1
|
Fontana G, Nemke B, Lu Y, Chamberlain C, Lee JS, Choe JA, Jiao H, Nelson M, Amitrano M, Li WJ, Markel M, Murphy WL. Local delivery of TGF-β1-mRNA decreases fibrosis in osteochondral defects. Bioact Mater 2025; 45:509-519. [PMID: 39717366 PMCID: PMC11665573 DOI: 10.1016/j.bioactmat.2024.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/25/2024] Open
Abstract
Osteoarthritis (OA) is a condition that affects the quality of life of millions of patients worldwide. Current clinical treatments, in most cases, lead to cartilage repair with deposition of fibrocartilage tissue, which is mechanically inferior and not as durable as hyaline cartilage tissue. We designed an mRNA delivery strategy to enhance the natural healing potential of autologous bone marrow aspirate concentrate (BMAC) for articular cartilage repair. We used mineral-coated microparticles to deliver TGF-β1 mRNA to autologous BMAC. mRNA-activated BMAC was suspended in peripheral blood to generate therapeutic BMAC clots, which were then implanted in rabbit osteochondral defects. Tracking studies revealed that the clots were reliably maintained in the defects for at least 2 weeks. TGF-β1 mRNA delivery significantly increased TGF-β1 production in BMAC clots and increased early expression of articular chondrocyte markers within osteochondral defects. At 9 weeks post-surgery, the mRNA-treated defects had a superior macroscopic cartilage appearance, decreased type I collagen deposition, increased stain intensity for type II collagen and increased glycosaminoglycan deposition area when compared to the controls. Despite the transient expression of therapeutic mRNA we have detected lasting effects, such as a decrease in fibrocartilage formation demonstrated by the decrease in type I collagen deposition and the improvement in macroscopic appearance in the treatment group.
Collapse
Affiliation(s)
| | | | - Yan Lu
- School of Veterinary Medicine, USA
| | | | - Jae-Sung Lee
- Department of Orthopedics and Rehabilitation, USA
| | | | - Hongli Jiao
- Department of Orthopedics and Rehabilitation, USA
| | | | | | - Wan-Ju Li
- Department of Orthopedics and Rehabilitation, USA
| | | | - William L. Murphy
- Department of Orthopedics and Rehabilitation, USA
- Department of Biomedical Engineering, USA
- Material Sciences and Engineering, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
2
|
Hao ZW, Zhang ZY, Wang ZP, Wang Y, Chen JY, Chen TH, Shi G, Li HK, Wang JW, Dong MC, Hong L, Li JF. Bioactive peptides and proteins for tissue repair: microenvironment modulation, rational delivery, and clinical potential. Mil Med Res 2024; 11:75. [PMID: 39639374 PMCID: PMC11619216 DOI: 10.1186/s40779-024-00576-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/25/2024] [Indexed: 12/07/2024] Open
Abstract
Bioactive peptides and proteins (BAPPs) are promising therapeutic agents for tissue repair with considerable advantages, including multifunctionality, specificity, biocompatibility, and biodegradability. However, the high complexity of tissue microenvironments and their inherent deficiencies such as short half-live and susceptibility to enzymatic degradation, adversely affect their therapeutic efficacy and clinical applications. Investigating the fundamental mechanisms by which BAPPs modulate the microenvironment and developing rational delivery strategies are essential for optimizing their administration in distinct tissue repairs and facilitating clinical translation. This review initially focuses on the mechanisms through which BAPPs influence the microenvironment for tissue repair via reactive oxygen species, blood and lymphatic vessels, immune cells, and repair cells. Then, a variety of delivery platforms, including scaffolds and hydrogels, electrospun fibers, surface coatings, assisted particles, nanotubes, two-dimensional nanomaterials, and nanoparticles engineered cells, are summarized to incorporate BAPPs for effective tissue repair, modification strategies aimed at enhancing loading efficiencies and release kinetics are also reviewed. Additionally, the delivery of BAPPs can be precisely regulated by endogenous stimuli (glucose, reactive oxygen species, enzymes, pH) or exogenous stimuli (ultrasound, heat, light, magnetic field, and electric field) to achieve on-demand release tailored for specific tissue repair needs. Furthermore, this review focuses on the clinical potential of BAPPs in facilitating tissue repair across various types, including bone, cartilage, intervertebral discs, muscle, tendons, periodontal tissues, skin, myocardium, nervous system (encompassing brain, spinal cord, and peripheral nerve), endometrium, as well as ear and ocular tissue. Finally, current challenges and prospects are discussed.
