone healing. In addition, bioinformatics analysis reveals that the ultrasound-responsive nanocomposite hydrogel enhanced the osteogenic differentiation of bone mesenchymal stem cells by increasing calcium ion influx and up-regulating the PI3K/AKT and MEK/ERK signaling pathways. Overall, the present work reveals a novel wireless ultrasound-powered bone-adhesive nanocomposite hydrogel that broadens the therapeutic horizons for irregular bone defects.
Collapse
Affiliation(s)
- Shiqi Zhou
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Cairong Xiao
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510641, China
| | - Lei Fan
- Department of Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jinghong Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Ruihan Ge
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Min Cai
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Kaiting Yuan
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Changhao Li
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Ross William Crawford
- Institute of Health and Biomedical Innovation & Australia-China Centre for Tissue Engineering and Regenerative Medicine, Centre for Biomedical Technologies, Queensland University of Technology, Queensland, 4059, Australia
| | - Yin Xiao
- School of Medicine and Dentistry & Menzies Health Institute Queensland, Griffith University, Queensland, 4111, Australia
| | - Peng Yu
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510641, China
| | - Chunlin Deng
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510641, China
| | - Chengyun Ning
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510641, China.
| | - Lei Zhou
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Spine Surgery, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510150, China.
| | - Yan Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China.
| |
Collapse
|
8
|
Li X, Luo X, He Y, Xu K, Ding Y, Gao P, Tao B, Li M, Tan M, Liu S, Liu P, Cai K. Micronano Titanium Accelerates Mesenchymal Stem Cells Aging through the Activation of Senescence-Associated Secretory Phenotype. ACS NANO 2023; 17:22885-22900. [PMID: 37947356 DOI: 10.1021/acsnano.3c07807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Stem cell senescence is one of the most representative events of organism aging and is responsible for many physiological abnormalities and disorders. In the scenario of orthopedic disease treatment, stem cell aging may affect the implantation outcome and even lead to operation failure. To explore whether stem cell aging will affect the osteointegration effect of titanium implant, a widely used micronano titanium (MNT) was fabricated. We first verified the expected osteointegration effect of the MNT, which could be attributed to the improvement of stem cell adhesion and osteogenic differentiation. Then, we obtained aged-derived bone marrow mesenchymal stem cells (BMSCs) and studied their biological behaviors on MNT both in vitro and in vivo. We found that compared with normal rats, MNT did not significantly improve the osteointegration in aged rats. Compared with normal rats, fewer endogenous stem cells were observed at the implant-host interface, and the expression of p21 (senescence marker) was also higher. We further confirmed that MNT promoted the nuclear localization of NF-κB in senescent stem cells through the activation of p38 MAPK, thereby inducing the occurrence of the senescence-associated secretory phenotype (SASP) and ultimately leading to the depletion of the stem-cell pool at the implant-host interface. However, the activation of p38 MAPK can still promote the osteogenic differentiation of nonsenescent BMSCs. These results showed an interesting paradoxical balance between osteogenesis and senescence on MNT surfaces and also provided insights for the design of orthopedic implants for aging patients.
Collapse
Affiliation(s)
- Xuan Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University Chongqing 400044, P. R. China
| | - Xinxin Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University Chongqing 400044, P. R. China
| | - Ye He
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Kun Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University Chongqing 400044, P. R. China
| | - Yao Ding
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University Chongqing 400044, P. R. China
| | - Pengfei Gao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University Chongqing 400044, P. R. China
| | - Bailong Tao
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P. R. China
| | - Meng Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University Chongqing 400044, P. R. China
| | - Meijun Tan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University Chongqing 400044, P. R. China
| | - Shaopeng Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University Chongqing 400044, P. R. China
| | - Peng Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University Chongqing 400044, P. R. China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University Chongqing 400044, P. R. China
| |
Collapse
|
9
|
Jaime-Rodríguez M, Cadena-Hernández AL, Rosales-Valencia LD, Padilla-Sánchez JM, Chavez-Santoscoy RA. Are genetic drift and stem cell adherence in laboratory culture issues for cultivated meat production? Front Nutr 2023; 10:1189664. [PMID: 37701376 PMCID: PMC10493286 DOI: 10.3389/fnut.2023.1189664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 08/11/2023] [Indexed: 09/14/2023] Open
Abstract
Mesenchymal stem cell-based cultivated meat is a promising solution to the ecological and ethical problems posed by traditional meat production, since it exhibits a protein content and composition that is more comparable to original meat proteins than any other source of cultivated meat products, including plants, bacteria, and fungi. Nonetheless, the nature and laboratory behavior of mesenchymal stem cells pose two significant challenges for large-scale production: genetic drift and adherent growth in culture. Culture conditions used in the laboratory expose the cells to a selective pressure that causes genetic drift, which may give rise to oncogene activation and the loss of "stemness." This is why genetic and functional analysis of the cells during culture is required to determine the maximum number of passages within the laboratory where no significant mutations or loss of function are detected. Moreover, the adherent growth of mesenchymal stem cells can be an obstacle for their large-scale production since volume to surface ratio is limited for high volume containers. Multi-tray systems, roller bottles, and microcarriers have been proposed as potential solutions to scale-up the production of adherent cells required for cultivated meat. The most promising solutions for the safety problems and large-scale obstacles for cultivated meat production are the determination of a limit number of passages based on a genetic analysis and the use of microcarriers from edible materials to maximize the volume to surface proportion and decrease the downstream operations needed for cultivated meat production.
Collapse
|
10
|
Li Y, Xu C, Lei C. The Delivery and Activation of Growth Factors Using Nanomaterials for Bone Repair. Pharmaceutics 2023; 15:pharmaceutics15031017. [PMID: 36986877 PMCID: PMC10052849 DOI: 10.3390/pharmaceutics15031017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Bone regeneration is a comprehensive process that involves different stages, and various growth factors (GFs) play crucial roles in the entire process. GFs are currently widely used in clinical settings to promote bone repair; however, the direct application of GFs is often limited by their fast degradation and short local residual time. Additionally, GFs are expensive, and their use may carry risks of ectopic osteogenesis and potential tumor formation. Nanomaterials have recently shown great promise in delivering GFs for bone regeneration, as they can protect fragile GFs and control their release. Moreover, functional nanomaterials can directly activate endogenous GFs, modulating the regeneration process. This review provides a summary of the latest advances in using nanomaterials to deliver exogenous GFs and activate endogenous GFs to promote bone regeneration. We also discuss the potential for synergistic applications of nanomaterials and GFs in bone regeneration, along with the challenges and future directions that need to be addressed.
