1
|
Virdi JK, Pethe P. Assessment of human embryonic stem cells differentiation into definitive endoderm lineage on the soft substrates. Cell Biol Int 2024. [PMID: 38419492 DOI: 10.1002/cbin.12151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
Pluripotent stem cells (PSCs) hold enormous potential for treating multiple diseases owing to their ability to self-renew and differentiate into any cell type. Albeit possessing such promising potential, controlling their differentiation into a desired cell type continues to be a challenge. Recent studies suggest that PSCs respond to different substrate stiffness and, therefore, can differentiate towards some lineages via Hippo pathway. Human PSCs can also differentiate and self-organize into functional cells, such as organoids. Traditionally, human PSCs are differentiated on stiff plastic or glass plates towards definitive endoderm and then into functional pancreatic progenitor cells in the presence of soluble growth factors. Thus, whether stiffness plays any role in differentiation towards definitive endoderm from human pluripotent stem cells (hPSCs) remains unclear. Our study found that the directed differentiation of human embryonic stem cells towards endodermal lineage on the varying stiffness did not differ from the differentiation on stiff plastic dishes. We also observed no statistical difference between the expression of yes-associated protein (YAP) and phosphorylated YAP. Furthermore, we demonstrate that lysophosphatidic acid, a YAP activator, enhanced definitive endoderm formation, whereas verteporfin, a YAP inhibitor, did not have the significant effect on the differentiation. In summary, our results suggest that human embryonic stem cells may not differentiate in response to changes in stiffness, and that such cues may not have as significant impact on the level of YAP. Our findings indicate that more research is needed to understand the direct relationship between biophysical forces and hPSCs differentiation.
Collapse
Affiliation(s)
- Jasmeet Kaur Virdi
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS (Deemed-to-be) University, Mumbai, Maharashtra, India
| | - Prasad Pethe
- Symbiosis Centre for Stem Cell Research, Symbiosis School of Biological Sciences, Symbiosis International (Deemed) University, Pune, Maharashtra, India
| |
Collapse
|
2
|
Glover HJ, Holliday H, Shparberg RA, Winkler D, Day M, Morris MB. Signalling pathway crosstalk stimulated by L-proline drives mouse embryonic stem cells to primitive-ectoderm-like cells. Development 2023; 150:dev201704. [PMID: 37823343 PMCID: PMC10652046 DOI: 10.1242/dev.201704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023]
Abstract
The amino acid L-proline exhibits growth factor-like properties during development - from improving blastocyst development to driving neurogenesis in vitro. Addition of 400 μM L-proline to self-renewal medium drives naïve mouse embryonic stem cells (ESCs) to early primitive ectoderm-like (EPL) cells - a transcriptionally distinct primed or partially primed pluripotent state. EPL cells retain expression of pluripotency genes, upregulate primitive ectoderm markers, undergo a morphological change and have increased cell number. These changes are facilitated by a complex signalling network hinging on the Mapk, Fgfr, Pi3k and mTor pathways. Here, we use a factorial experimental design coupled with statistical modelling to understand which signalling pathways are involved in the transition between ESCs and EPL cells, and how they underpin changes in morphology, cell number, apoptosis, proliferation and gene expression. This approach reveals pathways which work antagonistically or synergistically. Most properties were affected by more than one inhibitor, and each inhibitor blocked specific aspects of the naïve-to-primed transition. These mechanisms underpin progression of stem cells across the in vitro pluripotency continuum and serve as a model for pre-, peri- and post-implantation embryogenesis.
Collapse
Affiliation(s)
- Hannah J. Glover
- School of Medical Sciences, University of Sydney, Sydney 2006, Australia
- Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Holly Holliday
- School of Medical Sciences, University of Sydney, Sydney 2006, Australia
| | | | - David Winkler
- Department of Biochemistry and Chemistry, Latrobe Institute for Molecular Science, Latrobe University, Bundoora 3083, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Australia
- Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Margot Day
- School of Medical Sciences, University of Sydney, Sydney 2006, Australia
| | - Michael B. Morris
- School of Medical Sciences, University of Sydney, Sydney 2006, Australia
| |
Collapse
|
3
|
Chien CY, Lin JC, Huang CY, Hsu CY, Yang KC, Chattopadhyay S, Nikoloutsos N, Hsieh PCH, Hu CMJ. In Situ Hydrogelation of Cellular Monolayers Enables Conformal Biomembrane Functionalization for Xeno-Free Feeder Substrate Engineering. Adv Healthc Mater 2023; 12:e2201708. [PMID: 36455286 DOI: 10.1002/adhm.202201708] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/14/2022] [Indexed: 12/03/2022]
Abstract
The intricate functionalities of cellular membranes have inspired strategies for deriving and anchoring cell-surface components onto solid substrates for biological studies, biosensor applications, and tissue engineering. However, introducing conformal and right-side-out cell membrane coverage onto planar substrates requires cumbersome protocols susceptible to significant device-to-device variability. Here, a facile approach for biomembrane functionalization of planar substrates is demonstrated by subjecting confluent cellular monolayer to intracellular hydrogel polymerization. The resulting cell-gel hybrid, herein termed GELL (gelated cell), exhibits extraordinary stability and retains the structural integrity, membrane fluidity, membrane protein mobility, and topology of living cells. In assessing the utility of GELL layers as a tissue engineering feeder substrate for stem cell maintenance, GELL feeder prepared from primary mouse embryonic fibroblasts not only preserves the stemness of murine stem cells but also exhibits advantages over live feeder cells owing to the GELL's inanimate, non-metabolizing nature. The preparation of a xeno-free feeder substrate devoid of non-human components is further shown with HeLa cells, and the resulting HeLa GELL feeder effectively sustains the growth and stemness of both murine and human induced pluripotent stem cells. The study highlights a novel bio-functionalization strategy that introduces new opportunities for tissue engineering and other biomedical applications.