Collapse
Affiliation(s)
- Zhuo-Wen Hao
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zhe-Yuan Zhang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ze-Pu Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ying Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jia-Yao Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Tian-Hong Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Guang Shi
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Han-Ke Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jun-Wu Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Min-Chao Dong
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Li Hong
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Jing-Feng Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
3
|
Zhu S, Wu Q, Ying Y, Mao Y, Lu W, Xu J, Cai X, He H, Wu J. Tissue-Adaptive BSA Hydrogel with Dual Release of PTX and bFGF Promotes Spinal Cord Injury Repair via Glial Scar Inhibition and Axon Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401407. [PMID: 39385643 DOI: 10.1002/smll.202401407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 09/18/2024] [Indexed: 10/12/2024]
Abstract
Spinal cord injury (SCI) is a severe clinical disease usually accompanied by activated glial scar, neuronal axon rupture, and disabled motor function. To mimic the microenvironment of the SCI injury site, a hydrogel system with a comparable mechanical property to the spinal cord is desirable. Therefore, a novel elastic bovine serum albumin (BSA) hydrogel is fabricated with excellent adhesive, injectable, and biocompatible properties. The hydrogel is used to deliver paclitaxel (PTX) together with basic fibroblast growth factor (bFGF) to inhibit glial scar formation as well as promote axon regeneration and motor function for SCI repair. Due to the specific interaction of BSA with both drugs, bFGF, and PTX can be controllably released from the hydrogel system to achieve an effective concentration at the wound site during the SCI regeneration process. Moreover, benefiting from the combination of PTX and bFGF, this bFGF/PTX@BSA system significantly aided axon repair by promoting the elongation of axons across the glial scar with reduced reactive astrocyte secretion. In addition, remarkable anti-apoptosis of nerve cells is evident with the bFGF/PTX@BSA system. Subsequently, this multi-functionalized drug system significantly improved the motor function of the rats after SCI. These results reveal that bFGF/PTX@BSA is an ideal functionalized material for nerve repair in SCI.
Collapse
Affiliation(s)
- Sipin Zhu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), Wenzhou, Zhejiang, 325000, China
| | - Qiuji Wu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yibo Ying
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yuqin Mao
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wenjie Lu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jie Xu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiong Cai
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Huacheng He
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), Wenzhou, Zhejiang, 325000, China
| | - Jiang Wu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), Wenzhou, Zhejiang, 325000, China
| |
Collapse
|
4
|
Kawecki NS, Chen KK, Smith CS, Xie Q, Cohen JM, Rowat AC. Scalable Processes for Culturing Meat Using Edible Scaffolds. Annu Rev Food Sci Technol 2024; 15:241-264. [PMID: 38211941 DOI: 10.1146/annurev-food-072023-034451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
There is increasing consumer demand for alternative animal protein products that are delicious and sustainably produced to address concerns about the impacts of mass-produced meat on human and planetary health. Cultured meat has the potential to provide a source of nutritious dietary protein that both is palatable and has reduced environmental impact. However, strategies to support the production of cultured meats at the scale required for food consumption will be critical. In this review, we discuss the current challenges and opportunities of using edible scaffolds for scaling up the production of cultured meat. We provide an overview of different types of edible scaffolds, scaffold fabrication techniques, and common scaffold materials. Finally, we highlight potential advantages of using edible scaffolds to advance cultured meat production by accelerating cell growth and differentiation, providing structure to build complex 3D tissues, and enhancing the nutritional and sensory properties of cultured meat.
Collapse
Affiliation(s)
- N Stephanie Kawecki
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California, USA;
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Kathleen K Chen
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California, USA;
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, USA
| | - Corinne S Smith
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California, USA;
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Qingwen Xie
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California, USA;
| | - Julian M Cohen
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California, USA;
| | - Amy C Rowat
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California, USA;
- Broad Stem Cell Center, University of California, Los Angeles, Los Angeles, California, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
5
|
Choe JA, Brinkman HM, Lee JS, Murphy WL. Optimized biomimetic minerals maintain activity of mRNA complexes after long term storage. Acta Biomater 2024; 174:428-436. [PMID: 38061679 PMCID: PMC11619074 DOI: 10.1016/j.actbio.2023.11.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/16/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
mRNA therapeutics can be readily designed, manufactured, and brought to scale, as demonstrated by widespread global vaccination against COVID-19. However, mRNA therapies require cold chain shipment and storage from manufacturing to administration, which may limit them to affluent communities. This problem could be addressed by mimicking the known ability of mineralized fossils to durably stabilize nucleic acids under extreme conditions. We synthesized and screened 40 calcium-phosphate minerals for their ability to store and maintain the activity of lyophilized mRNA complexes. The optimal mineral formulation incorporated mRNA complexes with high efficiency (77 %), and increased mRNA transfection efficiency by 5.6-fold. Lyophilized mRNA complexes stored with the optimized mineral formulation for 6 months at 25 °C were 3.2-fold more active than those stored with state-of-the-art excipients, but without a mineral. mRNA complexes stored with minerals at room temperature did not decline in transfection efficacy from 3 days to 6 months of storage, indicating that minerals can durably maintain activity of therapeutic mRNA complexes without cold chain storage. STATEMENT OF SIGNIFICANCE: Therapeutic mRNA, such as mRNA COVID-19 vaccines, require extensive cold chain storage that limits their general application. This work screened a library of minerals to maintain the activity of mRNA complexes with freeze-drying. The optimized mineral was able to maintain mRNA activity up to 6 months of storage at room temperature outperforming current methods of freeze-drying therapeutic mRNA complexes.
