1
|
Zhu S, Liu X, Lu X, Liao Q, Luo H, Tian Y, Cheng X, Jiang Y, Liu G, Chen J. Biomaterials and tissue engineering in traumatic brain injury: novel perspectives on promoting neural regeneration. Neural Regen Res 2024; 19:2157-2174. [PMID: 38488550 PMCID: PMC11034597 DOI: 10.4103/1673-5374.391179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/13/2023] [Accepted: 11/20/2023] [Indexed: 04/24/2024] Open
Abstract
Traumatic brain injury is a serious medical condition that can be attributed to falls, motor vehicle accidents, sports injuries and acts of violence, causing a series of neural injuries and neuropsychiatric symptoms. However, limited accessibility to the injury sites, complicated histological and anatomical structure, intricate cellular and extracellular milieu, lack of regenerative capacity in the native cells, vast variety of damage routes, and the insufficient time available for treatment have restricted the widespread application of several therapeutic methods in cases of central nervous system injury. Tissue engineering and regenerative medicine have emerged as innovative approaches in the field of nerve regeneration. By combining biomaterials, stem cells, and growth factors, these approaches have provided a platform for developing effective treatments for neural injuries, which can offer the potential to restore neural function, improve patient outcomes, and reduce the need for drugs and invasive surgical procedures. Biomaterials have shown advantages in promoting neural development, inhibiting glial scar formation, and providing a suitable biomimetic neural microenvironment, which makes their application promising in the field of neural regeneration. For instance, bioactive scaffolds loaded with stem cells can provide a biocompatible and biodegradable milieu. Furthermore, stem cells-derived exosomes combine the advantages of stem cells, avoid the risk of immune rejection, cooperate with biomaterials to enhance their biological functions, and exert stable functions, thereby inducing angiogenesis and neural regeneration in patients with traumatic brain injury and promoting the recovery of brain function. Unfortunately, biomaterials have shown positive effects in the laboratory, but when similar materials are used in clinical studies of human central nervous system regeneration, their efficacy is unsatisfactory. Here, we review the characteristics and properties of various bioactive materials, followed by the introduction of applications based on biochemistry and cell molecules, and discuss the emerging role of biomaterials in promoting neural regeneration. Further, we summarize the adaptive biomaterials infused with exosomes produced from stem cells and stem cells themselves for the treatment of traumatic brain injury. Finally, we present the main limitations of biomaterials for the treatment of traumatic brain injury and offer insights into their future potential.
Collapse
Affiliation(s)
- Shihong Zhu
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiaoyin Liu
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiyue Lu
- Department of Anesthesiology, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Qiang Liao
- Department of Pharmacy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Huiyang Luo
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
- Department of Anesthesiology, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuan Tian
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Xu Cheng
- Department of Anesthesiology, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Yaxin Jiang
- Out-patient Department, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Guangdi Liu
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Jing Chen
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
2
|
Zhou S, Zhang X, Ni W, He Y, Li M, Wang C, Bai Y, Zhang H, Yao M. An Immune-Regulating Polysaccharide Hybrid Hydrogel with Mild Photothermal Effect and Anti-Inflammatory for Accelerating Infected Wound Healing. Adv Healthc Mater 2024; 13:e2400003. [PMID: 38711313 DOI: 10.1002/adhm.202400003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/24/2024] [Indexed: 05/08/2024]
Abstract
Bacterial infections and excessive inflammation present substantial challenges for clinical wound healing. Hydrogels with mild photothermal (PTT) effects have emerged as promising agents owing to their dual actions: positive effects on cells and negative effects on bacteria. Here, an injectable self-healing hydrogel of oxidized konjac glucomannan/arginine-modified chitosan (OKGM/CS-Arg, OC) integrated with protocatechualdehyde-@Fe (PF) nanoparticles capable of effectively absorbing near-infrared radiation is synthesized successfully. The OC/PF hydrogels exhibit excellent mechanical properties, biocompatibility, and antioxidant activity. Moreover, in synergy with PTT, OC/PF demonstrates potent antibacterial effects while concurrently stimulating cell migration and new blood vessel formation. In methicillin-resistant Staphylococcus aureus-infected full-thickness mouse wounds, the OC/PF hydrogel displays remarkable antibacterial and anti-inflammatory activities, and accelerates wound healing by regulating the wound immune microenvironment and promoting M2 macrophage polarization. Consequently, the OC/PF hydrogel represents a novel therapeutic approach for treating multidrug-resistant bacterial infections and offers a technologically advanced solution for managing infectious wounds in clinical settings.
Collapse
Affiliation(s)
- ShengZhe Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Xueliang Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Wei Ni
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430000, P. R. China
| | - Yu He
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Ming Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Caixia Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Yubing Bai
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Hao Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Min Yao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- Institute of Traumatic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 201999, P. R. China
| |
Collapse
|
3
|
Hu S, Zhao R, Chi X, Chen T, Li Y, Xu Y, Zhu B, Hu J. Unleashing the power of chlorogenic acid: exploring its potential in nutrition delivery and the food industry. Food Funct 2024; 15:4741-4762. [PMID: 38629635 DOI: 10.1039/d4fo00059e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
In the contemporary era, heightened emphasis on health and safety has emerged as a paramount concern among individuals with food. The concepts of "natural" and "green" have progressively asserted dominance in the food consumption market. Consequently, through continuous exploration and development, an escalating array of natural bioactive ingredients is finding application in both nutrition delivery and the broader food industry. Chlorogenic acid (CGA), a polyphenolic compound widely distributed in various plants in nature, has garnered significant attention. Abundant research underscores CGA's robust biological activity, showcasing notable preventive and therapeutic efficacy across diverse diseases. This article commences with a comprehensive overview, summarizing the dietary sources and primary biological activities of CGA. These encompass antioxidant, anti-inflammatory, antibacterial, anti-cancer, and neuroprotective activities. Next, a comprehensive overview of the current research on nutrient delivery systems incorporating CGA is provided. This exploration encompasses nanoparticle, liposome, hydrogel, and emulsion delivery systems. Additionally, the article explores the latest applications of CGA in the food industry. Serving as a cutting-edge theoretical foundation, this paper contributes to the design and development of CGA in the realms of nutrition delivery and the food industry. Finally, the article presents informed speculations and considerations for the future development of CGA.
Collapse
Affiliation(s)
- Shumeng Hu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China.
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, PR China.
| | - Runan Zhao
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, PR China.
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, PR China
| | - Xuesong Chi
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, PR China.
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, PR China
| | - Tao Chen
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, PR China.
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, PR China
| | - Yangjing Li
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, PR China.
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, PR China
| | - Yu Xu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, PR China.
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, PR China
| | - Beiwei Zhu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China.
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, PR China.
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, PR China
| | - Jiangning Hu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, PR China.