Collapse
Affiliation(s)
- Chen-Ying Chien
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Jung-Chen Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Ching-Ying Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Chung-Yao Hsu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academic Sinica, Taipei, 11529, Taiwan
| | - Kai-Chieh Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academic Sinica, Taipei, 11529, Taiwan
| | - Saborni Chattopadhyay
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academic Sinica, Taipei, 11529, Taiwan
| | | | | | - Che-Ming Jack Hu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academic Sinica, Taipei, 11529, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, 701, Taiwan
| |
Collapse
|
4
|
Differential Effects of Extracellular Matrix Glycoproteins Fibronectin and Laminin-5 on Dental Pulp Stem Cell Phenotypes and Responsiveness. J Funct Biomater 2023; 14:jfb14020091. [PMID: 36826890 PMCID: PMC9963712 DOI: 10.3390/jfb14020091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Dental pulp stem cells (DPSCs) are mesenchymal stem cells (MSCs) with the potential to differentiate in a limited number of other tissue types. Some evidence has suggested the modulation of DPSC growth may be mediated, in part, by exogenous extracellular matrix (ECM) glycoproteins, including fibronectin (FN) and laminin-5 (LN5). Although preliminary research suggests that some ECM glycoproteins may work as functional biomaterials to modulate DPSC growth responses, the primary goal of this project is to determine the specific effects of FN and LN5 on DPSC growth and viability. Using an existing DPSC repository, n = 16 DPSC isolates were cultured and 96-well growth assays were performed, which revealed FN, LN5 and the combination of these were sufficient to induce statistically significant changes in growth among five (n = 5) DPSC isolates. In addition, the administration of FN (either alone or in combination) was sufficient to induce the expression of alkaline phosphatase (ALP) and dentin sialophosphoprotein (DSPP), while LN5 induced the expression of ALP only, suggesting differential responsiveness among DPSCs. Moreover, these responses appeared to correlate with the expression of MSC biomarkers NANOG, Oct4 and Sox2. These results add to the growing body of evidence suggesting that functional biomaterials, such as ECM glycoproteins FN and LN5, are sufficient to induce phenotypic and differentiation-specific effects in a specific subset of DPSC isolates. More research will be needed to determine which biomarkers or additional factors are necessary and sufficient to induce the differentiation and development of DPSCs ex vivo and in vitro for biomedical applications.
Collapse
|
5
|
Lin CY, Ching YY, Wu SF, Lee YK, Fan HC, Su LY, Tsai SY, Chen YC, Shen CI, Su HL. Coating-Free Culture Medium for Establishing and Maintaining Human Induced Pluripotent Stem Cells. Cell Transplant 2023; 32:9636897231198172. [PMID: 37698258 PMCID: PMC10498698 DOI: 10.1177/09636897231198172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 09/13/2023] Open
Abstract
Cell expansion of human pluripotent stem cells (hPSCs) commonly depends on Matrigel as a coating matrix on two-dimensional (2D) culture plates and 3D microcarriers. However, the xenogenic Matrigel requires sophisticated quality-assurance processes to meet clinical requirements. In this study, we develop an innovative coating-free medium for expanding hPSCs. The xenofree medium supports the weekend-free culture and competitive growth of hPSCs on several cell culture plastics without an additional pre-coating process. The pluripotent stemness of the expanded cells is stably sustained for more than 10 passages, featured with high pluripotent marker expressions, normal karyotyping, and differentiating capacity for three germ layers. The expression levels of some integrins are reduced, compared with those of the hPSCs on Matrigel. This medium also successfully supports the clonal expansion and induced pluripotent stem cell establishment from mitochondrial-defective MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes) patient's peripheral blood mononuclear cells. This innovative hPSC medium provides a straightforward scale-up process for producing clinical-orientated hPSCs by excluding the conventional coating procedure.
Collapse
Affiliation(s)
- Chih-Yao Lin
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Yun Ching
- Duogenic StemCells Corporation, Taichung, Taiwan
| | - Shih-Fang Wu
- The Joint Program of Tissue Engineering and Regenerative Medicine, National Chung Hsing University and National Health Research Institutes, Taichung, Taiwan
| | - Yi-Ko Lee
- Duogenic StemCells Corporation, Taichung, Taiwan
| | - Hueng-Chuen Fan
- Department of Pediatrics, Tungs’ Taichung MetroHarbor Hospital, Wuchi, Taichung, Taiwan
- Department of Nursing, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Liang-Yu Su
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Su-Yi Tsai
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yu-Ching Chen
- The Joint Program of Tissue Engineering and Regenerative Medicine, National Chung Hsing University and National Health Research Institutes, Taichung, Taiwan
- Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua City, Taiwan
| | - Ching-I Shen
- Duogenic StemCells Corporation, Taichung, Taiwan
| | - Hong-Lin Su
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
6
|
Chen X, Liu C, Wadsworth M, Zeng EZ, Driscoll T, Zeng C, Li Y. Surface Engineering of Auxetic Scaffolds for Neural and Vascular Differentiation from Human Pluripotent Stem Cells. Adv Healthc Mater 2023; 12:e2202511. [PMID: 36403987 PMCID: PMC9992167 DOI: 10.1002/adhm.202202511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/10/2022] [Indexed: 11/22/2022]
Abstract
Auxetic materials are the materials that can display negative Poisson's ratio that describes the degree to which a material contracts (or expands) transversally when axially strained. Human stem cells sense the mechanical properties of the microenvironment, including material surface properties, stiffness, and Poisson's ratio. In this study, six different auxetic polyurethane (PU) foams with different elastic modulus (0.7-1.8 kPa) and Poisson's ratio (-0.1 to -0.5) are used to investigate lineage specification of human induced pluripotent stem cells (hiPSCs). The surfaces of the foams are modified with chitosan or heparin to enhance the adhesion and proliferation of hiPSCs. Then, the vascular and neural differentiation of hiPSCs are investigated on different foams with distinct elastic modulus and Poisson's ratio. With different auxetic foams, cells show differential adherent density and differentiation capacity. Chitosan and heparin surface functionalization promote the hindbrain and hippocampal markers, but not forebrain markers during neural patterning of hiPSCs. Properly surface engineered auxetic scaffolds can also promote vascular differentiation of hiPSCs. This study represents a versatile and multifunctional scaffold fabrication approach and can lead to a suitable system for establishing hiPSC culture models in applications of neurovascular disease modeling and drug screening.