Collapse
Affiliation(s)
- Joshua A Choe
- Department of Biomedical Engineering, Madison, WI, USA; Department of Orthopedics and Rehabilitation, Madison, WI, USA; Medical Scientist Training Program, Madison, WI, USA
| | - Hannah M Brinkman
- Department of Orthopedics and Rehabilitation, Madison, WI, USA; Comparative Biomedical Sciences Program, University of Wisconsin - Madison, Madison, WI, USA
| | - Jae Sung Lee
- Department of Orthopedics and Rehabilitation, Madison, WI, USA
| | - William L Murphy
- Department of Biomedical Engineering, Madison, WI, USA; Department of Orthopedics and Rehabilitation, Madison, WI, USA.
| |
Collapse
|
6
|
Shao Z, Chen L, Zhang Z, Wu Y, Mou H, Jin X, Teng W, Wang F, Yang Y, Zhou H, Xue Y, Eloy Y, Yao M, Zhao S, Cui W, Yu X, Ye Z. KERS-Inspired Nanostructured Mineral Coatings Boost IFN-γ mRNA Therapeutic Index for Antitumor Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304296. [PMID: 37587307 DOI: 10.1002/adma.202304296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/01/2023] [Indexed: 08/18/2023]
Abstract
Tumor-associated macrophage (TAM) reprogramming is a promising therapeutic approach for cancer immunotherapy; however, its efficacy remains modest due to the low bioactivity of the recombinant cytokines used for TAM reprogramming. mRNA therapeutics are capable of generating fully functional proteins for various therapeutic purposes but accused for its poor sustainability. Inspired by kinetic energy recovery systems (KERS) in hybrid vehicles, a cytokine efficacy recovery system (CERS) is designed to substantially augment the therapeutic index of mRNA-based tumor immunotherapy via a "capture and stabilize" mechanism exerted by a nanostructured mineral coating carrying therapeutic cytokine mRNA. CERS remarkably recycles nearly 40% expressed cytokines by capturing them onto the mineral coating to extend its therapeutic timeframe, further polarizing the macrophages to strengthen their tumoricidal activity and activate adaptive immunity against tumors. Notably, interferon-γ (IFN-γ) produced by CERS exhibits ≈42-fold higher biological activity than recombinant IFN-γ, remarkably decreasing the required IFN-γ dosage for TAM reprogramming. In tumor-bearing mice, IFN-γ cmRNA@CERS effectively polarizes TAMs to inhibit osteosarcoma progression. When combined with the PD-L1 monoclonal antibody, IFN-γ cmRNA@CERS significantly boosts antitumor immune responses, and substantially prevents malignant lung metastases. Thus, CERS-mediated mRNA delivery represents a promising strategy to boost antitumor immunity for tumor treatment.
Collapse
Affiliation(s)
- Zhenxuan Shao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, 88 Jiefang Road, Hangzhou City, Zhejiang Province, 310003, P. R. China
| | - Liang Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, 88 Jiefang Road, Hangzhou City, Zhejiang Province, 310003, P. R. China
| | - Zengjie Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, 88 Jiefang Road, Hangzhou City, Zhejiang Province, 310003, P. R. China
| | - Yan Wu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, 88 Jiefang Road, Hangzhou City, Zhejiang Province, 310003, P. R. China
| | - Haochen Mou
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, 88 Jiefang Road, Hangzhou City, Zhejiang Province, 310003, P. R. China
| | - Xiaoqiang Jin
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, 88 Jiefang Road, Hangzhou City, Zhejiang Province, 310003, P. R. China
| | - Wangsiyuan Teng
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, 88 Jiefang Road, Hangzhou City, Zhejiang Province, 310003, P. R. China
| | - Fangqian Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, 88 Jiefang Road, Hangzhou City, Zhejiang Province, 310003, P. R. China
| | - Yinxian Yang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hao Zhou
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, 88 Jiefang Road, Hangzhou City, Zhejiang Province, 310003, P. R. China
| | - Yucheng Xue
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, 88 Jiefang Road, Hangzhou City, Zhejiang Province, 310003, P. R. China
| | - Yinwang Eloy
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, 88 Jiefang Road, Hangzhou City, Zhejiang Province, 310003, P. R. China
| | - Minjun Yao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, 88 Jiefang Road, Hangzhou City, Zhejiang Province, 310003, P. R. China
| | - Shenzhi Zhao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, 88 Jiefang Road, Hangzhou City, Zhejiang Province, 310003, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Xiaohua Yu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, 88 Jiefang Road, Hangzhou City, Zhejiang Province, 310003, P. R. China
| | - Zhaoming Ye
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, 88 Jiefang Road, Hangzhou City, Zhejiang Province, 310003, P. R. China
| |
Collapse
|
7
|
Zheng R, Xu T, Wang X, Yang L, Wang J, Huang X. Stem cell therapy in pulmonary hypertension: current practice and future opportunities. Eur Respir Rev 2023; 32:230112. [PMID: 37758272 PMCID: PMC10523152 DOI: 10.1183/16000617.0112-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/13/2023] [Indexed: 09/30/2023] Open
Abstract
Pulmonary hypertension (PH) is a progressive disease characterised by elevated pulmonary arterial pressure and right-sided heart failure. While conventional drug therapies, including prostacyclin analogues, endothelin receptor antagonists and phosphodiesterase type 5 inhibitors, have been shown to improve the haemodynamic abnormalities of patients with PH, the 5-year mortality rate remains high. Thus, novel therapies are urgently required to prolong the survival of patients with PH. Stem cell therapies, including mesenchymal stem cells, endothelial progenitor cells and induced pluripotent stem cells, have shown therapeutic potential for the treatment of PH and clinical trials on stem cell therapies for PH are ongoing. This review aims to present the latest preclinical achievements of stem cell therapies, focusing on the therapeutic effects of clinical trials and discussing the challenges and future perspectives of large-scale applications.