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, PR China
| |
Collapse
|
4
|
Dong Z, Zhao J, Xu J, Deng W, Sun P. Strongly Adhesive, Self-Healing, Hemostatic Hydrogel for the Repair of Traumatic Brain Injury. Biomacromolecules 2024; 25:2462-2475. [PMID: 38533630 DOI: 10.1021/acs.biomac.3c01406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
With wide clinical demands, therapies for traumatic brain injury (TBI) are a major problem in surgical procedures and after major trauma. Due to the difficulty in regeneration of neurons or axons after injury, as well as the inhibition of blood vessel growth by the formation of neural scars, existing treatment measures have limited effectiveness in repairing brain tissue. Herein, the biomultifunctional hydrogels are developed for TBI treatment based on the Schiff base reaction of calcium ion (Ca2+)-cross-linked oxidized sodium alginate (OSA) and carboxymethyl chitosan (CMCS). The obtained COCS hydrogel exhibits excellent adhesion to wet tissues, self-repair capability, and antimicrobial properties. What's particularly interesting is that the addition of Ca2+ increases the hydrogel's extensibility, enhancing its hemostatic capabilities. Biological assessments indicate that the COCS hydrogel demonstrates excellent biocompatibility, hemostatic properties, and the ability to promote arterial vessel repair. Importantly, the COCS hydrogel promotes the growth of cerebral microvessels by upregulating CD31, accelerates the proliferation of astrocytes, enhances the expression of GFAP, and stimulates the expression of neuron-specific markers such as NEUN and β-tubulin. All of these findings highlight that the strongly adhesive, self-healing, hemostatic hydrogel shows great potential for the repair of traumatic brain injury and other tissue repair therapy.
Collapse
Affiliation(s)
- Zuoxiang Dong
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Wutaishan Road 1677, Qingdao, Shandong 266000, China
| | - Jihu Zhao
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Wutaishan Road 1677, Qingdao, Shandong 266000, China
| | - Jian Xu
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Wutaishan Road 1677, Qingdao, Shandong 266000, China
| | - Wenshuai Deng
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Wutaishan Road 1677, Qingdao, Shandong 266000, China
| | - Peng Sun
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Wutaishan Road 1677, Qingdao, Shandong 266000, China
| |
Collapse
|
5
|
Shan BH, Wu FG. Hydrogel-Based Growth Factor Delivery Platforms: Strategies and Recent Advances. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2210707. [PMID: 37009859 DOI: 10.1002/adma.202210707] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/25/2023] [Indexed: 06/19/2023]
Abstract
Growth factors play a crucial role in regulating a broad variety of biological processes and are regarded as powerful therapeutic agents in tissue engineering and regenerative medicine in the past decades. However, their application is limited by their short half-lives and potential side effects in physiological environments. Hydrogels are identified as having the promising potential to prolong the half-lives of growth factors and mitigate their adverse effects by restricting them within the matrix to reduce their rapid proteolysis, burst release, and unwanted diffusion. This review discusses recent progress in the development of growth factor-containing hydrogels for various biomedical applications, including wound healing, brain tissue repair, cartilage and bone regeneration, and spinal cord injury repair. In addition, the review introduces strategies for optimizing growth factor release including affinity-based delivery, carrier-assisted delivery, stimuli-responsive delivery, spatial structure-based delivery, and cellular system-based delivery. Finally, the review presents current limitations and future research directions for growth factor-delivering hydrogels.
Collapse
Affiliation(s)
- Bai-Hui Shan
- State Key Laboratory of Digital Medical Engineering Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Digital Medical Engineering Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| |
Collapse
|
6
|
Huang X, An Y, Yuan S, Chen C, Shan H, Zhang M. Silk fibroin carriers with sustained release capacity for treating neurological diseases. Front Pharmacol 2023; 14:1117542. [PMID: 37214477 PMCID: PMC10196044 DOI: 10.3389/fphar.2023.1117542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Neurological diseases such as traumatic brain injury, cerebral ischemia, Parkinson's, and Alzheimer's disease usually occur in the central and peripheral nervous system and result in nervous dysfunction, such as cognitive impairment and motor dysfunction. Long-term clinical intervention is necessary for neurological diseases where neural stem cell transplantation has made substantial progress. However, many risks remain for cell therapy, such as puncture bleeding, postoperative infection, low transplantation success rate, and tumor formation. Sustained drug delivery, which aims to maintain the desired steady-state drug concentrations in plasma or local injection sites, is considered as a feasible option to help overcome side effects and improve the therapeutic efficiency of drugs on neurological diseases. Natural polymers such as silk fibroin have excellent biocompatibility, which can be prepared for various end-use material formats, such as microsphere, gel, coating/film, scaffold/conduit, microneedle, and enables the dynamic release of loaded drugs to achieve a desired therapeutic response. Sustained-release drug delivery systems are based on the mechanism of diffusion and degradation by altering the structures of silk fibroin and drugs, factors, and cells, which can induce nerve recovery and restore the function of the nervous system in a slow and persistent manner. Based on these desirable properties of silk fibroin as a carrier with sustained-release capacity, this paper discusses the role of various forms of silk fibroin-based drug delivery materials in treating neurological diseases in recent years.
Collapse
Affiliation(s)
- Xinqi Huang
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, China
| | - Yumei An
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, China
| | - Shengye Yuan
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, China
| | - Chen Chen
- Department of Orthopedics, Dongtai People’s Hospital, Dongtai, China
| | - Haiyan Shan
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Mingyang Zhang
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, China
| |
Collapse
|
7
|
Choi KY, Ajiteru O, Hong H, Suh YJ, Sultan T, Lee H, Lee JS, Lee YJ, Lee OJ, Kim SH, Park CH. A digital light processing 3D-printed artificial skin model and full-thickness wound models using silk fibroin bioink. Acta Biomater 2023; 164:159-174. [PMID: 37121370 DOI: 10.1016/j.actbio.2023.04.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 03/31/2023] [Accepted: 04/24/2023] [Indexed: 05/02/2023]
Abstract
A three-dimensional (3D) artificial skin model offers diverse platforms for skin transplantation, disease mechanisms, and biomaterial testing for skin tissue. However, implementing physiological complexes such as the neurovascular system with living cells in this stratified structure is extremely difficult. In this study, full-thickness skin models were fabricated from methacrylated silk fibroin (Silk-GMA) and gelatin (Gel-GMA) seeded with keratinocytes, fibroblasts, and vascular endothelial cells representing the epidermis and dermis layers through a digital light processing (DLP) 3D printer. Printability, mechanical properties, and cell viability of the skin hydrogels fabricated with different concentrations of Silk-GMA and Gel-GMA were analyzed to find the optimal concentrations for the 3D printing of the artificial skin model. After the skin model was DLP-3D printed using Gel-GMA 15% + Silk-GMA 5% bioink, cultured, and air-lifted for four weeks, well-proliferated keratinocytes and fibroblasts were observed in histological analysis, and increased expressions of Cytokeratin 13, Phalloidin, and CD31 were noted in immunofluorescence staining. Furthermore, full-thickness skin wound models were 3D-printed to evaluate the wound-healing capabilities of the skin hydrogel. When the epidermal growth factor (EGF) was applied, enhanced wound healing in the epidermis and dermis layer with the proliferation of keratinocytes and fibroblasts was observed. Also, the semi-quantitative reverse transcription-polymerase chain reaction revealed increased expression of Cytokeratin 13, fibroblast growth factor, and CD31 in the EGF-treated group relative to the control group. The DLP 3D-printed artificial skin model was mechanically stable and biocompatible for more than four weeks, demonstrating the potential for application in skin tissue engineering. STATEMENT OF SIGNIFICANCE: A full-thickness artificial skin model was 3D-printed in this study with a digital light processing technique using silk fibroin and gelatin, which mimics the structural and cellular compositions of the human skin. The 3D-printed skin hydrogel ensured the viability of the cells in the skin layers that proliferated well after air-lifting cultivation, shown in the histological analysis and immunofluorescence stainings. Furthermore, full-thickness skin wound models were 3D-printed to evaluate the wound healing capabilities of the skin hydrogel, which demonstrated enhanced wound healing in the epidermis and dermis layer with the application of epidermal growth factor on the wound compared to the control. The bioengineered hydrogel expands the applicability of artificial skin models for skin substitutes, wound models, and drug testing.