Collapse
Affiliation(s)
- Yiwei Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Chun Xu
- School of Dentistry, The University of Queensland, Brisbane, QLD 4006, Australia
| | - Chang Lei
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
11
|
Xu Z, Wang C, Song G, Wang Y, Zhang X, Li X. Covalent binding modes between BMP-2-derived peptides and graphene in 3D scaffolds determine their osteoinductivity and capacity for calvarial defect repair in vivo. Int J Biol Macromol 2023; 237:124077. [PMID: 36934820 DOI: 10.1016/j.ijbiomac.2023.124077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/21/2023]
Abstract
Covalent introduction of bioactive molecules is one of main strategies to significantly enhance the biological activities of bone repair materials. In this study, three most-commonly used chemical groups were respectively introduced on graphene (GP), followed by covalent binding with bone morphogenetic protein-2 (BMP-2) -derived peptides, ensuring that the same molar mass of peptides was bound to different functionalized GP (f-GP). Then the same amount of composites composed of different f-GP and peptides were respectively compounded with poly (lactic-co-glycolic acid) to fabricate 3D scaffolds. In vivo study demonstrated that the scaffolds containing ammonized GP covalently bound with the peptides through amide binding could reach best efficiency of promoting ectopic bone regeneration and repairing calvarial defect probably because the most positive charges on the peptide chain and surface of the ammonized GP could absorb more specific proteins in vivo and have better interactions with them, thereby differentiating most inducible cells into osteogenic cells. Our results indicate that the performances of scaffolds containing covalently bound bioactive molecules can be controlled by the covalent binding mode, and that our prepared scaffold containing ammonized GP covalently bound with the BMP-2-derived peptides through amide binding possess inspiring potential applicable prospects for bone tissue regeneration and engineering.
Collapse
Affiliation(s)
- Zhiwei Xu
- College of Lab Medicine, Hebei North University, Zhangjiakou 075000, China
| | - Cunyang Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Guiqin Song
- College of Lab Medicine, Hebei North University, Zhangjiakou 075000, China
| | - Yan Wang
- College of Lab Medicine, Hebei North University, Zhangjiakou 075000, China
| | - Xiaoyun Zhang
- College of Lab Medicine, Hebei North University, Zhangjiakou 075000, China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| |
Collapse
|
12
|
Romero HAM, Piñon TP, Sagarnaga D, Rico RD, Rascón AN, Pérez CAM, Piñon DP, Flores de los Ríos JP, Carrillo MS, Chacón-Nava JG. Aligned TiO 2 Scaffolds in the Presence of a Galactopyranose Matrix by Sol-Gel Process. Polymers (Basel) 2023; 15:polym15030478. [PMID: 36771782 PMCID: PMC9921417 DOI: 10.3390/polym15030478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/01/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
In this work, titanium dioxide scaffolds were synthesized. Titanium isopropoxide (IV) was used as a precursor in its formation, using a polymeric network of galactopyranose as a template. The powder sample obtained was evaluated by scanning tunneling microscopy (STM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) analysis, and thermal gravimetric analysis (TGA-DTA). According to the results, it was found that these scaffolds can be successfully synthesized in solution using the sol-gel method. The synthesized scaffolds have diameters from 50 nm with porosity of approximately 0.3-10 nm. Important parameters, such as pH and the concentration of the metallic precursors, were optimized in this solution. The values of maximum average roughness R(max) and roughness value (Ra) were 0.50 and 1.45, respectively. XRD diffraction analysis shows the formation of crystalline phases in the TiO2 scaffold at 700 °C. The use of biological polymers represents an alternative for the synthesis of new materials at low cost, manipulating the conditions in the production processes and making the proposed system more efficient.
Collapse
Affiliation(s)
- Humberto Alejandro Monreal Romero
- Department of Biomaterials Science and Nanotechnology, University of Chihuahua (UACH), Avenue University, Chihuahua 31000, Mexico
- Correspondence:
| | - Teresa Pérez Piñon
- Department of Biomaterials Science and Nanotechnology, University of Chihuahua (UACH), Avenue University, Chihuahua 31000, Mexico
| | - Diana Sagarnaga
- Department of Biomaterials Science and Nanotechnology, University of Chihuahua (UACH), Avenue University, Chihuahua 31000, Mexico
| | - Raquel Duarte Rico
- Department of Biomaterials Science and Nanotechnology, University of Chihuahua (UACH), Avenue University, Chihuahua 31000, Mexico
| | - Alfredo Nevárez Rascón
- Department of Biomaterials Science and Nanotechnology, University of Chihuahua (UACH), Avenue University, Chihuahua 31000, Mexico
| | | | - Dagoberto Pérez Piñon
- Department of Polymers and Biomaterials, University of Chihuahua (UACH), University Circuit Campus II, Chihuahua 31110, Mexico
| | - Juan Pablo Flores de los Ríos
- Department Metal-Mechanical, National Technological of Mexico-Technological Institute of Chihuahua, Technological Avenue 2909, Chihuahua 31130, Mexico
| | - Mario Sánchez Carrillo
- Department Metal-Mechanical, National Technological of Mexico-Technological Institute of Chihuahua, Technological Avenue 2909, Chihuahua 31130, Mexico
| | - José Guadalupe Chacón-Nava
- Advanced Materials Research Center, S.C. (CIMAV) and National Nanotechnology Laboratory, Avenue M. Cervantes 120, Industrial Complex Chihuahua, Chihuahua 31136, Mexico
| |
Collapse
|
13
|
Huang G, Zhao Q, Li W, Jiao J, Zhao X, Feng D, Tang W. Exosomes: A new option for osteoporosis treatment. Medicine (Baltimore) 2022; 101:e32402. [PMID: 36595975 PMCID: PMC9803424 DOI: 10.1097/md.0000000000032402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Osteoporosis is a systemic bone disease characterized by reduced bone mass and destruction of bone microarchitecture, leading to increased bone fragility and susceptibility to fracture. However, the pathogenesis and molecular mechanisms of this disease remain unclear. Extracellular vesicles, structures originating from the plasma membrane and ranging from 30 nm to 5 µm in diameter, play an important role in intercellular communication in the bone microenvironment. Exosomes are extracellular vesicles that deliver cargo molecules, including endogenous proteins, lipids and nucleic acids. These cargo molecules are encapsulated in a lipid bilayer and internalized by target cells through receptor-ligand interactions or lipid membrane fusion. With the advancement of exosome research, exosome therapy for osteoporosis is fast becoming a research hotspot for researchers. This review aims to discuss the role of exosomes in the pathogenesis of osteoporosis. In addition, emerging diagnostic and therapeutic properties of exosomes are described to highlight the potential role of exosomes in osteoporosis.
Collapse
Affiliation(s)
- Guijiang Huang
- The First Affiliated Hospital of Kunming Medical University, Kunming City, China
| | - Qianhao Zhao
- Kunming Children’s Hospital, Kunming City, China
| | - Wenhu Li
- Kunming Medical University, Kunming City, China
| | | | - Xin Zhao
- The First Affiliated Hospital of Kunming Medical University, Kunming City, China
| | - Dan Feng
- The First Affiliated Hospital of Kunming Medical University, Kunming City, China
| | - Wei Tang
- The First Affiliated Hospital of Kunming Medical University, Kunming City, China
- *Correspondence: Wei Tang, The First Affiliated Hospital of Kunming Medical University, Kunming City, Yunnan Province, China (e-mail: )
| |
Collapse
|
14
|
Gasmi Benahmed A, Gasmi A, Tippairote T, Mujawdiya PK, Avdeev O, Shanaida Y, Bjørklund G. Metabolic Conditions and Peri-Implantitis. Antibiotics (Basel) 2022; 12:65. [PMID: 36671266 PMCID: PMC9854649 DOI: 10.3390/antibiotics12010065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023] Open
Abstract
Dental implants to replace lost teeth are a common dentistry practice nowadays. Titanium dental implants display a high success rate and improved safety profile. Nevertheless, there is an increasing peri-implantitis (PI), an inflammatory disease associated with polymicrobial infection that adversely affects the hard and soft tissues around the implant. The present review highlights the contribution of different metabolic conditions to PI. The considerations of both local and systemic metabolic conditions are crucial for planning successful dental implant procedures and during the treatment course of PI. Un- or undertreated PI can lead to permanent jaw bone suffering and dental implant losses. The common mediators of PI are inflammation and oxidative stress, which are also the key mediators of most systemic metabolic disorders. Chronic periodontitis, low-grade tissue inflammation, and increased oxidative stress raise the incidence of PI and the underlying systemic metabolic conditions, such as obesity, diabetes mellitus, or harmful lifestyle factors (cigarette smoking, etc.). Using dental biomaterials with antimicrobial effects could partly solve the problem of pathogenic microbial contamination and local inflammation. With local dentistry considering factors, including oral microbiota and implant quality control, the inclusion of the underlying systemic metabolic conditions into the pre-procedure planning and during the treatment course should improve the chances of successful outcomes.