Collapse
Affiliation(s)
- Ruixuan Zheng
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, China
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- These authors contributed equally to this work
| | - Tingting Xu
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, China
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- These authors contributed equally to this work
| | - Xinghong Wang
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, China
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lehe Yang
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, China
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jian Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Xiaoying Huang
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, China
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
8
|
Luo L, Liu L, Ding Y, Dong Y, Ma M. Advances in biomimetic hydrogels for organoid culture. Chem Commun (Camb) 2023; 59:9675-9686. [PMID: 37455615 DOI: 10.1039/d3cc01274c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
An organoid is a 3-dimensional (3D) cell culture system that mimics the structural and functional characteristics of organs, and it has promising applications in regenerative medicine, precision drug screening and personalised therapy. However, current culture techniques of organoids usually use mouse tumour-derived scaffolds (Matrigel) or other animal-derived decellularised extracellular matrices as culture systems with poorly defined components and undefined chemical and physical properties, which limit the growth of organoids and the reproducibility of culture conditions. In contrast, some synthetic culture materials have emerged in recent years with well-defined compositions, and flexible adjustment and optimisation of physical and chemical properties, which can effectively support organoid growth and development and prolong survival time of organoid in vitro. In this review, we will introduce the challenge of animal-derived decellularised extracellular matrices in organoid culture, and summarise the categories of biomimetic hydrogels currently used for organoid culture, and then discuss the future opportunities and perspectives in the development of advanced hydrogels in organoids. We hope that this review can promote academic communication in the field of organoid research and provide some assistance in advancing the development of organoid cultivation technology.
Collapse
Affiliation(s)
- Lili Luo
- Department of Nutrition and Health, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian, Beijing, 100193, P. R. China.
| | - Libing Liu
- Department of Nutrition and Health, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian, Beijing, 100193, P. R. China.
| | - Yuxuan Ding
- Department of Nutrition and Health, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian, Beijing, 100193, P. R. China.
| | - Yixuan Dong
- Department of Nutrition and Health, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian, Beijing, 100193, P. R. China.
| | - Min Ma
- Department of Nutrition and Health, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian, Beijing, 100193, P. R. China.
| |
Collapse
|
9
|
Cuylear D, Elghazali NA, Kapila SD, Desai TA. Calcium Phosphate Delivery Systems for Regeneration and Biomineralization of Mineralized Tissues of the Craniofacial Complex. Mol Pharm 2023; 20:810-828. [PMID: 36652561 PMCID: PMC9906782 DOI: 10.1021/acs.molpharmaceut.2c00652] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Calcium phosphate (CaP)-based materials have been extensively used for mineralized tissues in the craniofacial complex. Owing to their excellent biocompatibility, biodegradability, and inherent osteoconductive nature, their use as delivery systems for drugs and bioactive factors has several advantages. Of the three mineralized tissues in the craniofacial complex (bone, dentin, and enamel), only bone and dentin have some regenerative properties that can diminish due to disease and severe injuries. Therefore, targeting these regenerative tissues with CaP delivery systems carrying relevant drugs, morphogenic factors, and ions is imperative to improve tissue health in the mineralized tissue engineering field. In this review, the use of CaP-based microparticles, nanoparticles, and polymer-induced liquid precursor (PILPs) amorphous CaP nanodroplets for delivery to craniofacial bone and dentin are discussed. The use of these various form factors to obtain either a high local concentration of cargo at the macroscale and/or to deliver cargos precisely to nanoscale structures is also described. Finally, perspectives on the field using these CaP materials and next steps for the future delivery to the craniofacial complex are presented.