Collapse
Affiliation(s)
- Kyu Young Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Hallym University Kangnam Sacred Heart Hospital, Seoul 07441, Republic of Korea
| | - Olatunji Ajiteru
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Heesun Hong
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Ye Ji Suh
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Tipu Sultan
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Hanna Lee
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Ji Seung Lee
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Young Jin Lee
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Ok Joo Lee
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Soon Hee Kim
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Chan Hum Park
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea; Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, School of Medicine, Hallym University, Chuncheon, 24252, Republic of Korea.
| |
Collapse
|
8
|
Mao Y, Zhang Y, Wang Y, Zhou T, Ma B, Zhou P. A multifunctional nanocomposite hydrogel with controllable release behavior enhances bone regeneration. Regen Biomater 2023; 10:rbad046. [PMID: 37287896 PMCID: PMC10243836 DOI: 10.1093/rb/rbad046] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 04/26/2023] [Indexed: 06/09/2023] Open
Abstract
Autologous and allogeneic bone grafts remain the gold standard for repairing bone defects. However, donor shortages and postoperative infections contribute to unsatisfactory treatment outcomes. Tissue engineering technology that utilizes biologically active composites to accelerate the healing and reconstruction of segmental bone defects has led to new ideas for in situ bone repair. Multifunctional nanocomposite hydrogels were constructed by covalently binding silver (Ag+) core-embedded mesoporous silica nanoparticles (Ag@MSN) to bone morphogenetic protein-2 (BMP-2), which was encapsulated into silk fibroin methacryloyl (SilMA) and photo-crosslinked to form an Ag@MSN-BMP-2/SilMA hydrogel to preserve the biological activity of BMP-2 and slow its release. More importantly, multifunctional Ag+-containing nanocomposite hydrogels showed antibacterial properties. These hydrogels possessed synergistic osteogenic and antibacterial effects to promote bone defect repair. Ag@MSN-BMP-2/SilMA exhibited good biocompatibility in vitro and in vivo owing to its interconnected porosity and improved hydrophilicity. Furthermore, the multifunctional nanocomposite hydrogel showed controllable sustained-release activity that promoted bone regeneration in repairing rat skull defects by inducing osteogenic differentiation and neovascularization. Overall, Ag@MSN-BMP-2/SilMA hydrogels enrich bone regeneration strategies and show great potential for bone regeneration.
Collapse
Affiliation(s)
- Yingji Mao
- Department of Orthopedics and Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, China
- Anhui Province Key Laboratory of Tissue Transplantation, School of Life Sciences, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Yiwen Zhang
- Department of Orthopedics and Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, China
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Plastic Surgery Institute of Shantou University Medical College, Shantou, Guangdong 515063, China
| | - Ying Wang
- Department of Orthopedics and Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, China
| | - Tao Zhou
- Department of Orthopedics and Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, China
| | - Bingxu Ma
- Department of Orthopedics and Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, China
| | - Pinghui Zhou
- Department of Orthopedics and Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, China
- Anhui Province Key Laboratory of Tissue Transplantation, School of Life Sciences, Bengbu Medical College, Bengbu, Anhui 233030, China
| |
Collapse
|
9
|
Pan P, Li J, Liu X, Hu C, Wang M, Zhang W, Li M, Liu Y. Plasmid containing VEGF-165 and ANG-1 dual genes packaged with fibroin-modified PEI to promote the regeneration of vascular network and dermal tissue. Colloids Surf B Biointerfaces 2023; 224:113210. [PMID: 36841206 DOI: 10.1016/j.colsurfb.2023.113210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/04/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023]
Abstract
Reducing the cytotoxicity of cationic polymers is the major issue to their use as a gene delivery carrier. In this study, plasmids containing encoding vascular endothelial cell growth factor 165 and angiopoietin-1 were packaged with the conjugates of cationic fibroin (CSF) and polyethylenimine (PEI), instead of packaging pDNA with PEI alone, to prepare nanocomplexes (CSF+PEI)/pDNA. The complexes were loaded into a silk fibroin scaffold to enhance its function to induce microvascular network generation and dermal tissue regeneration. The results of transfecting EA.hy926 cells with the complexes in vitro showed that (CSF+PEI)/pDNA had a stronger transfection ability than PEI/pDNA. Importantly, compared with PEI as the gene carrier alone, the cell viability was significantly increased and the cytotoxicity was effectively reduced after the conjugate of CSF and PEI was used as the gene carrier. The results of angiogenesis in chick embryo chorioallantoic membranes showed that compared with scaffolds loaded with PEI/pDNA, the neovascularization ratio in scaffolds loaded with (CSF+PEI)/pDNA was significantly increased. In vivo experimental results of scaffolds implantation for full-thickness skin defects in SD rats showed that, compared with loading PEI/pDNA complex, loading (CSF+PEI)/pDNA complex in the scaffold more effectively promoted the formation of vascular network in the scaffold and accelerated the regeneration of dermal tissue. The gene delivery system established in this study has application potential not only in the regeneration of vascular-containing tissues, but also in tumor gene therapy.
Collapse
Affiliation(s)
- Peng Pan
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, No. 199 Ren'ai Road, Industrial Park, Suzhou 215123, China
| | - Jing Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, No. 199 Ren'ai Road, Industrial Park, Suzhou 215123, China
| | - Xueping Liu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, No. 199 Ren'ai Road, Industrial Park, Suzhou 215123, China
| | - Cheng Hu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, No. 199 Ren'ai Road, Industrial Park, Suzhou 215123, China
| | - Mengmeng Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, No. 199 Ren'ai Road, Industrial Park, Suzhou 215123, China
| | - Wenjing Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, No. 199 Ren'ai Road, Industrial Park, Suzhou 215123, China
| | - Mingzhong Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, No. 199 Ren'ai Road, Industrial Park, Suzhou 215123, China.
| | - Yu Liu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, No. 199 Ren'ai Road, Industrial Park, Suzhou 215123, China.