Collapse
Affiliation(s)
- Asma Gasmi Benahmed
- Académie Internationale de Médecine Dentaire Intégrative, 75000 Paris, France
| | - Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, 69100 Villeurbanne, France
| | - Torsak Tippairote
- Faculty of Medicine Ramathibodi Hospital and Institute of Nutrition, Mahidol University, Bangkok 10400, Thailand
- Nutritional and Environmental Medicine Department, BBH Hospital, Bangkok 10540, Thailand
| | | | - Oleksandr Avdeev
- Pediatric Dentistry Department, I. Horbachevsky Ternopil National Medical University, 46003 Ternopil, Ukraine
| | - Yurii Shanaida
- Pediatric Dentistry Department, I. Horbachevsky Ternopil National Medical University, 46003 Ternopil, Ukraine
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, 8610 Mo i Rana, Norway
| |
Collapse
|
15
|
Huang B, Wang Y, Vyas C, Bartolo P. Crystal Growth of 3D Poly(ε-caprolactone) Based Bone Scaffolds and Its Effects on the Physical Properties and Cellular Interactions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2203183. [PMID: 36394087 PMCID: PMC9811450 DOI: 10.1002/advs.202203183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Extrusion additive manufacturing is widely used to fabricate polymer-based 3D bone scaffolds. However, the insight views of crystal growths, scaffold features and eventually cell-scaffold interactions are still unknown. In this work, melt and solvent extrusion additive manufacturing techniques are used to produce scaffolds considering highly analogous printing conditions. Results show that the scaffolds produced by these two techniques present distinct physiochemical properties, with melt-printed scaffolds showing stronger mechanical properties and solvent-printed scaffolds showing rougher surface, higher degradation rate, and faster stress relaxation. These differences are attributed to the two different crystal growth kinetics, temperature-induced crystallization (TIC) and strain-induced crystallization (SIC), forming large/integrated spherulite-like and a small/fragmented lamella-like crystal regions respectively. The stiffer substrate of melt-printed scaffolds contributes to higher ratio of nuclear Yes-associated protein (YAP) allocation, favoring cell proliferation and differentiation. Faster relaxation and degradation of solvent-printed scaffolds result in dynamic surface, contributing to an early-stage faster osteogenesis differentiation.
Collapse
Affiliation(s)
- Boyang Huang
- Singapore Centre for 3D PrintingSchool of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Yaxin Wang
- School of MechanicalAerospace and Civil EngineeringUniversity of ManchesterManchesterM13 9PLUK
| | - Cian Vyas
- Singapore Centre for 3D PrintingSchool of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingapore639798Singapore
- School of MechanicalAerospace and Civil EngineeringUniversity of ManchesterManchesterM13 9PLUK
| | - Paulo Bartolo
- Singapore Centre for 3D PrintingSchool of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingapore639798Singapore
- School of MechanicalAerospace and Civil EngineeringUniversity of ManchesterManchesterM13 9PLUK
| |
Collapse
|
16
|
Chen P, Zhang C, He P, Pan S, Zhong W, Wang Y, Xiao Q, Wang X, Yu W, He Z, Gao X, Song J. A Biomimetic Smart Nanoplatform as “Inflammation Scavenger” for Regenerative Therapy of Periodontal Tissue. Int J Nanomedicine 2022; 17:5165-5186. [PMID: 36388874 PMCID: PMC9642321 DOI: 10.2147/ijn.s384481] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Introduction The functional reconstruction of periodontal tissue defects remains a clinical challenge due to excessive and prolonged host response to various endogenous and exogenous pro-inflammatory stimuli. Thus, a biomimetic nanoplatform with the capability of modulating inflammatory response in a microenvironment-responsive manner is attractive for regenerative therapy of periodontal tissue. Methods Herein, a facile and green design of engineered bone graft materials was developed by integrating a biomimetic apatite nanocomposite with a smart-release coating, which could realize inflammatory modulation by “on-demand” delivery of the anti-inflammatory agent through a pH-sensing mechanism. Results In vitro and in vivo experiments demonstrated that this biocompatible nanoplatform could facilitate the clearance of reactive oxygen species in human periodontal ligament stem cells under inflammatory conditions via inhibiting the production of endogenous proinflammatory mediators, in turn contributing to the enhanced healing efficacy of periodontal tissue. Moreover, this system exhibited effective antimicrobial activity against common pathogenic bacteria in the oral cavity, which is beneficial for the elimination of exogenous pro-inflammatory factors from bacterial infection during healing of periodontal tissue. Conclusion The proposed strategy provides a versatile apatite nanocomposite as a promising “inflammation scavenger” and propels the development of intelligent bone graft materials for periodontal and orthopedic applications.
Collapse
Affiliation(s)
- Poyu Chen
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People’s Republic of China
| | - Chuangwei Zhang
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People’s Republic of China
| | - Ping He
- Department of Stomatology, Dazhou Central Hospital, Dazhou, SiChuan, 635000, People’s Republic of China
| | - Shengyuan Pan
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People’s Republic of China
| | - Wenjie Zhong
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People’s Republic of China
| | - Yue Wang
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People’s Republic of China
| | - Qingyue Xiao
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People’s Republic of China
| | - Xinyan Wang
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People’s Republic of China
| | - Wenliang Yu
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People’s Republic of China
| | - Zhangmin He
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People’s Republic of China
| | - Xiang Gao
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People’s Republic of China
- Correspondence: Xiang Gao; Jinlin Song, Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China, Tel/Fax +86 23 88860105; Tel/Fax +86 23 88860026, Email ;
| | - Jinlin Song
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People’s Republic of China
| |
Collapse
|
17
|
Si Y, Liu H, Yu H, Jiang X, Sun D. MOF-derived CuO@ZnO modified titanium implant for synergistic antibacterial ability, osteogenesis and angiogenesis. Colloids Surf B Biointerfaces 2022; 219:112840. [PMID: 36113223 DOI: 10.1016/j.colsurfb.2022.112840] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/27/2022] [Accepted: 09/10/2022] [Indexed: 12/17/2022]
Abstract
Surface modification of titanium implants with antibacterial, osteogenic and even angiogenic capabilities are essential to enhance their clinical applicability. Herein, metal-organic framework (MOF) derived CuO@ZnO composite was grafted onto the polydopamine (PDA) modified titanium alloy to achieve vascularized bone regeneration. The CuO@ZnO-coated titanium effectively inhibits the formation of bacterial biofilms and the sterilization rate of Staphylococcus aureus (S. aureus) reaches 99%. Benefitting from the intrinsic porous architecture of MOFs, the Zn2+ and Cu2+ could be controllably released to facilitate the production of excess intracellular reactive oxygen species (ROS) inside the bacteria, which ensures the excellent antibacterial performance of the composite coating. The CuO@ZnO-coated titanium also exhibits good cytocompatibility, effectively promotes the adhesion and proliferation of the human bone marrow mesenchymal stem cells (hBMSCs) and reduces the level of the cell apoptosis. The up-regulated expression of the osteogenesis-related genes and the superior extracellular matrix mineralization reveals that the CuO@ZnO coating possesses fantastic osteoinductive properties. In addition, the transwell and tube formation assays of the human umbilical vein endothelial cells (HUVECs) suggest the superior angiogenesis ability of the CuO@ZnO-coated titanium. The released Cu2+ stimulated the angiogenesis of the HUVECs in vitro by up-regulating the expression of the vascular endothelial growth factor (VEGF). These findings will provide new insight into the development of multifunctional titanium implants for clinical applications.