Collapse
Affiliation(s)
- Darnell
L. Cuylear
- Graduate
Program in Oral and Craniofacial Sciences, School of Dentistry, University of California, San Francisco, California 94143-2520, United States,Department
of Bioengineering and Therapeutic Sciences, University of California, San
Francisco, California 94143-2520, United States
| | - Nafisa A. Elghazali
- Department
of Bioengineering and Therapeutic Sciences, University of California, San
Francisco, California 94143-2520, United States,UC
Berkeley - UCSF Graduate Program in Bioengineering, San Francisco, California 94143, United States
| | - Sunil D. Kapila
- Section
of Orthodontics, School of Dentistry, University
of California, Los Angeles, California 90095-1668, United States
| | - Tejal A. Desai
- Graduate
Program in Oral and Craniofacial Sciences, School of Dentistry, University of California, San Francisco, California 94143-2520, United States,Department
of Bioengineering and Therapeutic Sciences, University of California, San
Francisco, California 94143-2520, United States,UC
Berkeley - UCSF Graduate Program in Bioengineering, San Francisco, California 94143, United States,Department
of Bioengineering, University of California, Berkeley, California 94143-2520, United States,School
of
Engineering, Brown University, Providence, Rhode Island 02912, United States,
| |
Collapse
|
10
|
Ren X, Gao X, Cheng Y, Xie L, Tong L, Li W, Chu PK, Wang H. Maintenance of multipotency of bone marrow mesenchymal stem cells on poly(ε-caprolactone) nanoneedle arrays through the enhancement of cell-cell interaction. Front Bioeng Biotechnol 2023; 10:1076345. [PMID: 36698633 PMCID: PMC9870049 DOI: 10.3389/fbioe.2022.1076345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
Mesenchymal stem cells (MSCs), with high self-renewal ability and multipotency, are commonly used as the seed cells for tissue engineering. However, the reduction and loss of multipotential ability after necessary expansion in vitro set up a heavy obstacle to the clinical application of MSCs. Here in this study, we exploit the autologous crystallization ability of biocompatible poly (ε-caprolactone) (PCL) to obtain uniformly distributed nanoneedle arrays. By controlling the molecular weight of PCL, nanoneedle with a width of 2 μm and height of 50 nm, 80 nm, and 100 nm can be successfully fabricated. After surface chemical modification with polydopamine (PDA), the water contact angle of the fabricated PCL nanoneedle arrays are reduced from 84° to almost 60° with no significant change of the nanostructure. All the fabricated substrates are cultured with bone marrow MSCs (BMMSCs), and the adhesion, spreading, proliferation ability and multipotency of cells on different substrates are investigated. Compared with the BMMSCs cultured on pure PCL nanoneedle arrays, the decoration of PDA can improve the adhesion and spreading of cells and further change them from aggregated distribution to laminar distribution. Nevertheless, the laminar distribution of cultured cells leads to a weak cell-cell interaction, and hence the multipotency of BMMSCs cultured on the PCL-PDA substrates is decimated. On the contrary, the pure PCL nanoneedle arrays can be used to maintain the multipotency of BMMSCs via clustered growth, and the PCL1 nanoneedle array with a height of 50 nm is more promising than the other 2 with regard to the highest proliferation rate and best multipotential differentiation ability of cultured cells. Interestingly, there is a positive correlation between the strength of cell-cell interaction and the multipotency of stem cells in vitro. In conclusion, we have successfully maintained the multipotency of BMMSCs by using the PCL nanoneedle arrays, especially the PCL1 nanoneedle array with a height of 50 nm, as the substrates for in vitro extension, and further revealed the importance of cell-cell interaction on the multipotency of MSCs. The study provides a theoretical basis for the behavioral regulation of MSCs, and is instructive to the design of tissue engineering scaffolds.
Collapse
Affiliation(s)
- Xiaoxue Ren
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiaoting Gao
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China,University of Chinese Academy of Sciences, Beijing, China
| | - Yicheng Cheng
- Department of Stomatology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China,*Correspondence: Yicheng Cheng, ; Wei Li, ; Huaiyu Wang,
| | - Lingxia Xie
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Liping Tong
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wei Li
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China,*Correspondence: Yicheng Cheng, ; Wei Li, ; Huaiyu Wang,
| | - Paul K. Chu
- Department of Physics, Department of Materials Science and Engineering, Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Huaiyu Wang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China,*Correspondence: Yicheng Cheng, ; Wei Li, ; Huaiyu Wang,
| |
Collapse
|
11
|
Khalil AS, Hellenbrand D, Reichl K, Umhoefer J, Filipp M, Choe J, Hanna A, Murphy WL. A Localized Materials-Based Strategy to Non-Virally Deliver Chondroitinase ABC mRNA Improves Hindlimb Function in a Rat Spinal Cord Injury Model. Adv Healthc Mater 2022; 11:e2200206. [PMID: 35882512 PMCID: PMC10031873 DOI: 10.1002/adhm.202200206] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/14/2022] [Indexed: 01/27/2023]
Abstract
Spinal cord injury often results in devastating consequences for those afflicted, with very few therapeutic options. A central element of spinal cord injuries is astrogliosis, which forms a glial scar that inhibits neuronal regeneration post-injury. Chondroitinase ABC (ChABC) is an enzyme capable of degrading chondroitin sulfate proteoglycan (CSPG), the predominant extracellular matrix component of the glial scar. However, poor protein stability remains a challenge in its therapeutic use. Messenger RNA (mRNA) delivery is an emerging gene therapy technology for in vivo production of difficult-to-produce therapeutic proteins. Here, mineral-coated microparticles as an efficient, non-viral mRNA delivery vehicles to produce exogenous ChABC in situ within a spinal cord lesion are used. ChABC production reduces the deposition of CSPGs in an in vitro model of astrogliosis, and direct injection of these microparticles within a glial scar forces local overexpression of ChABC and improves recovery of motor function seven weeks post-injury.