| |
Collapse
|
10
|
Li S, Sun J, Yang J, Yang Y, Ding H, Yu B, Ma K, Chen M. Gelatin methacryloyl (GelMA) loaded with concentrated hypoxic pretreated adipose-derived mesenchymal stem cells(ADSCs) conditioned medium promotes wound healing and vascular regeneration in aged skin. Biomater Res 2023; 27:11. [PMID: 36782342 PMCID: PMC9926638 DOI: 10.1186/s40824-023-00352-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 02/04/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND Aging skin is characterized by a disturbed structure and lack of blood supply, which makes it difficult to heal once injured. ADSCs secrete large amounts of cytokines, which promote wound healing and vascular regeneration through paracrine secretion, and the number of cytokines can be elevated by hypoxic pretreating. However, the components of ADSCs are difficult to retain in wounds. Gelatin methacrylate (GelMA) is a photopolymerizable hydrogel synthesized from gelatin and has recently emerged as a potentially attractive material for tissue engineering applications. GelMA loaded with concentrated hypoxic pretreated ADSCs conditioned medium could provide a new method of treating wounds in aged skin. METHODS Primary ADSCs were isolated from human adipose tissue and characterized by flow cytometry and differentiation test. ADSCs in passages 4-6 were pretreated in the hypoxic and normoxic environments to collect conditioned medium, the conditioned medium was then concentrated to prepare concentrated ADSCs conditioned medium(cADSC-CM)(the one collected from ADSCs under hypoxia was called hypo-CM ,and the one from normoxia was called nor-CM). The concentration of cytokines was detected. After treated with cADSC-CM, the abilities of proliferation, migration, and tube formation of human umbilical vascular endothelial cells (HUVECs) were assayed, and Akt/mTOR and MAPK signal pathway was detected using western blotting. GelMA+hypo-CM hydrogel was prepared, and a comprehensive evaluation of morphology, protein release efficiency, degradation rate, mechanical properties, and rheology properties were performed. Full-thickness skin wounds were created on the backs of 20-month-old mice. After surgery, GelMA, GelMA+F12, GelMA+hypo-CM, and GelMA+nor-CM were applied to the wound surface respectively. H&E, Masson, and immunohistochemistry staining were performed, and a laser Doppler perfusion imager was used to evaluate the blood perfusion. The student's t-test was used for analysis between two groups and a one-way analysis of variance (ANOVA) was used for analysis among multi groups. RESULTS Our results revealed that 1) wounds in aged skin healed more slowly than that in young skin and exhibited poorer perfusion; 2) hypoxic pretreated ADSCs secreted more cytokines including VEGF by activating HIF1α; 3) hypo-CM promoted proliferation and migration of HUVECs through VEGF/Akt/mTOR and MAPK signal pathway; 4) GelMA-hypoCM accelerated wound healing and angiogenesis in aged skin in vivo. CONCLUSION GelMA loaded with concentrated hypoxic pretreated adipose-derived mesenchymal stem cells conditioned medium could accelerate wound healing in aged skin by promoting angiogenesis.
Collapse
Affiliation(s)
- Shiyi Li
- grid.414252.40000 0004 1761 8894Senior Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100038 China ,grid.488137.10000 0001 2267 2324Chinese PLA Medical School, Beijing, 100853 China
| | - Jiachen Sun
- grid.414252.40000 0004 1761 8894Senior Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100038 China ,grid.411472.50000 0004 1764 1621Department of Dermatology and Venerology, Peking University First Hospital, Beijing, 100034 China
| | - Jinxiu Yang
- grid.414252.40000 0004 1761 8894Senior Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100038 China ,grid.506261.60000 0001 0706 78397th Department of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144 China
| | - Yi Yang
- grid.414252.40000 0004 1761 8894Senior Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100038 China ,grid.488137.10000 0001 2267 2324Chinese PLA Medical School, Beijing, 100853 China
| | - Hongfan Ding
- grid.414252.40000 0004 1761 8894Senior Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100038 China ,grid.488137.10000 0001 2267 2324Chinese PLA Medical School, Beijing, 100853 China
| | - Boya Yu
- grid.414252.40000 0004 1761 8894Senior Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100038 China ,grid.488137.10000 0001 2267 2324Chinese PLA Medical School, Beijing, 100853 China
| | - Kui Ma
- grid.414252.40000 0004 1761 8894Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, 100048 China
| | - Minliang Chen
- Senior Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100038, China.
| |
Collapse
|
11
|
Porous composite hydrogels with improved MSC survival for robust epithelial sealing around implants and M2 macrophage polarization. Acta Biomater 2023; 157:108-123. [PMID: 36435441 DOI: 10.1016/j.actbio.2022.11.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022]
Abstract
The application of mesenchymal stem cell (MSC)-based therapy is expected to make a significant contribution to the improvement of epithelial sealing around implants. However, there is currently no optimal MSC delivery biomaterial for clinical application in peri-implant epithelium (PIE) integration. In this study, we show that injectable photo-cross-linkable porous gelatin methacryloyl (GelMA)/silk fibroin glycidyl methacrylate (SilMA) hydrogels encapsulating gingival tissue-derived MSCs (GMSCs) are a simple and practical approach for re-epithelization applications. The hydrogels played a prominent role in supporting the proliferation, survival, and spread of GMSCs. Moreover, it was found that GMSCs-laden Porous GelMA/SilMA hydrogels could significantly upregulate the hemidesmosomes (HDs)-related genes and proteins expression and promote M2 polarization while inhibiting M1 polarization in vitro. Based on a rat model of early implant placement, application of the MSC-loaded hydrogels could enhance the protein expression of LAMA3 and BP180 (COL17A1) at the implant-PIE interface and reduce horseradish peroxidase (HRP) penetration between the implants and PIE. Noticeably, hydrogel-based MSC therapy contributed to augmenting M2 macrophage infiltration at two time points in the gingival connective tissue around implants. These findings demonstrated that GMSCs-laden Porous GelMA/SilMA hydrogels could facilitate epithelial sealing around implants and M2-polarized macrophages and may be a novel and facile therapeutic strategy for implant-PIE integration. STATEMENT OF SIGNIFICANCE: In the case of poor integration between the implant and gingival epithelium, peri-implantitis can develop, which is one of the main causes of implant failure. While stem cell therapy has tremendous potential for addressing this issue, poor cell survival and engraftment compromise the effectiveness of the therapy. Due to the excellent modifiable and tunable properties of gelatin and silk fibroin, injectable photo-cross-linkable porous hydrogels were developed using gelatin methacryloyl (GelMA) and silk fibroin glycidyl methacrylate (SilMA) as delivery vehicles for gingiva-derived MSCs (GMSCs). Porous GelMA/SilMA not only enhanced the proliferation and viability of GMSCs but also promoted their immunomodulatory capability for favorable epithelial sealing around implants. Overall, GMSCs-seeded porous hydrogels could be promising strategies for re-epithelization treatment.
Collapse
|
12
|
Hu Y, Jia Y, Wang S, Ma Y, Huang G, Ding T, Feng D, Genin GM, Wei Z, Xu F. An ECM-Mimicking, Injectable, Viscoelastic Hydrogel for Treatment of Brain Lesions. Adv Healthc Mater 2023; 12:e2201594. [PMID: 36398536 DOI: 10.1002/adhm.202201594] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/30/2022] [Indexed: 11/19/2022]
Abstract
Brain lesions can arise from traumatic brain injury, infection, and craniotomy. Although injectable hydrogels show promise for promoting healing of lesions and health of surrounding tissue, enabling cellular ingrowth and restoring neural tissue continue to be challenging. It is hypothesized that these challenges arise in part from the mismatch of composition, stiffness, and viscoelasticity between the hydrogel and the brain parenchyma, and this hypothesis is tested by developing and evaluating a self-healing hydrogel that not only mimics the composition, but also the stiffness and viscoelasticity of native brain parenchyma. The hydrogel is crosslinked by dynamic boronate ester bonds between phenylboronic acid grafted hyaluronic acid (HA-PBA) and dopamine grafted gelatin (Gel-Dopa). This HA-PBA/Gel-Dopa hydrogel could be injected into a lesion cavity in a shear-thinning manner with rapid hemostasis, high tissue adhesion, and efficient self-healing. In an in vivo mouse model of brain lesions, the multi-functional injectable hydrogel is found to support neural cell infiltration, decrease astrogliosis and glial scars, and close the lesions. The results suggest a role for extracellular matrix-mimicking viscoelasticity in brain lesion healing, and motivate additional experimentation in larger animals as the technology progresses toward potential application in humans.