Collapse
Affiliation(s)
- Xingchi Chen
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University
- High-Performance Materials Institute, FAMU-FSU College of Engineering, Florida State University
| | - Chang Liu
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University
| | - Matthew Wadsworth
- High-Performance Materials Institute, FAMU-FSU College of Engineering, Florida State University
| | - Eric Z. Zeng
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University
| | - Tristan Driscoll
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University
| | - Changchun Zeng
- High-Performance Materials Institute, FAMU-FSU College of Engineering, Florida State University
- Department of Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering, Florida State University
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University
| |
Collapse
|
7
|
Mesquita FCP, Leite ES, Morrissey J, Freitas C, Coelho-Sampaio T, Hochman-Mendez C. Polymerized Laminin-521: A Feasible Substrate for Expanding Induced Pluripotent Stem Cells at a Low Protein Concentration. Cells 2022; 11:cells11243955. [PMID: 36552719 PMCID: PMC9777247 DOI: 10.3390/cells11243955] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Laminins (LNs) play a central role in the self-assembly and maintenance of basement membranes and are involved in critical interactions between cells and other extracellular matrix (ECM) proteins. Among the defined, xeno-free ECM culture matrices, LNs-namely LN521-have emerged as promising coating systems for the large-scale expansion of induced pluripotent stem cells (iPSCs). The biologic activity of LNs is enhanced by their acidification-induced self-polymerization into a cell-associated network called polylaminin (polyLN), which can recapitulate the native-like polymeric array in a cell-free system. Here, we show for the first time to our knowledge that polyLN521 displays a native-like hexagonal-like structure and that, at basal and low concentrations, it permits the large-scale expansion of human iPSCs. Human iPSCs expanded with polyLN521 maintained the pluripotent state and showed no impairment of karyotype stability or telomere length. These results suggest that low-concentration polyLN521 is a stable and cost-effective coating for large-scale iPSC expansion.
Collapse
Affiliation(s)
- Fernanda C. P. Mesquita
- Department of Regenerative Medicine Research, The Texas Heart Institute, 6770 Bertner Avenue, MC 1-135, Houston, TX 77030, USA
| | - Eliel S. Leite
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho B1-011, 373, Rio de Janeiro 21941-902, Brazil
| | - Jacquelynn Morrissey
- Department of Regenerative Medicine Research, The Texas Heart Institute, 6770 Bertner Avenue, MC 1-135, Houston, TX 77030, USA
| | - Catarina Freitas
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho B1-011, 373, Rio de Janeiro 21941-902, Brazil
| | - Tatiana Coelho-Sampaio
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho B1-011, 373, Rio de Janeiro 21941-902, Brazil
| | - Camila Hochman-Mendez
- Department of Regenerative Medicine Research, The Texas Heart Institute, 6770 Bertner Avenue, MC 1-135, Houston, TX 77030, USA
- Correspondence:
| |
Collapse
|
8
|
Liu Y, Bertels S, Reischl M, Peravali R, Bastmeyer M, Popova AA, Levkin PA. Droplet Microarray Based Screening Identifies Proteins for Maintaining Pluripotency of hiPSCs. Adv Healthc Mater 2022; 11:e2200718. [PMID: 35799451 PMCID: PMC11468593 DOI: 10.1002/adhm.202200718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/10/2022] [Indexed: 01/27/2023]
Abstract
Human induced pluripotent stem cells (hiPSCs) are crucial for disease modeling, drug discovery, and personalized medicine. Animal-derived materials hinderapplications of hiPSCs in medical fields. Thus, novel and well-defined substrate coatings capable of maintaining hiPSC pluripotency are important for advancing biomedical applications of hiPSCs. Here a miniaturized droplet microarray (DMA) platform to investigate 11 well-defined proteins, their 55 binary and 165 ternary combinations for their ability to maintainpluripotency of hiPSCs when applied as a surface coating, is used. Using this screening approach, ten protein group coatings are identified, which promote significantly higher NANOG expression of hiPSCs in comparison with Matrigel coating. With two of the identified coatings, long-term pluripotency maintenance of hiPSCs and subsequent differentiation into three germ layers are achieved. Compared with conventional high-throughput screening (HTS) in 96-well plates, the DMA platform uses only 83 µL of protein solution (0.83 µg total protein) and only ≈2.8 × 105 cells, decreasing the amount of proteins and cells ≈860 and 25-fold, respectively. The identified proteins will be essential for research and applications using hiPSCs, while the DMA platform demonstrates great potential for miniaturized HTS of scarce cells or expensive materials such as recombinant proteins.