Collapse
Affiliation(s)
- Andrew S. Khalil
- Department of Biomedical EngineeringUniversity of Wisconsin‐MadisonMadisonWI53705USA
- Department of Orthopedics and RehabilitationUniversity of Wisconsin‐MadisonMadisonWI53705USA
- Present address:
Whitehead Institute for Biomedical ResearchCambridgeMA02142USA
- Present address:
The Wyss Institute for Biologically Inspired EngineeringBostonMA02115USA
| | - Daniel Hellenbrand
- Department of NeurosurgeryUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWI53705USA
| | - Kaitlyn Reichl
- Department of Biomedical EngineeringUniversity of Wisconsin‐MadisonMadisonWI53705USA
- Present address:
Virginia Commonwealth University School of MedicineRichmondVA23298USA
| | - Jennifer Umhoefer
- Department of BiologyUniversity of Wisconsin‐MadisonMadisonWI53705USA
- Present address:
Biomedical Sciences ProgramUniversity of CaliforniaSan FranciscoCA94143USA
| | - Mallory Filipp
- Department of NeurosurgeryUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWI53705USA
- Present address:
Driskill Graduate ProgramNorthwestern University Feinberg School of MedicineChicagoIL60611USA
| | - Joshua Choe
- Department of Biomedical EngineeringUniversity of Wisconsin‐MadisonMadisonWI53705USA
- Department of Orthopedics and RehabilitationUniversity of Wisconsin‐MadisonMadisonWI53705USA
- Medical Scientist Training ProgramUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWI53705USA
| | - Amgad Hanna
- Department of NeurosurgeryUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWI53705USA
| | - William L. Murphy
- Department of Biomedical EngineeringUniversity of Wisconsin‐MadisonMadisonWI53705USA
- Department of Orthopedics and RehabilitationUniversity of Wisconsin‐MadisonMadisonWI53705USA
- Department of Materials Science and EngineeringUniversity of Wisconsin‐MadisonMadisonWI53705USA
- Forward BIO InstituteUniversity of Wisconsin‐MadisonMadisonWI53705USA
| |
Collapse
|
12
|
Krzyscik MA, Opaliński Ł, Szymczyk J, Otlewski J. Cyclic and dimeric fibroblast growth factor 2 variants with high biomedical potential. Int J Biol Macromol 2022; 218:243-258. [PMID: 35878661 DOI: 10.1016/j.ijbiomac.2022.07.105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/29/2022] [Accepted: 07/14/2022] [Indexed: 11/05/2022]
Abstract
Fibroblast growth factor 2 (FGF2) is a pleiotropic protein engaged in the regulation of key cellular processes in a wide spectrum of cells. FGF2 is an important object of basic research as well as a molecule used in regenerative medicine, in vitro cell culture maintenance, and as an anticancer drug carrier. However, the unsatisfactory stability and pleiotropic activities of the wild-type FGF2 largely limit its use as a medical product. To overcome these limitations, we have designed a set of FGF2-based macromolecules via sortase A-mediated cyclization and oligomerization. We obtained heparin-switchable FGF2 variants with enhanced stability and improved ability to stimulate cell proliferation and migration. We have shown that stimulation of glucose uptake by adipocytes is modulated by the architecture of FGF2 oligomers. Moreover, we used hyper-stable FGF2 variants for the construction of highly effective drug carriers for selective killing of FGFR1-overproducing cancer cells. The strategy for FGF2 engineering presented in this work provides novel insights into the design of growth factor variants for regenerative and anti-cancer precise medicine.
Collapse
Affiliation(s)
- Mateusz A Krzyscik
- University of Wroclaw, Faculty of Biotechnology, Department of Protein Engineering, 50-383 Wroclaw, Poland
| | - Łukasz Opaliński
- University of Wroclaw, Faculty of Biotechnology, Department of Protein Engineering, 50-383 Wroclaw, Poland
| | - Jakub Szymczyk
- University of Wroclaw, Faculty of Biotechnology, Department of Protein Engineering, 50-383 Wroclaw, Poland
| | - Jacek Otlewski
- University of Wroclaw, Faculty of Biotechnology, Department of Protein Engineering, 50-383 Wroclaw, Poland.
| |
Collapse
|
13
|
Li Y, Yang L, Hu F, Xu J, Ye J, Liu S, Wang L, Zhuo M, Ran B, Zhang H, Ye J, Xiao J. Novel Thermosensitive Hydrogel Promotes Spinal Cord Repair by Regulating Mitochondrial Function. ACS APPLIED MATERIALS & INTERFACES 2022; 14:25155-25172. [PMID: 35618676 DOI: 10.1021/acsami.2c04341] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The repair of spinal cord injury (SCI) is still a tough clinical challenge and needs innovative therapies. Mitochondrial function is significantly compromised after SCI and has emerged as an important factor causing neuronal apoptosis and hindering functional recovery. In this study, umbilical cord mesenchymal stem cells (UCMSC), which are promising seed cells for nerve regeneration, and basic fibroblast growth factor (bFGF) that have been demonstrated to have a variety of effects on neural regeneration were jointly immobilized in extracellular matrix (ECM) and heparin-poloxamer (HP) to create a polymer bioactive system that brings more hope and possibility for the treatment of SCI. Our results in vitro and in vivo showed that the UCMSC-bFGF-ECM-HP thermosensitive hydrogel has good therapeutic effects, mainly in reducing apoptosis and improving the mitochondrial function. It showed promising utility for the functional recovery of impaired mitochondrial function by promoting mitochondrial fusion, reducing pathological mitochondrial fragmentation, increasing mitochondrial energy supply, and improving the metabolism of MDA, LDH, and ROS. In addition, we uncovered a distinct molecular mechanism underlying the protective effects associated with activating p21-activated kinase 1 (PAK1) and mitochondrial sirtuin 4 (SIRT4) by the UCMSC-bFGF-ECM-HP hydrogel. The expansion of new insights into the molecular relationships between PAK1 and SIRT4, which links the mitochondrial function in SCI, can lay the foundation for future applications and help to provide promising interventions of stem-cell-based biological scaffold therapies and potential therapeutic targets for the clinical formulation of SCI treatment strategies.