Collapse
Affiliation(s)
- Yan Hu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yuanbo Jia
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Siwei Wang
- School of Safety Science and Engineering, Xi'an University of Science and Technology, Xi'an, 710054, P. R. China
| | - Yufei Ma
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Guoyou Huang
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, 430072, P. R. China
| | - Tan Ding
- Xijing Orthopaedics Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Dayun Feng
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, P. R. China
| | - Guy M Genin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China.,Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA.,NSF Science and Technology Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, MO, 63130, USA.,Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63130, USA
| | - Zhao Wei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
13
|
Chen L, Li L, Mo Q, Zhang X, Chen C, Wu Y, Zeng X, Deng K, Liu N, Zhu P, Liu M, Xiao Y. An injectable gelatin/sericin hydrogel loaded with human umbilical cord mesenchymal stem cells for the treatment of uterine injury. Bioeng Transl Med 2023; 8:e10328. [PMID: 36684066 PMCID: PMC9842051 DOI: 10.1002/btm2.10328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/17/2022] [Accepted: 04/04/2022] [Indexed: 01/25/2023] Open
Abstract
Abnormal endometrial receptivity is a major cause of the failure of embryo transplantation, which may lead to infertility, adverse pregnancy, and neonatal outcomes. While hormonal treatment has dramatically improved the fertility outcomes in women with endometriosis, a substantial unmet need persists in the treatment. In this study, methacrylate gelatin (GelMA) and methacrylate sericin (SerMA) hydrogel with human umbilical cord mesenchymal stem cells (HUMSC) encapsulation was designed for facilitating endometrial regeneration and fertility restoration through in situ injection. The presented GelMA/10%SerMA hydrogel showed appropriate swelling ratio, good mechanical properties, and degradation stability. In vitro cell experiments showed that the prepared hydrogels had excellent biocompatibility and cell encapsulation ability of HUMSC. Further in vivo experiments demonstrated that GelMA/SerMA@HUMSC hydrogel could increase the thickness of endometrium and improve the endometrial interstitial fibrosis. Moreover, regenerated endometrial tissue was more receptive to transfer embryos. Summary, we believed that GelMA/SerMA@HUMSC hydrogel will hold tremendous promise to repair or regenerate damaged endometrium.
Collapse
Affiliation(s)
- Lixuan Chen
- Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Jinshazhou Hospital of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Ling Li
- Jiangmen Maternity and Child Health Care HospitalJiangmenGuangdongChina
| | - Qinglin Mo
- Translational Medicine CenterThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Xiaomin Zhang
- Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Jinshazhou Hospital of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Chaolin Chen
- Translational Medicine CenterThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Yingnan Wu
- Translational Medicine CenterThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Xiaoli Zeng
- National Seed Cell Bank of South China for Tissue EngineeringGuangzhouGuangdongChina
| | - Kaixian Deng
- Department of Gynecology, Shunde HospitalSouthern Medical University (The First People's Hospital of Shunde)FoshanGuangdongChina
| | - Nanbo Liu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Mingxing Liu
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong ProvinceThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Yang Xiao
- Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Shenzhen Qianhai Shekou Pilot Free Trade Zone Hospital, ShekouShenzhenGuangdongChina
| |
Collapse
|
14
|
Liu XY, Chang ZH, Chen C, Liang J, Shi JX, Fan X, Shao Q, Meng WW, Wang JJ, Li XH. 3D printing of injury-preconditioned secretome/collagen/heparan sulfate scaffolds for neurological recovery after traumatic brain injury in rats. Stem Cell Res Ther 2022; 13:525. [PMID: 36536463 PMCID: PMC9764714 DOI: 10.1186/s13287-022-03208-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The effects of traumatic brain injury (TBI) can include physical disability and even death. The development of effective therapies to promote neurological recovery is still a challenging problem. 3D-printed biomaterials are considered to have a promising future in TBI repair. The injury-preconditioned secretome derived from human umbilical cord blood mesenchymal stem cells showed better stability in neurological recovery after TBI. Therefore, it is reasonable to assume that a biological scaffold loaded with an injury-preconditioned secretome could facilitate neural network reconstruction after TBI. METHODS In this study, we fabricated injury-preconditioned secretome/collagen/heparan sulfate scaffolds by 3D printing. The scaffold structure and porosity were examined by scanning electron microscopy and HE staining. The cytocompatibility of the scaffolds was characterized by MTT analysis, HE staining and electron microscopy. The modified Neurological Severity Score (mNSS), Morris water maze (MWM), and motor evoked potential (MEP) were used to examine the recovery of cognitive and locomotor function after TBI in rats. HE staining, silver staining, Nissl staining, immunofluorescence, and transmission electron microscopy were used to detect the reconstruction of neural structures and pathophysiological processes. The biocompatibility of the scaffolds in vivo was characterized by tolerance exposure and liver/kidney function assays. RESULTS The excellent mechanical and porosity characteristics of the composite scaffold allowed it to efficiently regulate the secretome release rate. MTT and cell adhesion assays demonstrated that the scaffold loaded with the injury-preconditioned secretome (3D-CH-IB-ST) had better cytocompatibility than that loaded with the normal secretome (3D-CH-ST). In the rat TBI model, cognitive and locomotor function including mNSS, MWM, and MEP clearly improved when the scaffold was transplanted into the damage site. There is a significant improvement in nerve tissue at the site of lesion. More abundant endogenous neurons with nerve fibers, synaptic structures, and myelin sheaths were observed in the 3D-CH-IB-ST group. Furthermore, the apoptotic response and neuroinflammation were significantly reduced and functional vessels were observed at the injury site. Good exposure tolerance in vivo demonstrated favorable biocompatibility of the scaffold. CONCLUSIONS Our results demonstrated that injury-preconditioned secretome/collagen/heparan sulfate scaffolds fabricated by 3D printing promoted neurological recovery after TBI by reconstructing neural networks, suggesting that the implantation of the scaffolds could be a novel way to alleviate brain damage following TBI.