Collapse
Affiliation(s)
- Yunhui Si
- School of Materials, Sun Yat-Sen University, Shenzhen 518107, PR China
| | - Huanyao Liu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, PR China
| | - Hongying Yu
- School of Materials, Sun Yat-Sen University, Shenzhen 518107, PR China; Innovation Group of Marine Engineering Materials and Corrosion Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, PR China.
| | - Xuzhou Jiang
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, PR China; Nanotechnology Research Center, Sun Yat-sen University, Guangzhou 510275, PR China.
| | - Dongbai Sun
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, PR China; National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, PR China; Innovation Group of Marine Engineering Materials and Corrosion Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, PR China.
| |
Collapse
|
18
|
Preparation of 3D Printing PLGA Scaffold with BMP-9 and P-15 Peptide Hydrogel and Its Application in the Treatment of Bone Defects in Rabbits. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:1081957. [PMID: 35965616 PMCID: PMC9357721 DOI: 10.1155/2022/1081957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/16/2022] [Accepted: 06/27/2022] [Indexed: 11/23/2022]
Abstract
Objective To prepare a three-dimensional (3D) printing polylactic acid glycolic acid (PLGA) scaffold with bone morphogenetic protein-9 (BMP-9) and P-15 peptide hydrogel and evaluate its application in treating bone defects in rabbits. Methods 3D printing PLGA scaffolds were formed and scanned by electron microscopy. Their X-ray diffraction (XRD), in vitro degradation, and compressive strength were characterized. BMP-9 and P-15 hydrogels were prepared. Flow cytometry was used to detect apoptosis, and an electron microscope was used to evaluate cell adhesion to scaffolds. Alkaline phosphatase (ALP), type 1 collagen (Col-I), osteocalcin (OCN), runt-related transcription factor 2 (RUNX2), and osterix (SP7) were detected by western blotting. MicroCT was used to detect new bone formation, and bone tissue-related protein expressions were determined in the rabbit model with bone defects. Results The 3D printing scaffolds were cylindrical, and the inner diameter of the scaffolds was about 1 mm. The bread peak with wide distribution showed that the 3D printing only involved a physical change, which did not change the properties of the materials. The degradation rate of scaffolds was 9.38%, which met the requirements of properties of biological scaffolds. The water absorption of the support was about 9.09%, and the compressive strength was 15.83 N/mm2. In the coculture of bone marrow mesenchymal stem cells (BMSCs) with scaffolds, the 2% polypeptide hydrogel showed the most obvious activity in promoting the differentiation of BMSCs. Flow cytometry showed that the 0% and 2% groups did not cause obvious apoptosis compared with the control group. Scaffolds with 2% and 4% polypeptide promoted the expression of ALP, COL-1, OCN, RUNX2, and Sp7 in BMSCs. In vivo experiments showed that the expression of ALP, COL-1, OCN, RUNX2, and Sp7 protein in the 2% polypeptide scaffold group increased significantly compared with the model group. MicroCT detection demonstrated that the 2% polypeptide scaffold had good bone repair ability. Conclusion The PLGA scaffolds combined with BMP-9 and P-15 peptide hydrogels had good biological and mechanical properties and could repair bone defects in rabbits.
Collapse
|
19
|
Whangdee P, Saenrang W, Pongkao Kashima D. Effect of fluoride and hydroxyl group on bioactivity of the anodized films prepared by two‐step anodization at low current density. SURF INTERFACE ANAL 2022. [DOI: 10.1002/sia.7085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Phanawan Whangdee
- Department of Applied Physics, Faculty of Sciences and Liberal Arts Rajamangala University of Technology Isan Nakhon Ratchasima Thailand
- Advanced Materials and Renewable Energy Research Unit, Faculty of Sciences and Liberal Arts Rajamangala University of Technology Isan Nakhon Ratchasima Thailand
| | - Wittawat Saenrang
- Research Network NANOTEC ‐ SUT on Advanced Nanomaterials and Characterization, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand and School of Physics, Institute of Science, Suranaree University of Technology Nakhon Ratchasima Thailand
| | - Dujreutai Pongkao Kashima
- Research Unit of Advanced Ceramics, Department of Materials Science, Faculty of Science Chulalongkorn University Bangkok Thailand
- Center of Excellence on Petrochemical and Materials Technology Chulalongkorn University Bangkok Thailand
| |
Collapse
|
20
|
Zheng Y, Gao A, Bai J, Liao Q, Wu Y, Zhang W, Guan M, Tong L, Geng D, Zhao X, Chu PK, Wang H. A programmed surface on polyetheretherketone for sequentially dictating osteoimmunomodulation and bone regeneration to achieve ameliorative osseointegration under osteoporotic conditions. Bioact Mater 2022; 14:364-376. [PMID: 35386814 PMCID: PMC8964985 DOI: 10.1016/j.bioactmat.2022.01.042] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/16/2022] [Accepted: 01/24/2022] [Indexed: 02/07/2023] Open
Abstract
Polyetheretherketone (PEEK) is a desirable alternative to conventional biomedical metals for orthopedic implants due to the excellent mechanical properties. However, the inherent bioinertness of PEEK contributes to inferior osseointegration of PEEK implants, especially under pathological conditions of osteoporosis. Herein, a programmed surface is designed and fabricated on PEEK to dictate osteoimmunomodulation and bone regeneration sequentially. A degradable hybrid coating consisting of poly(lactide-co-glycolide) and alendronate (ALN) loaded nano-hydroxyapatite is deposited on PEEK and then interleukin-4 (IL-4) is grafted onto the outer surface of the hybrid coating with the aid of N2 plasma immersion ion implantation and subsequent immersion in IL-4 solution. Dominant release of IL-4 together with ALN and Ca2+ during the first few days synergistically mitigates the early acute inflammatory reactions and creates an osteoimmunomodulatory microenvironment that facilitates bone regeneration. Afterwards, slow and sustained delivery of ALN and Ca2+ in the following weeks boosts osteogenesis and suppresses osteoclastogenesis simultaneously, consequently ameliorating bone-implant osseointegration even under osteoporotic conditions. By taking into account the different phases in bone repair, this strategy of constructing advanced bone implants with sequential functions provides customizable and clinically viable therapy to osteoporotic patients. A programmed surface is designed and fabricated on PEEK to dictate osteoimmunomodulation and bone regeneration sequentially. A degradable coating consisting ALN loaded nano-HA is deposited on PEEK, with IL-4 being grafted onto the outmost surface. Dominant release of IL-4 together with ALN and Ca2+ synergistically mitigates the early acute inflammatory reactions. Slow and sustained delivery of ALN and Ca2+ boosts osteogenesis and suppresses osteoclastogenesis simultaneously. Sequential regulation of peri-implant biological responses is achieved to match the dynamic process of bone regeneration.