Collapse
Affiliation(s)
- Yi Li
- Medical College of Soochow University, Suzhou, Jiangsu 215123, China
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical College, Ganzhou, Jiangxi 341000, China
| | - Liangliang Yang
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Fei Hu
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Ji Xu
- Department of Emergency, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Junsong Ye
- Subcenter for Stem Cell Clinical Translation, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi 341000, China
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Shuhua Liu
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical College, Ganzhou, Jiangxi 341000, China
| | - Lifeng Wang
- Medical College of Soochow University, Suzhou, Jiangsu 215123, China
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical College, Ganzhou, Jiangxi 341000, China
| | - Ming Zhuo
- Medical College of Soochow University, Suzhou, Jiangsu 215123, China
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical College, Ganzhou, Jiangxi 341000, China
| | - Bing Ran
- Medical College of Soochow University, Suzhou, Jiangsu 215123, China
- Department of Pain, The First Affiliated Hospital of Gannan Medical College, Ganzhou, Jiangxi 341000, China
| | - Hongyu Zhang
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Junming Ye
- Medical College of Soochow University, Suzhou, Jiangsu 215123, China
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical College, Ganzhou, Jiangxi 341000, China
| | - Jian Xiao
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
14
|
Zhou P, Qin L, Ge Z, Xie B, Huang H, He F, Ma S, Ren L, Shi J, Pei S, Dong G, Qi Y, Lan F. Design of chemically defined synthetic substrate surfaces for the in vitro maintenance of human pluripotent stem cells: A review. J Biomed Mater Res B Appl Biomater 2022; 110:1968-1990. [PMID: 35226397 DOI: 10.1002/jbm.b.35034] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 11/11/2022]
Abstract
Human pluripotent stem cells (hPSCs) have the potential of long-term self-renewal and differentiation into nearly all cell types in vitro. Prior to the downstream applications, the design of chemically defined synthetic substrates for the large-scale proliferation of quality-controlled hPSCs is critical. Although great achievements have been made, Matrigel and recombinant proteins are still widely used in the fundamental research and clinical applications. Therefore, much effort is still needed to improve the performance of synthetic substrates in the culture of hPSCs, realizing their commercial applications. In this review, we summarized the design of reported synthetic substrates and especially their limitations in terms of cell culture. Moreover, much attention was paid to the development of promising peptide displaying surfaces. Besides, the biophysical regulation of synthetic substrate surfaces as well as the three-dimensional culture systems were described.
Collapse
Affiliation(s)
- Ping Zhou
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Liying Qin
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Zhangjie Ge
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Biyao Xie
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Hongxin Huang
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Fei He
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Shengqin Ma
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Lina Ren
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Jiamin Shi
- Department of Laboratory Animal Centre, Changzhi Medical College, Changzhi, China
| | - Suying Pei
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Genxi Dong
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Yongmei Qi
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Feng Lan
- Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen Key Laboratory of Cardiovascular Disease, State Key Laboratory of Cardiovascular Disease, Shenzhen, China
| |
Collapse
|
15
|
Zhou X, Chen J, Sun H, Wang F, Wang Y, Zhang Z, Teng W, Ye Y, Huang D, Zhang W, Mo X, Liu A, Lin P, Wu Y, Tao H, Yu X, Ye Z. Spatiotemporal regulation of angiogenesis/osteogenesis emulating natural bone healing cascade for vascularized bone formation. J Nanobiotechnology 2021; 19:420. [PMID: 34906152 PMCID: PMC8670285 DOI: 10.1186/s12951-021-01173-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 11/30/2021] [Indexed: 12/17/2022] Open
Abstract
Engineering approaches for growth factor delivery have been considerably advanced for tissue regeneration, yet most of them fail to provide a complex combination of signals emulating a natural healing cascade, which substantially limits their clinical successes. Herein, we aimed to emulate the natural bone healing cascades by coupling the processes of angiogenesis and osteogenesis with a hybrid dual growth factor delivery system to achieve vascularized bone formation. Basic fibroblast growth factor (bFGF) was loaded into methacrylate gelatin (GelMA) to mimic angiogenic signalling during the inflammation and soft callus phases of the bone healing process, while bone morphogenetic protein-2 (BMP-2) was bound onto mineral coated microparticles (MCM) to mimics osteogenic signalling in the hard callus and bone remodelling phases. An Initial high concentration of bFGF accompanied by a sustainable release of BMP-2 and inorganic ions was realized to orchestrate well-coupled osteogenic and angiogenic effects for bone regeneration. In vitro experiments indicated that the hybrid hydrogel markedly enhanced the formation of vasculature in human umbilical vein endothelial cells (HUVECs), as well as the osteogenic differentiation of mesenchymal stem cells (BMSCs). In vivo results confirmed the optimal osteogenic performance of our F/G-B/M hydrogel, which was primarily attributed to the FGF-induced vascularization. This research presents a facile and potent alternative for treating bone defects by emulating natural cascades of bone healing.