Collapse
Affiliation(s)
- Xiao-Yin Liu
- grid.33763.320000 0004 1761 2484Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China ,grid.13291.380000 0001 0807 1581Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041 Sichuan China
| | - Zhe-Han Chang
- grid.33763.320000 0004 1761 2484Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
| | - Chong Chen
- grid.33763.320000 0004 1761 2484Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China ,Tianjin Key Laboratory of Neurotrauma Repair, Characteristic Medical Center of People’s Armed Police Forces, Tianjin, 300162 China
| | - Jun Liang
- grid.33763.320000 0004 1761 2484Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
| | - Jian-Xin Shi
- grid.33763.320000 0004 1761 2484Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
| | - Xiu Fan
- grid.33763.320000 0004 1761 2484Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
| | - Qi Shao
- grid.33763.320000 0004 1761 2484Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
| | - Wei-Wei Meng
- grid.33763.320000 0004 1761 2484Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
| | - Jing-Jing Wang
- Tianjin Key Laboratory of Neurotrauma Repair, Characteristic Medical Center of People’s Armed Police Forces, Tianjin, 300162 China
| | - Xiao-Hong Li
- grid.33763.320000 0004 1761 2484Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
| |
Collapse
|
15
|
Research progress of stem cell therapy for endometrial injury. Mater Today Bio 2022; 16:100389. [PMID: 36033375 PMCID: PMC9403503 DOI: 10.1016/j.mtbio.2022.100389] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 11/24/2022] Open
Abstract
Endometrial damage is an important factor leading to infertility and traditional conventional treatments have limited efficacy. As an emerging technology in recent years, stem cell therapy has provided new hope for the treatment of this disease. By comparing the advantages of stem cells from different sources, it is believed that menstrual blood endometrial stem cells have a good application prospect as a new source of stem cells. However, the clinical utility of stem cells is still limited by issues such as colonization rates, long-term efficacy, tumor formation, and storage and transportation. This paper summarizes the mechanism by which stem cells repair endometrial damage and clarifies the material basis of their effects from four aspects: replacement of damaged sites, paracrine effects, interaction with growth factors, and other new targets. According to the pathological characteristics and treatment requirements of intrauterine adhesion (IUA), the research work to solve the above problems from the aspects of functional bioscaffold preparation and multi-functional platform construction is also summarized. From the perspective of scaffold materials and component functions, this review will provide a reference for comprehensively optimizing the clinical application of stem cells.
Collapse
|
16
|
Li S, Zhao X, Wang Q, Yu F, Li W, Bai Y, Shen X, Du X, He D, Yuan J. Mechanoresponsive Drug Loading System with Tunable Host-Guest Interactions for Ocular Disease Treatment. ACS Biomater Sci Eng 2022; 8:4850-4862. [PMID: 36214483 DOI: 10.1021/acsbiomaterials.2c00931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Conventional administration of eye drops often requires high dosages and/or repetitive treatments to achieve therapeutic efficacy. This is inefficient and may result in side effects or even toxicity. Although many delivery systems of ophthalmic drugs have been reported, most of them work in a fixed format in which both the type and dose of the loaded drugs cannot be changed upon demand. To overcome this limitation, a hybrid double network hydrogel system composed of methacryloyl gelatin, pluronic F127 diacrylate, and β-cyclodextrin-modified oxidized dextran was developed. The hydrogels presented good mechanical strength and biocompatibility. In vitro assessments demonstrated that the hydrogels loaded with commonly used ophthalmic drugs could sustain the drug release for more than 21 days. This hydrogel system exhibited features of mechanoresponsive drug loading, and the capacity of drug loading could be significantly enhanced by macroscopically mechanical compression. Further in vivo evaluation of the drug delivery capacity showed that a dexamethasone-loaded hydrogel as a fornix insert effectively suppressed upregulation of proangiogenic factors and suture-induced corneal neovascularization in rats. This novel hydrogel system represents a promising drug delivery platform, which could potentially improve the treatments of ocular surface and other diseases.
Collapse
Affiliation(s)
- Saiqun Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510623, China
| | - Xuan Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510623, China
| | - Qian Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510623, China
| | - Fei Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510623, China
| | - Weihua Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510623, China
| | - Ying Bai
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Xuanren Shen
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Xinyue Du
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510623, China
| | - Dalian He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510623, China
| | - Jin Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510623, China
| |
Collapse
|
17
|
Li Z, Zhang Y, Zhao Y, Gao X, Zhu Z, Mao Y, Qian T. Graded-Three-Dimensional Cell-Encapsulating Hydrogel as a Potential Biologic Scaffold for Disc Tissue Engineering. Tissue Eng Regen Med 2022; 19:1001-1012. [PMID: 35962859 PMCID: PMC9478016 DOI: 10.1007/s13770-022-00480-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/30/2022] [Accepted: 07/03/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Intervertebral disk (IVD) degeneration, which can cause lower back pain, is a major predisposing factor for disability and can be managed through multiple approaches. However, there is no satisfactory strategy currently available to reconstruct and recover the natural properties of IVDs after degeneration. As tissue engineering develops, scaffolds with embedded cell cultures have proved critical for the successful regeneration of IVDs. METHODS In this study, an integrated scaffold for IVD replacement was developed. Through scanning electron microscopy and other mechanical measurements, we characterized the physical properties of different hydrogels. In addition, we simulated the physiological structure of natural IVDs. Nucleus pulposus (NP) cells and annulus fibrosus-derived stem cells (AFSCs) were seeded in gelatin methacrylate (GelMA) hydrogel at different concentrations to evaluate cell viability and matrix expression. RESULTS It was found that different concentrations of GelMA hydrogel can provide a suitable environment for cell survival. However, hydrogels with different mechanical properties influence cell adhesion and extracellular matrix component type I collagen, type II collagen, and aggrecan expression. CONCLUSION This tissue-engineered IVD implant had a similar structure and function as the native IVD, with the inner area mimicking the NP tissue and the outer area mimicking the stratified annulus fibrosus tissue. The new integrated scaffold demonstrated a good simulation of disc structure. The preparation of efficient and regeneration-promoting tissue-engineered scaffolds is an important issue that needs to be explored in the future. It is hoped that this work will provide new ideas and methods for the further construction of functional tissue replacement discs.
Collapse
Affiliation(s)
- Zhixiang Li
- Department of Orthopedics, First Affiliated Hospital, School of Life Sciences, Bengbu Medical College, Bengbu, 233030, China
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, 233030, China
| | - Yiwen Zhang
- Department of Orthopedics, First Affiliated Hospital, School of Life Sciences, Bengbu Medical College, Bengbu, 233030, China
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Plastic Surgery Institute of Shantou University Medical College, Shantou, 515063, Guangdong, China
| | - Yupeng Zhao
- Department of Orthopedics, First Affiliated Hospital, School of Life Sciences, Bengbu Medical College, Bengbu, 233030, China
| | - Xubin Gao
- Department of Orthopedics, First Affiliated Hospital, School of Life Sciences, Bengbu Medical College, Bengbu, 233030, China
| | - Zhonglian Zhu
- Department of Orthopedics, First Affiliated Hospital, School of Life Sciences, Bengbu Medical College, Bengbu, 233030, China
| | - Yingji Mao
- Department of Orthopedics, First Affiliated Hospital, School of Life Sciences, Bengbu Medical College, Bengbu, 233030, China.
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, 233030, China.
| | - Taibao Qian
- Department of Orthopedics, First Affiliated Hospital, School of Life Sciences, Bengbu Medical College, Bengbu, 233030, China.
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, 233030, China.
| |
Collapse
|
18
|
Xu W, Wu Y, Lu H, Zhu Y, Ye J, Yang W. Sustained delivery of vascular endothelial growth factor mediated by bioactive methacrylic anhydride hydrogel accelerates peripheral nerve regeneration after crush injury. Neural Regen Res 2022; 17:2064-2071. [PMID: 35142698 PMCID: PMC8848599 DOI: 10.4103/1673-5374.335166] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Neurotrophic factors, currently administered orally or by intravenous drip or intramuscular injection, are the main method for the treatment of peripheral nerve crush injury. However, the low effective drug concentration arriving at the injury site results in unsatisfactory outcomes. Therefore, there is an urgent need for a treatment method that can increase the effective drug concentration in the injured area. In this study, we first fabricated a gelatin modified by methacrylic anhydride hydrogel and loaded it with vascular endothelial growth factor that allowed the controlled release of the neurotrophic factor. This modified gelatin exhibited good physical and chemical properties, biocompatibility and supported the adhesion and proliferation of RSC96 cells and human umbilical vein endothelial cells. When injected into the epineurium of crushed nerves, the composite hydrogel in the rat sciatic nerve crush injury model promoted nerve regeneration, functional recovery and vascularization. The results showed that the modified gelatin gave sustained delivery of vascular endothelial growth factors and accelerated the repair of crushed peripheral nerves.