Collapse
Affiliation(s)
- Yanyan Zheng
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- School of Basic Medical Sciences and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China
| | - Ang Gao
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jiaxiang Bai
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Qing Liao
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yuzheng Wu
- Department of Physics, Department of Materials Science and Engineering, Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Wei Zhang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Min Guan
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Liping Tong
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Corresponding author
| | - Dechun Geng
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Corresponding author
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Paul K. Chu
- Department of Physics, Department of Materials Science and Engineering, Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Huaiyu Wang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Corresponding author
| |
Collapse
|
21
|
Hong L, Yuan L, Xu X, Ma Y, Meng L, Wang J, Zhao N, Wang X, Ma J. Biocompatible Nanotube-Strontium/polydopamine-arginine-glycine-aspartic acid coating on Ti6Al4V enhances osteogenic properties for biomedical applications. Microsc Res Tech 2021; 85:1518-1526. [PMID: 34964200 DOI: 10.1002/jemt.24014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 01/06/2023]
Abstract
Titanium (Ti) alloys, particularly Ti6 Al4 V, are the most commonly used biomedical implant material. Ti alloys are biologically inert, so there have been continuous efforts to improve their osteogenic properties and clinical performance. Since TiO2 nanotubes (NT) appear to be excellent drug platforms, and strontium reportedly enhances osteogenesis, we constructed a TiO2 nanotube coating on the surface of Ti6 Al4 V and immersed it in Sr (OH)2 solution in order to incorporate Sr into TiO2 nanotubes (NT-Sr). The results of field emission scanning electron microscope and X-ray diffraction analysis verified the fabrication of NT-Sr. We next added polydopamine (PDA) and cyclo- (arginine-glycine-aspartic acid-phenylalanine-cysteine) [c(RGDfC)] peptides to further promote biocompatibility of the implant. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy confirmed the existence of PDA and c(RGDfC). Mesenchymal stem cells (MSCs) were planted on Ti, NT, NT-Sr, NT-Sr/PDA, and NT-Sr/PDA-RGD surfaces. The adhesion and differentiation of MSCs on different surfaces were evaluated. The mRNA expression of alkaline phosphatase, runt-related transcription factor 2 (Runx2) and type I collagen (Col I) of different groups were also tested. Finally, we observed that the NT-Sr/PDA-RGD group showed significantly better performance than other groups in terms of the differentiation and osteogenesis-related gene expression of MSCs. Thus, the NT-Sr/PDA-RGD complex may be an important modification strategy for Ti, as it shows excellent osteogenic potential.
Collapse
Affiliation(s)
- Leilei Hong
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing, China
| | - Lichan Yuan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing, China
| | - Xiaoxu Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing, China
| | - Yuhuan Ma
- Nanjng Foreign Language School, Nanjing, Jiangsu, China
| | - Li Meng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing, China
| | - Junyi Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing, China
| | - Na Zhao
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing, China
| | - Xiaoliang Wang
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Nanjing University, Nanjing, China
| | - Junqing Ma
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing, China
| |
Collapse
|
22
|
Sun Y, Li Y, Zhang Y, Wang T, Lin K, Liu J. A polydopamine-assisted strontium-substituted apatite coating for titanium promotes osteogenesis and angiogenesis via FAK/MAPK and PI3K/AKT signaling pathways. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112482. [PMID: 34857268 DOI: 10.1016/j.msec.2021.112482] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/16/2021] [Accepted: 10/08/2021] [Indexed: 02/07/2023]
Abstract
Early osteointegration is essential for biomedical implants. Surface modifications can significantly compensate for an implant's lack of biocompatibility and osteo-differentiation. They can also be designed to promote angiogenesis in order to assist osteogenesis and ultimately facilitate bone regeneration. In this study, a polydopamine-assisted strontium-substituted apatite coating (Ti@PDA + SrHA) was fabricated on a multifunctional titanium implant to induce both angiogenic and osteogenic abilities for rapid osseointegration. Polydopamine and Sr-substituted hydroxyapatite were coated on the implant through biomineralization. The in vitro results showed that Ti@PDA + SrHA improved cell adhesion and increased the proliferation of rat bone marrow-derived mesenchymal stem cells (rBMSCs) and human umbilical vein endothelial cells (HUVECs). Ti@PDA + SrHA upregulated the expression of ALP activity and osteogenic genes in rBMSCs and elevated angiogenic genes in both rBMSCs and HUVECs. Mechanically, the FAK/MAPK signaling pathway was activated in rBMSCs, and the PI3K/AKT signaling pathway was activated in both rBMSCs and HUVECs. Consistent with these findings, Ti@PDA + SrHA accelerated new bone formation and rapid osseointegration in the femoral condyle implantation study with good stability. Overall, we fabricated a multifunctional biocompatible implant with better angiogenic and osteogenic performance compared to the non-coated implant.
Collapse
Affiliation(s)
- Yiting Sun
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China; National Center for Stomatology, Shanghai 200011, China; National Clinical Research Center for Oral Diseases, Shanghai 200011, China; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Yaxin Li
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China; National Center for Stomatology, Shanghai 200011, China; National Clinical Research Center for Oral Diseases, Shanghai 200011, China; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Yu Zhang
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China; National Center for Stomatology, Shanghai 200011, China; National Clinical Research Center for Oral Diseases, Shanghai 200011, China; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China; Department of Oral Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Tiange Wang
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China; National Center for Stomatology, Shanghai 200011, China; National Clinical Research Center for Oral Diseases, Shanghai 200011, China; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Kaili Lin
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China; National Center for Stomatology, Shanghai 200011, China; National Clinical Research Center for Oral Diseases, Shanghai 200011, China; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China.
| | - Jiaqiang Liu
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China; National Center for Stomatology, Shanghai 200011, China; National Clinical Research Center for Oral Diseases, Shanghai 200011, China; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China.