Collapse
Affiliation(s)
- Xingzhi Zhou
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310000, People's Republic of China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310000, People's Republic of China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310000, People's Republic of China
| | - Jiayu Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310000, People's Republic of China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310000, People's Republic of China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310000, People's Republic of China
| | - Hangxiang Sun
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310000, People's Republic of China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310000, People's Republic of China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310000, People's Republic of China
| | - Fangqian Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310000, People's Republic of China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310000, People's Republic of China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310000, People's Republic of China
| | - Yikai Wang
- Department of Orthopedics, Renming Hospital of Wuhan University, Gaoxin 6th Road, Wuhan, Hubei, 430000, People's Republic of China
| | - Zengjie Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310000, People's Republic of China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310000, People's Republic of China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310000, People's Republic of China
| | - Wangsiyuan Teng
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310000, People's Republic of China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310000, People's Republic of China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310000, People's Republic of China
| | - Yuxiao Ye
- School of Material Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Donghua Huang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310000, People's Republic of China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310000, People's Republic of China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310000, People's Republic of China
| | - Wei Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310000, People's Republic of China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310000, People's Republic of China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310000, People's Republic of China
| | - Xianan Mo
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310000, People's Republic of China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310000, People's Republic of China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310000, People's Republic of China
| | - An Liu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310000, People's Republic of China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310000, People's Republic of China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310000, People's Republic of China
| | - Peng Lin
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310000, People's Republic of China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310000, People's Republic of China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310000, People's Republic of China
| | - Yan Wu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310000, People's Republic of China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310000, People's Republic of China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310000, People's Republic of China
| | - Huimin Tao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310000, People's Republic of China. .,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310000, People's Republic of China. .,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310000, People's Republic of China.
| | - Xiaohua Yu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310000, People's Republic of China. .,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310000, People's Republic of China. .,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310000, People's Republic of China.
| | - Zhaoming Ye
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310000, People's Republic of China. .,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310000, People's Republic of China. .,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310000, People's Republic of China.
| |
Collapse
|
16
|
Aisenbrey EA, Murphy WL. Synthetic alternatives to Matrigel. NATURE REVIEWS. MATERIALS 2020; 5:539-551. [PMID: 32953138 PMCID: PMC7500703 DOI: 10.1038/s41578-020-0199-8] [Citation(s) in RCA: 490] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/31/2020] [Indexed: 05/19/2023]
Abstract
Matrigel, a basement-membrane matrix extracted from Engelbreth-Holm-Swarm mouse sarcomas, has been used for more than four decades for a myriad of cell culture applications. However, Matrigel is limited in its applicability to cellular biology, therapeutic cell manufacturing and drug discovery owing to its complex, ill-defined and variable composition. Variations in the mechanical and biochemical properties within a single batch of Matrigel - and between batches - have led to uncertainty in cell culture experiments and a lack of reproducibility. Moreover, Matrigel is not conducive to physical or biochemical manipulation, making it difficult to fine-tune the matrix to promote intended cell behaviours and achieve specific biological outcomes. Recent advances in synthetic scaffolds have led to the development of xenogenic-free, chemically defined, highly tunable and reproducible alternatives. In this Review, we assess the applications of Matrigel in cell culture, regenerative medicine and organoid assembly, detailing the limitations of Matrigel and highlighting synthetic scaffold alternatives that have shown equivalent or superior results. Additionally, we discuss the hurdles that are limiting a full transition from Matrigel to synthetic scaffolds and provide a brief perspective on the future directions of synthetic scaffolds for cell culture applications.
Collapse
Affiliation(s)
| | - William L. Murphy
- Department of Biomedical Engineering, University of Wisconsin–Madison, WI, USA
- Department of Orthopedics and Rehabilitation, University of Wisconsin–Madison, WI, USA
| |
Collapse
|
17
|
Khalil AS, Yu X, Umhoefer JM, Chamberlain CS, Wildenauer LA, Diarra GM, Hacker TA, Murphy WL. Single-dose mRNA therapy via biomaterial-mediated sequestration of overexpressed proteins. SCIENCE ADVANCES 2020; 6:eaba2422. [PMID: 32937431 PMCID: PMC7458450 DOI: 10.1126/sciadv.aba2422] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
Nonviral mRNA delivery is an attractive therapeutic gene delivery strategy, as it achieves efficient protein overexpression in vivo and has a desirable safety profile. However, mRNA's short cytoplasmic half-life limits its utility to therapeutic applications amenable to repeated dosing or short-term overexpression. Here, we describe a biomaterial that enables a durable in vivo response to a single mRNA dose via an "overexpress and sequester" mechanism, whereby mRNA-transfected cells locally overexpress a growth factor that is then sequestered within the biomaterial to sustain the biologic response over time. In a murine diabetic wound model, this strategy demonstrated improved wound healing compared to delivery of a single mRNA dose alone or recombinant protein. In addition, codelivery of anti-inflammatory proteins using this biomaterial eliminated the need for mRNA chemical modification for in vivo therapeutic efficacy. The results support an approach that may be broadly applicable for single-dose delivery of mRNA without chemical modification.
Collapse
Affiliation(s)
- Andrew S Khalil
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA
| | - Xiaohua Yu
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang 310009, PR China
| | - Jennifer M Umhoefer
- Department of Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Connie S Chamberlain
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA
| | - Linzie A Wildenauer
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA
| | - Gaoussou M Diarra
- Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA
| | - Timothy A Hacker
- Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA
| | - William L Murphy
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA.
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
- Forward BIO Institute, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|