Collapse
Affiliation(s)
- Yanxi Liu
- Institute of Biological and Chemical Systems – Functional Molecular SystemsKarlsruhe Institute of TechnologyHermann‐von‐Helmholtz‐Platz 176344Eggenstein‐LeopoldshafenGermany
| | - Sarah Bertels
- Zoological InstituteCell‐ and NeurobiologyKarlsruhe Institute of TechnologyFritz‐Haber‐Weg 476131KarlsruheGermany
| | - Markus Reischl
- Institute for Automation and Applied InformaticsKarlsruhe Institute of TechnologyHermann‐von Helmholtz‐Platz 176344Eggenstein‐LeopoldshafenGermany
| | - Ravindra Peravali
- Institute of Biological and Chemical Systems – Biological Information ProcessingKarlsruhe Institute of TechnologyHermann‐von‐Helmholtz‐Platz 176344Eggenstein‐LeopoldshafenGermany
| | - Martin Bastmeyer
- Zoological InstituteCell‐ and NeurobiologyKarlsruhe Institute of TechnologyFritz‐Haber‐Weg 476131KarlsruheGermany
- Institute of Biological and Chemical Systems – Biological Information ProcessingKarlsruhe Institute of TechnologyHermann‐von‐Helmholtz‐Platz 176344Eggenstein‐LeopoldshafenGermany
| | - Anna A. Popova
- Institute of Biological and Chemical Systems – Functional Molecular SystemsKarlsruhe Institute of TechnologyHermann‐von‐Helmholtz‐Platz 176344Eggenstein‐LeopoldshafenGermany
| | - Pavel A. Levkin
- Institute of Biological and Chemical Systems – Functional Molecular SystemsKarlsruhe Institute of TechnologyHermann‐von‐Helmholtz‐Platz 176344Eggenstein‐LeopoldshafenGermany
- Institute of Organic ChemistryKarlsruhe Institute of TechnologyKaiserstraße 1276131KarlsruheGermany
| |
Collapse
|
9
|
Methanol fixed feeder layers altered the pluripotency and metabolism of bovine pluripotent stem cells. Sci Rep 2022; 12:9177. [PMID: 35654935 PMCID: PMC9163156 DOI: 10.1038/s41598-022-13249-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/23/2022] [Indexed: 11/22/2022] Open
Abstract
The pluripotency maintenance of pluripotent stem cells (PSCs) requires the suitable microenvironment, which commonly provided by feeder layers. However, the preparation of feeder layers is time consuming and labor exhaustive, and the feeder cells treated with mitomycin C or γ-ray irradiation bring heterologous contamination. In this study, mouse embryonic fibroblasts (MEFs) were treated by methanol to generate chemical fixed feeder cells, and bovine embryonic stem cells F7 (bESC-F7) cultured on this feeder layer. Then the pluripotency and metabolism of bESC-F7 cultured on methanol-fixed MEFs (MT-MEFs) named MT-F7 was compared with mitomycin C treated MEFs (MC-MEFs). The results showed that bESC-F7 formed alkaline phosphatase positive colonies on MT-MEFs, the relative expression of pluripotent markers of these cells was different from the bESCs cultured on the MC-MEFs (MC-F7). The long-term cultured MT-F7 formed embryoid bodies, showed the ability to differentiate into three germ layers similar to MC-F7. The analyses of RNA-seq data showed that MT-MEFs lead bESCs to novel steady expression patterns of genes regulating pluripotency and metabolism. Furthermore, the bovine expanded pluripotent stem cells (bEPSCs) cultured on MT-MEFs formed classical colonies, maintained pluripotency, and elevated metabolism. In conclusion, MT-MEFs were efficient feeder layer that maintain the distinctive pluripotency and metabolism of PSCs.
Collapse
|
10
|
van Sprang JF, de Jong SM, Dankers PY. Biomaterial-driven kidney organoid maturation. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022. [DOI: 10.1016/j.cobme.2021.100355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Liu YC, Ban LK, Lee HHC, Lee HT, Chang YT, Lin YT, Su HY, Hsu ST, Higuchi A. Laminin-511 and recombinant vitronectin supplementation enables human pluripotent stem cell culture and differentiation on conventional tissue culture polystyrene surfaces in xeno-free conditions. J Mater Chem B 2021; 9:8604-8614. [PMID: 34605523 DOI: 10.1039/d1tb01878g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Human pluripotent stem cells (hPSCs) are typically cultivated on extracellular matrix (ECM) protein-coated dishes in xeno-free culture conditions. We supplemented mixed ECM proteins (laminin-511 and recombinant vitronectin, rVT) in culture medium for hPSC culture on conventional polystyrene dishes. Three hPSC cell lines were successfully cultivated on uncoated polystyrene dishes in medium supplemented with optimal conditions of laminin-511 and rVT. Excellent colony shape and colony size as well as high expansion fold of hPSCs were found under these conditions, whereas the colony size was small and poor expansion fold was found solely on L-511-coated dishes. A small portion of L-511 in the culture medium supported hPSC adhesion and prevented the adhesion from being too strong on the uncoated dishes, and rVT in the culture medium further supported adhesion of hPSCs on the dishes by maintaining their pluripotency. Having the optimal composition of L-511 and rVT in the culture medium was important for generating good hPSC colony shapes and sizes as well as a high expansion fold. After long-term culture of hPSCs on uncoated dishes supplemented with the mixed proteins, the hPSCs successfully showed pluripotent markers and could differentiate into a specific lineage of cells, cardiomyocytes, with high efficiency.