| |
Collapse
|
23
|
Mitsui R, Matsukawa M, Nakagawa K, Isomura E, Kuwahara T, Nii T, Tanaka S, Tabata Y. Efficient cell transplantation combining injectable hydrogels with control release of growth factors. Regen Ther 2021; 18:372-383. [PMID: 34632010 PMCID: PMC8479297 DOI: 10.1016/j.reth.2021.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/01/2021] [Accepted: 09/11/2021] [Indexed: 11/18/2022] Open
Abstract
Introduction The objective of this study is to investigate the effect of gelatin microspheres incorporating growth factors on the therapeutic efficacy in cell transplantation. The strength of this study is to combine gelatin hydrogel microspheres incorporating basic fibroblast growth factor and platelet growth factor mixture (GM/GF) with bioabsorbable injectable hydrogels (iGel) for transplantation of adipose-derived stem cells (ASCs). Methods The rats ASCs suspended in various solutions were transplanted in masseter muscle. Rats were euthanized 2, 7, 14 days after injection for measurement of the number of ASCs retention in the muscle and morphological evaluation of muscle fibers and the inflammation of the injected tissue by histologic and immunofluorescent stain. Results Following the injection into the skeletal muscle, the GM/GF allowed the growth factors to release at the injection site over one week. When ASCs were transplanted into skeletal muscle using iGel incorporating GM/GF (iGel+GM/GF), the number of cells grafted was significantly high compared with other control groups. Moreover, for the groups to which GM/GF was added, the cells transplanted survived, and the Myo-D expression of a myoblast marker was observed at the region of cells transplanted. Conclusions The growth factors released for a long time likely enhance the proliferative and differentiative capacity of cells. The simple combination with iGel and GM/GF allowed ASCs to enhance their survival at the injected site and consequently achieve improved therapeutic efficacy in cell transplantation. The rats adipose-derived stem cells (ASCs) suspended in various solutions were transplanted in masseter muscle. The number of cells transplanted using this study's technology was significantly high compared with other control groups. For the groups with growth factors, the Myo-D (myoblast marker) expression was observed at the region of cells transplanted.
Collapse
Key Words
- ASCs, adipose-derived stem cells
- Adipose-derived stem cells
- DMEM, Dulbecco modified Eagle medium
- Drug delivery system
- ELISA, Enzyme-Linked ImmunoSorbent Assay
- GM, gelatin hydrogel microspheres
- GM/GF, GM containing bFGF and PGFM
- HGF, hepatocyte growth factor
- Injectable hydrogel
- PBS, phosphate-buffered saline solution
- PGFM, platelet growth factor mixture
- Stem cell transplantation
- VEGF, vascular endothelial growth factor
- bFGF, basic fibroblast growth factor
- iGel+GM/GF, iGel incorporating GM/GF
- iGel, bioabsorbable injectable hydrogels
Collapse
Affiliation(s)
- Ryo Mitsui
- First Department of Oral and Maxillofacial Surgery, Osaka University, Graduate School of Dentistry, 1-8, Yamadaoka, Suita, Osaka, 565-0871, Japan
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Makoto Matsukawa
- First Department of Oral and Maxillofacial Surgery, Osaka University, Graduate School of Dentistry, 1-8, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kiyoko Nakagawa
- First Department of Oral and Maxillofacial Surgery, Osaka University, Graduate School of Dentistry, 1-8, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Emiko Isomura
- First Department of Oral and Maxillofacial Surgery, Osaka University, Graduate School of Dentistry, 1-8, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Toshie Kuwahara
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Teruki Nii
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Susumu Tanaka
- First Department of Oral and Maxillofacial Surgery, Osaka University, Graduate School of Dentistry, 1-8, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
- Corresponding author. 53 Kawara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan. Fax: +81-75-751-4646.
| |
Collapse
|
24
|
Kim S, Chen JB, Clifford A. Tuning the Biointerface: Low-Temperature Surface Modification Strategies for Orthopedic Implants to Enhance Osteogenic and Antimicrobial Activity. ACS APPLIED BIO MATERIALS 2021; 4:6619-6629. [PMID: 35006965 DOI: 10.1021/acsabm.1c00651] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As both the average life expectancy and incidence of bone tissue reconstruction increases, development of load-bearing implantable materials that simultaneously enhance osseointegration while preventing postoperative infection is crucial. To address this need, significant research efforts have been dedicated to developing surface modification strategies for metallic load-bearing implants and scaffolds. Despite the abundance of strategies reported, many address only one factor, for example, surface chemistry or topography. Furthermore, the incorporation of surface features to increase osteocompatibility can increase the probability of infection, by encouraging the formation of bacterial biofilms. To truly advance this field, research efforts must focus on developing multifunctional coatings that concurrently address these complex and competing requirements. In addition, particular emphasis should be placed on utilizing surface modification processes that are versatile, low cost, and scalable, for ease of translation to mass manufacturing and clinical use. The aim of this short Review is to highlight recent advances in scalable and multifunctional surface modification techniques that obtain a programmed response at the bone tissue/implant interface. Low-temperature approaches based on macromolecule immobilization, electrochemical techniques, and solution processes are discussed. Although the strategies discussed in this Review have not yet been approved for clinical use, they show great promise toward developing the next generation of ultra-long-lasting biomaterials for joint and bone tissue repair.
Collapse
Affiliation(s)
- Saeromi Kim
- Department of Materials Engineering, Faculty of Applied Science, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jenise B Chen
- Department of Chemistry, Faculty of Arts & Science, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Amanda Clifford
- Department of Materials Engineering, Faculty of Applied Science, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
25
|
Zuo W, Yu L, Lin J, Yang Y, Fei Q. Properties improvement of titanium alloys scaffolds in bone tissue engineering: a literature review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1259. [PMID: 34532396 PMCID: PMC8421948 DOI: 10.21037/atm-20-8175] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 05/28/2021] [Indexed: 12/19/2022]
Abstract
Owing to their excellent biocompatibility and corrosion-resistant properties, titanium (Ti) (and its alloy) are essential artificial substitute biomaterials for orthopedics. However, flaws, such as weak osteogenic induction ability and higher Young's modulus, have been observed during clinical application. As a result, short- and long-term postoperative follow-up has found that several complications have occurred. For decades, scientists have exerted efforts to compensate for these deficiencies. Different modification methods have been investigated, including changing alloy contents, surface structure transformation, three-dimensional (3D) structure transformation, coating, and surface functionalization technologies. The cell-surface interaction effect and imitation of the natural 3D bone structure are the two main mechanisms of these improved methods. In recent years, significant progress has been made in materials science research methods, including thorough research of titanium alloys of different compositions, precise surface pattern control technology, controllable 3D structure construction technology, improvement of coating technologies, and novel concepts of surface functionalization. These improvements facilitate the possibility for further research in the field of bone tissue engineering. Although the underlying mechanism is still not fully understood, these studies still have some implications for clinical practice. Therefore, for the direction of further research, it is beneficial to summarize these studies according to the basal method used. This literature review aimed to classify these technologies, thereby providing beginners with a preliminary understanding of the field.
Collapse
Affiliation(s)
- Weiyang Zuo
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lingjia Yu
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jisheng Lin
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yong Yang
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Qi Fei
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
26
|
Xie C, Ye J, Liang R, Yao X, Wu X, Koh Y, Wei W, Zhang X, Ouyang H. Advanced Strategies of Biomimetic Tissue-Engineered Grafts for Bone Regeneration. Adv Healthc Mater 2021; 10:e2100408. [PMID: 33949147 DOI: 10.1002/adhm.202100408] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/16/2021] [Indexed: 12/21/2022]
Abstract
The failure to repair critical-sized bone defects often leads to incomplete regeneration or fracture non-union. Tissue-engineered grafts have been recognized as an alternative strategy for bone regeneration due to their potential to repair defects. To design a successful tissue-engineered graft requires the understanding of physicochemical optimization to mimic the composition and structure of native bone, as well as the biological strategies of mimicking the key biological elements during bone regeneration process. This review provides an overview of engineered graft-based strategies focusing on physicochemical properties of materials and graft structure optimization from macroscale to nanoscale to further boost bone regeneration, and it summarizes biological strategies which mainly focus on growth factors following bone regeneration pattern and stem cell-based strategies for more efficient repair. Finally, it discusses the current limitations of existing strategies upon bone repair and highlights a promising strategy for rapid bone regeneration.