Collapse
Affiliation(s)
- Wanlin Xu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yifan Wu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Hao Lu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yun Zhu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Jinhai Ye
- Jiangsu Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Wenjun Yang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, China
| |
Collapse
|
19
|
Liu X, Zhang G, Wei P, Zhong L, Chen Y, Zhang J, Chen X, Zhou L. 3D-printed collagen/chitosan/secretome derived from HUCMSCs scaffolds for efficient neural network reconstruction in canines with traumatic brain injury. Regen Biomater 2022; 9:rbac043. [PMID: 35855109 PMCID: PMC9290528 DOI: 10.1093/rb/rbac043] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 05/28/2022] [Accepted: 06/10/2022] [Indexed: 02/05/2023] Open
Abstract
The secretome secreted by stem cells and bioactive material has emerged as a promising therapeutic choice for traumatic brain injury (TBI). We aimed to determine the effect of 3D-printed collagen/chitosan/secretome derived from human umbilical cord blood mesenchymal stem cells scaffolds (3D-CC-ST) on the injured tissue regeneration process. 3D-CC-ST was performed using 3D printing technology at a low temperature (−20°C), and the physical properties and degeneration rate were measured. The utilization of low temperature contributed to a higher cytocompatibility of fabricating porous 3D architectures that provide a homogeneous distribution of cells. Immediately after the establishment of the canine TBI model, 3D-CC-ST and 3D-CC (3D-printed collagen/chitosan scaffolds) were implanted into the cavity of TBI. Following implantation of scaffolds, neurological examination and motor evoked potential detection were performed to analyze locomotor function recovery. Histological and immunofluorescence staining were performed to evaluate neuro-regeneration. The group treated with 3D-CC-ST had good performance of behavior functions. Implanting 3D-CC-ST significantly reduced the cavity area, facilitated the regeneration of nerve fibers and vessel reconstruction, and promoted endogenous neuronal differentiation and synapse formation after TBI. The implantation of 3D-CC-ST also markedly reduced cell apoptosis and regulated the level of systemic inflammatory factors after TBI.
Collapse
Affiliation(s)
- Xiaoyin Liu
- West China Hospital, West China Medical School, Sichuan University Department of Neurosurgery, , Chengdu 610041, Sichuan, China
- Tianjin Key Laboratory of Neurotrauma Repair,Pingjin Hospital Brain Center , Characteristic Medical Center of People’s Armed Police Forces, Tianjin 300162, China
| | - Guijun Zhang
- West China Hospital, West China Medical School, Sichuan University Department of Neurosurgery, , Chengdu 610041, Sichuan, China
| | - Pan Wei
- The First People's Hospital Of Long Quan yi District Department of Neurosurgery, , Chengdu 610000, Sichuan, China
| | - Lin Zhong
- The First Affiliated Hospital of Chengdu Medical College , Chengdu 610500, Sichuan, China
| | - Yaxing Chen
- West China Hospital, West China Medical School, Sichuan University Department of Neurosurgery, , Chengdu 610041, Sichuan, China
| | - Jianyong Zhang
- the Affiliated Hospital of Guizhou Medical University Department of General Surgery, , Guiyang CN 540000, P. R., Guizhou, China
| | - Xuyi Chen
- Tianjin Key Laboratory of Neurotrauma Repair,Pingjin Hospital Brain Center , Characteristic Medical Center of People’s Armed Police Forces, Tianjin 300162, China
- Institute of Medical Security for Maritime Rights Protection of Characteristic Medical Center of Chinese People’s Armed Police Force (PAP) , Tianjin, 300162, China
| | - Liangxue Zhou
- West China Hospital, West China Medical School, Sichuan University Department of Neurosurgery, , Chengdu 610041, Sichuan, China
| |
Collapse
|
20
|
Chen Y, Pal S, Hu Q. Recent advances in biomaterial-assisted cell therapy. J Mater Chem B 2022; 10:7222-7238. [PMID: 35612089 DOI: 10.1039/d2tb00583b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With the outstanding achievement of chimeric antigen receptor (CAR)-T cell therapy in the clinic, cell-based medicines have attracted considerable attention for biomedical applications and thus generated encouraging progress. As the basic construction unit of organisms, cells harbor low immunogenicity, desirable compatibility, and a strong capability of crossing various biological barriers. However, there is still a long way to go to fix significant bottlenecks for their clinical translation, such as facile preparation, strict stability requirements, scale-up manufacturing, off-target toxicity, and affordability. The rapid development of biotechnology and engineering approaches in materials sciences has provided an ideal platform to assist cell-based therapeutics for wide application in disease treatments by overcoming these issues. Herein, we survey the most recent advances of various cells as bioactive ingredients and outline the roles of biomaterials in developing cell-based therapeutics. Besides, a perspective of cell therapies is offered with a particular focus on biomaterial-involved development of cell-based biopharmaceuticals.
Collapse
Affiliation(s)
- Yu Chen
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA. .,Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.,Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Samira Pal
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA. .,Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.,Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
21
|
Chen Y, Zhai MJ, Mehwish N, Xu MD, Wang Y, Gong YX, Ren MM, Deng H, Lee BH. Comparison of globular albumin methacryloyl and random-coil gelatin methacryloyl: Preparation, hydrogel properties, cell behaviors, and mineralization. Int J Biol Macromol 2022; 204:692-708. [PMID: 35150780 DOI: 10.1016/j.ijbiomac.2022.02.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/28/2022] [Accepted: 02/07/2022] [Indexed: 12/19/2022]
Abstract
Bovine serum albumin methacryloyl (BSAMA) is a newly emerging photocurable globular protein-based material whereas gelatin methacryloyl (GelMA) is one of the most popular photocurable fibrous protein-based materials. So far, the influence of their different structural conformations as building blocks on hydrogel properties and mineral deposition has not been investigated. Here, we compared their differences in structures, gelation kinetics, hydrogel properties, mineralization, and cell behaviors. BSAMA maintained a stable globular structure while GelMA exhibited temperature-sensitive conformations (4 - 37 °C). BSAMA displayed slower gelation kinetics and much more retarded enzymatic degradation compared to GelMA. Photocurable BSAMA (6.41 - 390.95 kPa) and GelMA hydrogels (36.09 - 199.70 kPa) exhibited tunable mechanical properties depending on their concentrations (10 - 20%). Interestingly, BSAMA hydrogels mineralized needle-like apatite (Ca/P: 1.409) with higher crystallinity compared to GelMA hydrogels (Ca/P: 1.344). BSAMA and GelMA supported satisfactory cell (MC3T3-L1) viability of 99.43 ± 0.57% and 97.14 ± 0.69%, respectively. However, BSAMA gels were less favorable to cell proliferation and migration than GelMA gels. In serum-free environments, cells on GelMA displayed a higher amount of attachment, a more elongated shape, and a longer protrusion compared to those on BSAMA (p < 0.01) during the early adhesion.