Collapse
Affiliation(s)
- Ya-Chu Liu
- Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda Rd, Jhongli, Taoyuan, 32001, Taiwan.
| | - Lee-Kiat Ban
- Department of Surgery, Hsinchu Cathay General Hospital, No. 678, Sec 2, Zhonghua Rd, Hsinchu, 30060, Taiwan
| | - Henry Hsin-Chung Lee
- Department of Surgery, Hsinchu Cathay General Hospital, No. 678, Sec 2, Zhonghua Rd, Hsinchu, 30060, Taiwan.,Graduate Institute of Translational and Interdisciplinary Medicine, National Central University, No. 300, Jhongda Rd, Jhongli, Taoyuan, 32001, Taiwan
| | - Hsin-Ting Lee
- Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda Rd, Jhongli, Taoyuan, 32001, Taiwan.
| | - Yu-Tang Chang
- Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda Rd, Jhongli, Taoyuan, 32001, Taiwan.
| | - Yun-Ting Lin
- Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda Rd, Jhongli, Taoyuan, 32001, Taiwan.
| | - Her-Young Su
- Department of Obstetrics and Gynecology, Bobson Yuho Women and Children's Clinic, No. 182, Zhuangjing S. Rd, Zhubei City, Hsinchu 302, Taiwan
| | - Shih-Tien Hsu
- Department of Internal Medicine, Taiwan Landseed Hospital, 77, Kuangtai Road, Pingjen City, Taoyuan 32405, Taiwan
| | - Akon Higuchi
- Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda Rd, Jhongli, Taoyuan, 32001, Taiwan. .,R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan
| |
Collapse
|
12
|
Herlan CN, Feser D, Schepers U, Bräse S. Bio-instructive materials on-demand - combinatorial chemistry of peptoids, foldamers, and beyond. Chem Commun (Camb) 2021; 57:11131-11152. [PMID: 34611672 DOI: 10.1039/d1cc04237h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Combinatorial chemistry allows for the rapid synthesis of large compound libraries for high throughput screenings in biology, medicinal chemistry, or materials science. Especially compounds from a highly modular design are interesting for the proper investigation of structure-to-activity relationships. Permutations of building blocks result in many similar but unique compounds. The influence of certain structural features on the entire structure can then be monitored and serve as a starting point for the rational design of potent molecules for various applications. Peptoids, a highly diverse class of bioinspired oligomers, suit perfectly for combinatorial chemistry. Their straightforward synthesis on a solid support using repetitive reaction steps ensures easy handling and high throughput. Applying this modular approach, peptoids are readily accessible, and their interchangeable side-chains allow for various structures. Thus, peptoids can easily be tuned in their solubility, their spatial structure, and, consequently, their applicability in various fields of research. Since their discovery, peptoids have been applied as antimicrobial agents, artificial membranes, molecular transporters, and much more. Studying their three-dimensional structure, various foldamers with fascinating, unique properties were discovered. This non-comprehensive review will state the most interesting discoveries made over the past years and arouse curiosity about what may come.
Collapse
Affiliation(s)
- Claudine Nicole Herlan
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - Dominik Feser
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Ute Schepers
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.,Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 6, 76131 Karlsruhe, Germany
| | - Stefan Bräse
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany. .,Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 6, 76131 Karlsruhe, Germany
| |
Collapse
|
13
|
Chin IL, Hool L, Choi YS. Interrogating cardiac muscle cell mechanobiology on stiffness gradient hydrogels. Biomater Sci 2021; 9:6795-6806. [PMID: 34542112 DOI: 10.1039/d1bm01061a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Extracellular matrix (ECM) remodeling is a major facet of cardiac development and disease, yet our understanding of cardiomyocyte mechanotransduction remains limited. To enhance our understanding of cardiomyocyte mechanosensation, we studied stiffness-driven changes to cell morphology and mechanomarker expression in H9C2 cells and neonatal rat cardiomyocytes (NRCMs). Linear stiffness gradient polyacrylamide hydrogels (2-33 kPa) coated with ECM proteins including Collagen I (Col), Fibronectin (Fn) or Laminin (Ln) were used to represent necrotic, healthy, and infarcted cardiac tissue on a continuous stiffness gradient. Cell size, cell shape and nuclear size were found to be mechanosensitive in H9C2 cells, as was the expression or nuclear translocalization of the mechanomarkers Lamin-A, YAP, and MRTF-A. Minor differences were observed between the different ECM coatings, with the same overarching stiffness-dependent trends being observed across Col, Fn and Ln coated hydrogels. Inhibition of mechanotransduction in H9C2 cells using blebbistatin or Y27632 resulted in disruptions to cell shape, nuclear shape, and nuclear size, however, trends in cell size and mechanomarker expression were not significantly attenuated. Mechanosensation in NRCMs was much less marked, with no significant changes in cell morphology being detected, although YAP did become increasingly nuclear localized with increasing stiffness. In α-actinin positive cells, striations formed with regular structure and frequency at all stiffnesses for Col and Fn coated hydrogels, but not Ln coated gels. In this study, we used our stiffness gradient hydrogels to comprehensively map the relationship between ECM stiffness and cardiac cell phenotype and found that less mature H9C2 cardiac cells are more sensitive to ECM changes than the more developed neonatal cardiomyocytes.