Collapse
Affiliation(s)
- Chang Xie
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou 310058 China
- Zhejiang University‐University of Edinburgh Institute Zhejiang University School of Medicine and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province Zhejiang University School of Medicine Hangzhou 314499 China
- Department of Sports Medicine Zhejiang University School of Medicine Hangzhou 310058 China
| | - Jinchun Ye
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou 310058 China
- Zhejiang University‐University of Edinburgh Institute Zhejiang University School of Medicine and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province Zhejiang University School of Medicine Hangzhou 314499 China
| | - Renjie Liang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou 310058 China
- Zhejiang University‐University of Edinburgh Institute Zhejiang University School of Medicine and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province Zhejiang University School of Medicine Hangzhou 314499 China
| | - Xudong Yao
- The Fourth Affiliated Hospital Zhejiang University School of Medicine Yiwu 322000 China
| | - Xinyu Wu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou 310058 China
- Zhejiang University‐University of Edinburgh Institute Zhejiang University School of Medicine and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province Zhejiang University School of Medicine Hangzhou 314499 China
| | - Yiwen Koh
- Zhejiang University‐University of Edinburgh Institute Zhejiang University School of Medicine and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province Zhejiang University School of Medicine Hangzhou 314499 China
| | - Wei Wei
- Zhejiang University‐University of Edinburgh Institute Zhejiang University School of Medicine and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province Zhejiang University School of Medicine Hangzhou 314499 China
- China Orthopedic Regenerative Medicine Group (CORMed) Hangzhou 310058 China
| | - Xianzhu Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou 310058 China
- Zhejiang University‐University of Edinburgh Institute Zhejiang University School of Medicine and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province Zhejiang University School of Medicine Hangzhou 314499 China
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou 310058 China
- Zhejiang University‐University of Edinburgh Institute Zhejiang University School of Medicine and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province Zhejiang University School of Medicine Hangzhou 314499 China
- Department of Sports Medicine Zhejiang University School of Medicine Hangzhou 310058 China
- China Orthopedic Regenerative Medicine Group (CORMed) Hangzhou 310058 China
| |
Collapse
|
27
|
Li Z, He Y, Klausen LH, Yan N, Liu J, Chen F, Song W, Dong M, Zhang Y. Growing vertical aligned mesoporous silica thin film on nanoporous substrate for enhanced degradation, drug delivery and bioactivity. Bioact Mater 2021; 6:1452-1463. [PMID: 33251381 PMCID: PMC7670213 DOI: 10.1016/j.bioactmat.2020.10.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/28/2020] [Accepted: 10/28/2020] [Indexed: 12/18/2022] Open
Abstract
Mesoporous silica thin film has been widely used in various fields, particularly the medical implant coating for drug delivery. However, some drawbacks remain with the films produced by traditional method (evaporation-induced self-assembly, EISA), such as the poor permeability caused by their horizontal aligned mesochannels. In this study, the vertical aligned mesoporous silica thin film (VMSTF) is uniformly grown alongside the walls of titania nanotubes array via a biphase stratification growth method, resulting in a hierarchical two-layered nanotubular structure. Due to the exposure of opened mesopores, VMSTF exhibits more appealing performances, including rapid degradation, efficient small-molecular drug (dexamethasone) loading and release, enhanced early adhesion and osteogenic differentiation of MC3T3-E1 cells. This is the first time successfully depositing VMSTF on nanoporous substrate and our findings suggest that the VMSTF may be a promising candidate for bone implant surface coating to obtain bioactive performances.
Collapse
Key Words
- ALP, alkaline phosphatase
- DEX, dexamethasone
- Drug delivery
- HAP, hydroxylapatite nanoparticles
- HMSTF, hybrid organic-inorganic MSTF
- MSTF, mesoporous silica thin film
- Mesoporous silica film
- OCN, osteocalcin
- OPN, osteopontin
- Osteoblasts
- PMSTF, parallel aligned MSTF
- PT, polished titanium
- RUNX2, runt-related transcription factor 2
- TNN, titania nanonet
- TNT, titania nanotube
- Titania nanotubes array
- Ti–OH, hydroxylated titanium
- VMSTF, vertical aligned MSTF
- Vertical aligned mesochannels
Collapse
Affiliation(s)
- Zhe Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yide He
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | | | - Ning Yan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Jing Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Fanghao Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Wen Song
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, 8000, Denmark
| | - Yumei Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
28
|
Song X, Liu F, Qiu C, Coy E, Liu H, Aperador W, Załęski K, Li JJ, Song W, Lu Z, Pan H, Kong L, Wang G. Nanosurfacing Ti alloy by weak alkalinity-activated solid-state dewetting (AAD) and its biointerfacial enhancement effect. MATERIALS HORIZONS 2021; 8:912-924. [PMID: 34821321 DOI: 10.1039/d0mh01837f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanoscale manipulation of material surfaces can create extraordinary properties, holding great potential for modulating the implant-bio interface for enhanced performance. In this study, a green, simple and biocompatible nanosurfacing approach based on weak alkalinity-activated solid-state dewetting (AAD) was for the first time developed to nano-manipulate the Ti6Al4V surface by atomic self-rearrangement. AAD treatment generated quasi-periodic titanium oxide nanopimples with high surface energy. The nanopimple-like nanostructures enhanced the osteogenic activity of osteoblasts, facilitated M2 polarization of macrophages, and modulated the cross-talk between osteoblasts and macrophages, which collectively led to significant strengthening of in vivo bone-implant interfacial bonding. In addition, the titanium oxide nanopimples strongly adhered to the Ti alloy, showing resistance to tribocorrosion damage. The results suggest strong nano-bio interfacial effects, which was not seen for the control Ti alloy processed through traditional thermal oxidation. Compared to other nanostructuring strategies, the AAD technique shows great potential to integrate high-performance, functionality, practicality and scalability for surface modification of medical implants.
Collapse
Affiliation(s)
- Xiaoxia Song
- Research Center for Human Tissues & Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong 518055, China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Zhang C, Zhang T, Geng T, Wang X, Lin K, Wang P. Dental Implants Loaded With Bioactive Agents Promote Osseointegration in Osteoporosis: A Review. Front Bioeng Biotechnol 2021; 9:591796. [PMID: 33644012 PMCID: PMC7903335 DOI: 10.3389/fbioe.2021.591796] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/04/2021] [Indexed: 12/15/2022] Open
Abstract
Implant-supported dentures are widely used in patients with defect or loss of dentition because these have higher chewing efficiency and do not damage the adjacent teeth compared with fixed or removable denture. An implant-supported denture carries the risk of failure in some systemic diseases, including osteoporosis, because of a non-ideal local microenvironment. Clinically common physical and chemical modifications are used to change the roughness of the implant surface to promote osseointegration, but they have limitations in promoting osteoinduction and inhibiting bone resorption. Recently, many researchers have focused on the study of bioactive modification of implants and have achieved promising results. Herein we have summarized the progress in bioactive modification strategy to promote osseointegration by regulating the local osteoporotic microenvironment.