Collapse
Affiliation(s)
- Ian L Chin
- School of Human Sciences, The University of Western Australia, Perth, WA, Australia.
| | - Livia Hool
- School of Human Sciences, The University of Western Australia, Perth, WA, Australia. .,Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | - Yu Suk Choi
- School of Human Sciences, The University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
14
|
Liu H, Usprech JF, Parameshwar PK, Sun Y, Simmons CA. Combinatorial screen of dynamic mechanical stimuli for predictive control of MSC mechano-responsiveness. SCIENCE ADVANCES 2021; 7:7/19/eabe7204. [PMID: 33962940 PMCID: PMC8104874 DOI: 10.1126/sciadv.abe7204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 03/19/2021] [Indexed: 05/05/2023]
Abstract
Mechanobiological-based control of mesenchymal stromal cells (MSCs) to facilitate engineering and regeneration of load-bearing tissues requires systematic investigations of specific dynamic mechanical stimulation protocols. Using deformable membrane microdevice arrays paired with combinatorial experimental design and modeling, we probed the individual and integrative effects of mechanical stimulation parameters (strain magnitude, rate at which strain is changed, and duty period) on myofibrogenesis and matrix production of MSCs in three-dimensional hydrogels. These functions were found to be dominantly influenced by a previously unidentified, higher-order interactive effect between strain magnitude and duty period. Empirical models based on our combinatorial cue-response data predicted an optimal loading regime in which strain magnitude and duty period were increased synchronously over time, which was validated to most effectively promote MSC matrix production. These findings inform the design of loading regimes for MSC-based engineered tissues and validate a broadly applicable approach to probe multifactorial regulating effects of mechanobiological cues.
Collapse
Affiliation(s)
- Haijiao Liu
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON M5G 1M1, Canada
| | - Jenna F Usprech
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON M5G 1M1, Canada
| | - Prabu Karthick Parameshwar
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON M5G 1M1, Canada
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada.
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Craig A Simmons
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada.
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON M5G 1M1, Canada
| |
Collapse
|
15
|
Yang L, Pijuan-Galito S, Rho HS, Vasilevich AS, Eren AD, Ge L, Habibović P, Alexander MR, de Boer J, Carlier A, van Rijn P, Zhou Q. High-Throughput Methods in the Discovery and Study of Biomaterials and Materiobiology. Chem Rev 2021; 121:4561-4677. [PMID: 33705116 PMCID: PMC8154331 DOI: 10.1021/acs.chemrev.0c00752] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Indexed: 02/07/2023]
Abstract
The complex interaction of cells with biomaterials (i.e., materiobiology) plays an increasingly pivotal role in the development of novel implants, biomedical devices, and tissue engineering scaffolds to treat diseases, aid in the restoration of bodily functions, construct healthy tissues, or regenerate diseased ones. However, the conventional approaches are incapable of screening the huge amount of potential material parameter combinations to identify the optimal cell responses and involve a combination of serendipity and many series of trial-and-error experiments. For advanced tissue engineering and regenerative medicine, highly efficient and complex bioanalysis platforms are expected to explore the complex interaction of cells with biomaterials using combinatorial approaches that offer desired complex microenvironments during healing, development, and homeostasis. In this review, we first introduce materiobiology and its high-throughput screening (HTS). Then we present an in-depth of the recent progress of 2D/3D HTS platforms (i.e., gradient and microarray) in the principle, preparation, screening for materiobiology, and combination with other advanced technologies. The Compendium for Biomaterial Transcriptomics and high content imaging, computational simulations, and their translation toward commercial and clinical uses are highlighted. In the final section, current challenges and future perspectives are discussed. High-throughput experimentation within the field of materiobiology enables the elucidation of the relationships between biomaterial properties and biological behavior and thereby serves as a potential tool for accelerating the development of high-performance biomaterials.
Collapse
Affiliation(s)
- Liangliang Yang
- University
of Groningen, W. J. Kolff Institute for Biomedical Engineering and
Materials Science, Department of Biomedical Engineering, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Sara Pijuan-Galito
- School
of Pharmacy, Biodiscovery Institute, University
of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Hoon Suk Rho
- Department
of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Aliaksei S. Vasilevich
- Department
of Biomedical Engineering, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Aysegul Dede Eren
- Department
of Biomedical Engineering, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Lu Ge
- University
of Groningen, W. J. Kolff Institute for Biomedical Engineering and
Materials Science, Department of Biomedical Engineering, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Pamela Habibović
- Department
of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Morgan R. Alexander
- School
of Pharmacy, Boots Science Building, University
of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Jan de Boer
- Department
of Biomedical Engineering, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Aurélie Carlier
- Department
of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Patrick van Rijn
- University
of Groningen, W. J. Kolff Institute for Biomedical Engineering and
Materials Science, Department of Biomedical Engineering, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Qihui Zhou
- Institute
for Translational Medicine, Department of Stomatology, The Affiliated
Hospital of Qingdao University, Qingdao
University, Qingdao 266003, China
| |
Collapse
|
16
|
Chen W, Park S, Patel C, Bai Y, Henary K, Raha A, Mohammadi S, You L, Geng F. The migration of metastatic breast cancer cells is regulated by matrix stiffness via YAP signalling. Heliyon 2021; 7:e06252. [PMID: 33659755 PMCID: PMC7895759 DOI: 10.1016/j.heliyon.2021.e06252] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/06/2020] [Accepted: 02/07/2021] [Indexed: 11/20/2022] Open
Abstract
Matrix stiffness is a driver of breast cancer progression and mechanosensitive transcriptional activator YAP plays an important role in this process. However, the interplay between breast cancer and matrix stiffness, and the significance of this interplay remained largely unknown. Here, we showed an increase in YAP nuclear localization and a higher proliferation rate in both highly metastatic MDA-MB-231 cells and the non-metastatic counterpart MCF-7 cells when they were exposed to the stiff matrix. However, in response to the stiff matrix highly metastatic MDA-MB-231 cells instead of MCF-7 cells exhibited upregulated mobility, which was shown to be YAP-dependent. Consistently, MDA-MB-231 cells exhibited different focal adhesion dynamics from MCF-7 cells in response to matrix stiffness. These results suggested a YAP-dependent mechanism through which matrix stiffness regulates the migratory potential of metastatic breast cancer cells.
Collapse
Affiliation(s)
- Wei Chen
- Department of Mechanical Engineering, McMaster University, Hamilton, ON L8S 0A3, Canada
| | - Shihyun Park
- Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Chrishma Patel
- Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Yuxin Bai
- Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Karim Henary
- Department of Mechanical Engineering, McMaster University, Hamilton, ON L8S 0A3, Canada
| | - Arjun Raha
- Department of Mechanical Engineering, McMaster University, Hamilton, ON L8S 0A3, Canada
| | - Saeed Mohammadi
- W Booth School of Engineering Practice and Technology, McMaster University, Hamilton, ON L8S 0A3, Canada
| | - Lidan You
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Fei Geng
- Department of Mechanical Engineering, McMaster University, Hamilton, ON L8S 0A3, Canada
- W Booth School of Engineering Practice and Technology, McMaster University, Hamilton, ON L8S 0A3, Canada
- Corresponding author.
| |
Collapse
|
17
|
Nasir A, Thorpe J, Burroughs L, Meurs J, Pijuan‐Galito S, Irvine DJ, Alexander MR, Denning C. Discovery of a Novel Polymer for Xeno-Free, Long-Term Culture of Human Pluripotent Stem Cell Expansion. Adv Healthc Mater 2021; 10:e2001448. [PMID: 33369242 PMCID: PMC11469126 DOI: 10.1002/adhm.202001448] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/08/2020] [Indexed: 12/28/2022]
Abstract
Human pluripotent stem cells (hPSCs) can be expanded and differentiated in vitro into almost any adult tissue cell type, and thus have great potential as a source for cell therapies with biomedical application. In this study, a fully-defined polymer synthetic substrate is identified for hPSC culture in completely defined, xenogenic (xeno)-free conditions. This system can overcome the cost, scalability, and reproducibility limitations of current hPSC culture strategies, and facilitate large-scale production. A high-throughput, multi-generational polymer microarray platform approach is used to test over 600 unique polymers and rapidly assess hPSC-polymer interactions in combination with the fully defined xeno-free medium, Essential 8 (E8). This study identifies a novel nanoscale phase separated blend of poly(tricyclodecane-dimethanol diacrylate) and poly(butyl acrylate) (2:1 v/v), which supports long-term expansion of hPSCs and can be readily coated onto standard cultureware. Analysis of cell-polymer interface interactions through mass spectrometry and integrin blocking studies provides novel mechanistic insight into the role of the E8 proteins in promoting integrin-mediated hPSC attachment and maintaining hPSC signaling, including ability to undergo multi-lineage differentiation. This study therefore identifies a novel substrate for long-term serial passaging of hPSCs in serum-free, commercial chemically-defined E8, which provides a promising and economic hPSC expansion platform for clinical-scale application.
Collapse
Affiliation(s)
- Aishah Nasir
- Division of Cancer & Stem CellsBiodiscovery InstituteUniversity of NottinghamNottinghamNG7 2RDUK
| | - Jordan Thorpe
- Division of Cancer & Stem CellsBiodiscovery InstituteUniversity of NottinghamNottinghamNG7 2RDUK
| | | | - Joris Meurs
- School of PharmacyUniversity of NottinghamNottinghamNG7 2RDUK
| | - Sara Pijuan‐Galito
- Division of Cancer & Stem CellsBiodiscovery InstituteUniversity of NottinghamNottinghamNG7 2RDUK
| | - Derek J. Irvine
- Department of Chemical and Environmental EngineeringUniversity of NottinghamNottinghamNG7 2RDUK
| | | | - Chris Denning
- Division of Cancer & Stem CellsBiodiscovery InstituteUniversity of NottinghamNottinghamNG7 2RDUK
| |
Collapse
|
18
|
Carelli S, Giallongo T, Rey F, Barzaghini B, Zandrini T, Pulcinelli A, Nardomarino R, Cerullo G, Osellame R, Cereda C, Zuccotti GV, Raimondi MT. Neural precursors cells expanded in a 3D micro-engineered niche present enhanced therapeutic efficacy in vivo. Nanotheranostics 2021; 5:8-26. [PMID: 33391972 PMCID: PMC7738947 DOI: 10.7150/ntno.50633] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022] Open
Abstract
Rationale: Stem Cells (SCs) show a great potential in therapeutics for restoring and regenerating native tissues. The clinical translation of SCs therapies is currently hindered by the inability to expand SCs in vitro in large therapeutic dosages, while maintaining their safety and potency. The use of biomaterials allows for the generation of active biophysical signals for directing SCs fate through 3D micro-scaffolds, such as the one named “Nichoid”, fabricated with two-photon laser polymerization with a spatial resolution of 100 nm. The aims of this study were: i) to investigate the proliferation, differentiation and stemness properties of neural precursor cells (NPCs) following their cultivation inside the Nichoid micro-scaffold; ii) to assess the therapeutic effect and safety in vivo of NPCs cultivated in the Nichoid in a preclinical experimental model of Parkinson's Disease (PD). Methods: Nichoids were fabricated by two photon laser polymerization onto circular glass coverslips using a home-made SZ2080 photoresist. NPCs were grown inside the Nichoid for 7 days, counted and characterized with RNA-Seq, Real Time PCR analysis, immunofluorescence and Western Blot. Then, NPCs were transplanted in a murine experimental model of PD, in which parkinsonism was induced by the intraperitoneal administration of the neurotoxin MPTP in C57/bl mice. The efficacy of engrafted Nichoid-expanded NPCs was evaluated by means of specific behavioral tests and, after animal sacrifice, with immunohistochemical studies in brain slices. Results: NPCs grown inside the Nichoid show a significantly higher cell viability and proliferation than in standard culture conditions in suspension. Furthermore, we report the mechanical conditioning of NPCs in 3D micro-scaffolds, showing a significant increase in the expression of pluripotency genes. We also report that such mechanical reprogramming of NPCs produces an enhanced therapeutic effect in the in vivo model of PD. Recovery of PD symptoms was significantly increased when animals were treated with Nichoid-grown NPCs, and this is accompanied by the recovery of dopaminergic markers expression in the striatum of PD affected mice. Conclusion: SCs demonstrated an increase in pluripotency potential when expanded inside the Nichoid, without the need of any genetic modification of cells, showing great promise for large-scale production of safe and functional cell therapies to be used in multiple clinical applications.