Collapse
Affiliation(s)
- Cheng Zhang
- School of Stomatology, Xuzhou Medical University, Xuzhou, China
| | - Tianjia Zhang
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Tengyu Geng
- Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xudong Wang
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Kaili Lin
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Penglai Wang
- School of Stomatology, Xuzhou Medical University, Xuzhou, China.,Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
30
|
Capellato P, Camargo SEA, Sachs D. Biological Response to Nanosurface Modification on Metallic Biomaterials. Curr Osteoporos Rep 2020; 18:790-795. [PMID: 33085001 DOI: 10.1007/s11914-020-00635-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/09/2020] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW New biomaterials for biomedical applications have been developed over the past few years. This work summarizes the current cell lines investigations regarding nanosurface modifications to improve biocompatibility and osseointegration. RECENT FINDINGS Material surfaces presenting biomimetic morphology that provides nanoscale architectures have been shown to alter cell/biomaterial interactions. Topographical and biofunctional surface modifications present a positive effect between material and host response. Nanoscale surfaces on titanium have the potential to provide a successful interface for implantable biomedical devices. Future studies need to directly evaluate how the titanium nanoscale materials will perform in in vivo experiments. Biocompatibility should be determined to identify titanium nanoscale as an excellent option for implant procedures.
Collapse
Affiliation(s)
- Patricia Capellato
- Institute of Physics and Chemistry, Unifei- Federal University of Itajubá, Av. BPS, 1303, Itajubá, MG, 37500 903, Brazil.
| | - Samira Esteves Afonso Camargo
- Restorative Dental Sciences, Division of Prosthodontics, University of Florida, College of Dentistry, Gainesville, FL, USA
| | - Daniela Sachs
- Institute of Physics and Chemistry, Unifei- Federal University of Itajubá, Av. BPS, 1303, Itajubá, MG, 37500 903, Brazil
| |
Collapse
|
31
|
Zhao X, You L, Wang T, Zhang X, Li Z, Ding L, Li J, Xiao C, Han F, Li B. Enhanced Osseointegration of Titanium Implants by Surface Modification with Silicon-doped Titania Nanotubes. Int J Nanomedicine 2020; 15:8583-8594. [PMID: 33173295 PMCID: PMC7648569 DOI: 10.2147/ijn.s270311] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/15/2020] [Indexed: 12/18/2022] Open
Abstract
Introduction Despite great progress made in developing orthopedic implants, the development of titanium (Ti) implants with ideal early osseointegration remains a big challenge. Our pilot study has demonstrated that Si-TiO2 nanotubes on the surface of Ti substrates could enhance their osteogenic activity. Hence, in this study, we aim to comprehensively evaluate the effects of silicon-doped titania (Si-TiO2) nanotubes on the osseointegration property of Ti implants. Materials and Methods The Ti implants were surface modified with Si-TiO2 nanotubes through in situ anodization and Si plasma immersion ion implantation (PIII) method. Three groups were divided as Ti implants (Ti), Ti modified with TiO2 nanotubes (TiO2-NTs) and Ti modified with Si-TiO2 nanotubes (Si-TiO2-NTs). The morphology of Si-TiO2 nanotubes was observed by scanning electron microscope. The growth and osteogenic differentiation of MC3T3-E1 cells on the Ti implants were evaluated. Further, the pull-out tests and in vivo osseointegration ability evaluation were performed after implanting the screws in the femur of Sprague Dawley rats. Results The Si-TiO2 nanotubes could be seen on the surface of Ti implants. The MC3T3-E1 cells could grow on the surface of Ti, TiO2-NTs and Si-TiO2-NTs, and showed fast proliferation rate on the Si-TiO2-NTs. Moreover, the production of some osteogenesis-related proteins (ALP and Runx2) at one week and calcium deposition at four week was also enhanced in Si-TiO2-NTs rather than other groups. In vivo osseointegration results showed that Si-TiO2 nanotube-modified Ti screws had higher pullout force at two and four weeks as well as enhanced new bone formation at six weeks compared to bare Ti screws and Ti screws modified with TiO2 nanotubes alone. Discussion The modification of Si-TiO2-NTs on the Ti substrate could generate a nanostructured and hydrophilic surface, which can promote cell growth. Moreover, the existence of the TiO2 nanotubes and Si element also can improve the in vitro osteogenic differentiation of MC3T3-E1 cells and early bone formation around the implanted screws. Together, findings from this study show that surface modification of Ti implants with Si-TiO2 nanotubes could enhance early osseointegration and therefore has the potential for clinical applications.
Collapse
Affiliation(s)
- Xijiang Zhao
- Department of Orthopedics, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, People's Republic of China
| | - Linna You
- Department of Orthopedics, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, People's Republic of China
| | - Tao Wang
- Department of Orthopedics, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, People's Republic of China
| | - Xianjun Zhang
- Department of Orthopedics, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, People's Republic of China
| | - Zexi Li
- Departments of Orthopaedic Surgery and Stomatology, The First Affiliated Hospital, Orthopaedic Institute, Soochow University, Suzhou, Jiangsu 215006, People's Republic of China
| | - Luguang Ding
- Departments of Orthopaedic Surgery and Stomatology, The First Affiliated Hospital, Orthopaedic Institute, Soochow University, Suzhou, Jiangsu 215006, People's Republic of China
| | - Jiaying Li
- Departments of Orthopaedic Surgery and Stomatology, The First Affiliated Hospital, Orthopaedic Institute, Soochow University, Suzhou, Jiangsu 215006, People's Republic of China
| | - Can Xiao
- Departments of Orthopaedic Surgery and Stomatology, The First Affiliated Hospital, Orthopaedic Institute, Soochow University, Suzhou, Jiangsu 215006, People's Republic of China
| | - Fengxuan Han
- Departments of Orthopaedic Surgery and Stomatology, The First Affiliated Hospital, Orthopaedic Institute, Soochow University, Suzhou, Jiangsu 215006, People's Republic of China
| | - Bin Li
- Departments of Orthopaedic Surgery and Stomatology, The First Affiliated Hospital, Orthopaedic Institute, Soochow University, Suzhou, Jiangsu 215006, People's Republic of China
| |
Collapse
|
32
|
Huo SC, Yue B. Approaches to promoting bone marrow mesenchymal stem cell osteogenesis on orthopedic implant surface. World J Stem Cells 2020; 12:545-561. [PMID: 32843913 PMCID: PMC7415248 DOI: 10.4252/wjsc.v12.i7.545] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/13/2020] [Accepted: 05/30/2020] [Indexed: 02/06/2023] Open
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) play a critical role in the osseointegration of bone and orthopedic implant. However, osseointegration between the Ti-based implants and the surrounding bone tissue must be improved due to titanium’s inherent defects. Surface modification stands out as a versatile technique to create instructive biomaterials that can actively direct stem cell fate. Here, we summarize the current approaches to promoting BMSC osteogenesis on the surface of titanium and its alloys. We will highlight the utilization of the unique properties of titanium and its alloys in promoting tissue regeneration, and discuss recent advances in understanding their role in regenerative medicine. We aim to provide a systematic and comprehensive review of approaches to promoting BMSC osteogenesis on the orthopedic implant surface.
Collapse
Affiliation(s)
- Shi-Cheng Huo
- Department of Bone and Joint Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Bing Yue
- Department of Bone and Joint Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| |
Collapse
|