Collapse
Affiliation(s)
- Stephana Carelli
- Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", L. Sacco Department of Biomedical and Clinical Sciences, University of Milano, Milano, 20157, Italy
| | - Toniella Giallongo
- Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", L. Sacco Department of Biomedical and Clinical Sciences, University of Milano, Milano, 20157, Italy
| | - Federica Rey
- Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", L. Sacco Department of Biomedical and Clinical Sciences, University of Milano, Milano, 20157, Italy
| | - Bianca Barzaghini
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milano, 20133, Italy
| | - Tommaso Zandrini
- Istituto di Fotonica e Nanotecnologie (IFN)-CNR and Department of Physics, Politecnico di Milano, Milano, 20133, Italy
| | - Andrea Pulcinelli
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milano, 20133, Italy
| | - Riccardo Nardomarino
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milano, 20133, Italy
| | - Giulio Cerullo
- Istituto di Fotonica e Nanotecnologie (IFN)-CNR and Department of Physics, Politecnico di Milano, Milano, 20133, Italy
| | - Roberto Osellame
- Istituto di Fotonica e Nanotecnologie (IFN)-CNR and Department of Physics, Politecnico di Milano, Milano, 20133, Italy
| | - Cristina Cereda
- Genomic and Postgenomic Lab, IRCCS Mondino Foundation, Pavia, 27100, Italy
| | - Gian Vincenzo Zuccotti
- Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", L. Sacco Department of Biomedical and Clinical Sciences, University of Milano, Milano, 20157, Italy
| | - Manuela Teresa Raimondi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milano, 20133, Italy
| |
Collapse
|
19
|
Hong F, Gao Y, Li Y, Zheng L, Xu F, Li X. Inhibition of HIF1A-AS1 promoted starvation-induced hepatocellular carcinoma cell apoptosis by reducing HIF-1α/mTOR-mediated autophagy. World J Surg Oncol 2020; 18:113. [PMID: 32473641 PMCID: PMC7261383 DOI: 10.1186/s12957-020-01884-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 05/15/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is still a major health burden in China considering its high incidence and mortality. Long non-coding RNAs (lncRNAs) were found playing vital roles in tumor progression, suggesting a new way of diagnosis and prognosis prediction, or treatment of HCC. This study was designed to investigate the role of HIF1A-AS1 during the progression of HCC and to explore its related mechanisms. METHODS The expression of HIF1A-AS1 was detected in 50 paired carcinoma tissues and adjacent normal tissues by quantitative real-time PCR assay. HCC cell apoptosis was induced by nutrient-deficient culture medium and detected by Cell Counting Kit-8 and flow cytometer assays. HIF1A-AS1 inhibition in HCC cells was accomplished by small interfering RNA transfection. RESULTS HIF1A-AS1 was overexpressed in HCC tissues and was associated with tumor size, TNM stage, and lymph node metastasis. Compared with the low HIF1A-AS1 group, the high HIF1A-AS1 group had a shorter overall survival and a worse disease-free survival. HIF1A-AS1 expression was significantly higher in HCC cell lines (7721 and Huh7) than that in normal hepatocyte cell line L02 under normal culture condition. However, under nutrient-deficient condition, HIF1A-AS1 expression was significantly increased in both HCC and normal hepatocyte cell lines and was increased with the prolongation of nutrient-free culture. Inhibition of HIF1A-AS1 promoted starvation-induced HCC cell apoptosis. Furthermore, inhibition of HIF1A-AS1 could also reduce starvation-induced HCC cell autophagy. The expression of HIF-1α and phosphorylated mTOR was significantly decreased in HCC cells after HIF1A-AS1 inhibition. CONCLUSIONS HIF1A-AS1, overexpressed in HCC and associated with HCC prognosis, could regulate starvation-induced HCC cell apoptosis by reducing HIF-1α/mTOR-mediated autophagy, promoting HCC cell progression.
Collapse
Affiliation(s)
- Fenfen Hong
- Division of Gastroenterology and Hepatology, Yinzhou Hospital Affiliated to Medical School of Ningbo University, Ningbo, Zhejiang, 315000, China
| | - Yu Gao
- Hongkou Branch of Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yang Li
- Department of Cardiovascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Linfeng Zheng
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Feng Xu
- Division of Gastroenterology and Hepatology, Yinzhou Hospital Affiliated to Medical School of Ningbo University, Ningbo, Zhejiang, 315000, China. .,, Ningbo, China.
| | - Xianpeng Li
- Division of Gastroenterology and Hepatology, Yinzhou Hospital Affiliated to Medical School of Ningbo University, Ningbo, Zhejiang, 315000, China. .,, Ningbo, China.
| |
Collapse
|