Collapse
Affiliation(s)
- Yuan Chen
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China; Department of Periodontics, School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Meng Jiao Zhai
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
| | - Nabila Mehwish
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
| | - Meng Die Xu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
| | - Yi Wang
- Department of Orthodontics, School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yi Xuan Gong
- Department of Periodontics, School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Man Man Ren
- Department of Periodontics, School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Hui Deng
- Department of Periodontics, School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| | - Bae Hoon Lee
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China; Oujiang Laboratory (Zhejiang Lab for Rengerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325001, China.
| |
Collapse
|
22
|
Lei T, Liu Y, Deng S, Xiao Z, Yang Y, Zhang X, Bi W, Du H. Hydrogel supplemented with human platelet lysate enhances multi-lineage differentiation of mesenchymal stem cells. J Nanobiotechnology 2022; 20:176. [PMID: 35366889 PMCID: PMC8976277 DOI: 10.1186/s12951-022-01387-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/17/2022] [Indexed: 12/18/2022] Open
Abstract
Stem cells from human exfoliated deciduous teeth (SHED) can be used as a potential clinical material. But the use of xenogeneic ingredients will increase the risk of zoonotic disease transmission. Human platelet lysate (HPL) is a potential surrogate and used in human cell expansion with reliability in clinical applications. In this study, we synthesized chitosan/gelatin/gellan gum hydrogel supplemented with HPL and investigated the effect of 3D culture for SHED. TMT-tagged proteomics was used to decipher the secretome protein profiles of SHEDs and a total of 3209 proteins were identified, of which 23 were up-regulated and 192 were down-regulated. The results showed that hydrogel supplemented with HPL promoted SHED proliferation. After induction, the hydrogel coating contributed to osteogenic differentiation, adipogenic differentiation and differentiation into neural-like cells of SHED. SHED encapsulated in a hydrogel promotes migration and angiogenesis of HUVEC. In conclusion, our research found that hydrogel supplemented with HPL can be used as a method for SHED in standardized production and can contribute to the clinical application of SHED in cell therapy.
Collapse
|
23
|
Wang Y, Kankala RK, Ou C, Chen A, Yang Z. Advances in hydrogel-based vascularized tissues for tissue repair and drug screening. Bioact Mater 2022; 9:198-220. [PMID: 34820566 PMCID: PMC8586021 DOI: 10.1016/j.bioactmat.2021.07.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
The construction of biomimetic vasculatures within the artificial tissue models or organs is highly required for conveying nutrients, oxygen, and waste products, for improving the survival of engineered tissues in vitro. In recent times, the remarkable progress in utilizing hydrogels and understanding vascular biology have enabled the creation of three-dimensional (3D) tissues and organs composed of highly complex vascular systems. In this review, we give an emphasis on the utilization of hydrogels and their advantages in the vascularization of tissues. Initially, the significance of vascular elements and the regeneration mechanisms of vascularization, including angiogenesis and vasculogenesis, are briefly introduced. Further, we highlight the importance and advantages of hydrogels as artificial microenvironments in fabricating vascularized tissues or organs, in terms of tunable physical properties, high similarity in physiological environments, and alternative shaping mechanisms, among others. Furthermore, we discuss the utilization of such hydrogels-based vascularized tissues in various applications, including tissue regeneration, drug screening, and organ-on-chips. Finally, we put forward the key challenges, including multifunctionalities of hydrogels, selection of suitable cell phenotype, sophisticated engineering techniques, and clinical translation behind the development of the tissues with complex vasculatures towards their future development.
Collapse
Affiliation(s)
- Ying Wang
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong, 523059, PR China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, Guangdong, 510080, PR China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China
| | - Caiwen Ou
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong, 523059, PR China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, Guangdong, 510080, PR China
| | - Aizheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China
| | - Zhilu Yang
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong, 523059, PR China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, Guangdong, 510080, PR China
| |
Collapse
|
24
|
Liu G, ZHOU YUAN, Zhang X, Guo S. Advances in Hydrogels for Stem Cell Therapy: Regulation Mechanisms and Tissue Engineering Applications. J Mater Chem B 2022; 10:5520-5536. [DOI: 10.1039/d2tb01044e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stem cell therapy has shown unparalleled potential in tissue engineering, but it still faces challenges in the regulation of stem cell fate. Inspired by the native stem cell niche, a...
Collapse
|
25
|
Bae M, Hwang DW, Ko MK, Jin Y, Shin WJ, Park W, Chae S, Lee HJ, Jang J, Yi HG, Lee DS, Cho DW. Neural stem cell delivery using brain-derived tissue-specific bioink for recovering from traumatic brain injury. Biofabrication 2021; 13. [PMID: 34551404 DOI: 10.1088/1758-5090/ac293f] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 09/22/2021] [Indexed: 01/02/2023]
Abstract
Traumatic brain injury is one of the leading causes of accidental death and disability. The loss of parts in a severely injured brain induces edema, neuronal apoptosis, and neuroinflammation. Recently, stem cell transplantation demonstrated regenerative efficacy in an injured brain. However, the efficacy of current stem cell therapy needs improvement to resolve issues such as low survival of implanted stem cells and low efficacy of differentiation into respective cells. We developed brain-derived decellularized extracellular matrix (BdECM) bioink that is printable and has native brain-like stiffness. This study aimed to fabricate injured cavity-fit scaffold with BdECM bioink and assessed the utility of BdECM bioink for stem cell delivery to a traumatically injured brain. Our BdECM bioink had shear thinning property for three-dimensional (3D)-cell-printing and physical properties and fiber structures comparable to those of the native brain, which is important for tissue integration after implantation. The human neural stem cells (NSCs) (F3 cells) laden with BdECM bioink were found to be fully differentiated to neurons; the levels of markers for mature differentiated neurons were higher than those observed with collagen bioinkin vitro. Moreover, the BdECM bioink demonstrated potential in defect-fit carrier fabrication with 3D cell-printing, based on the rheological properties and shape fidelity of the material. As F3 cell-laden BdECM bioink was transplanted into the motor cortex of a rat brain, high efficacy of differentiation into mature neurons was observed in the transplanted NSCs; notably increased level of MAP2, a marker of neuronal differentiation, was observed. Furthermore, the transplanted-cell bioink suppressed reactive astrogliosis and microglial activation that may impede regeneration of the injured brain. The brain-specific material reported here is favorable for NSC differentiation and suppression of neuroinflammation and is expected to successfully support regeneration of a traumatically injured brain.
Collapse
Affiliation(s)
- Mihyeon Bae
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeonsangbuk-do 37673, Republic of Korea
| | - Do Won Hwang
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,THERABEST, Co. Ltd, Seocho-daero 40-gil, Seoul 06657, Republic of Korea
| | - Min Kyung Ko
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,THERABEST, Co. Ltd, Seocho-daero 40-gil, Seoul 06657, Republic of Korea
| | - Yeona Jin
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Woo Jung Shin
- THERABEST, Co. Ltd, Seocho-daero 40-gil, Seoul 06657, Republic of Korea
| | - Wonbin Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeonsangbuk-do 37673, Republic of Korea
| | - Suhun Chae
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeonsangbuk-do 37673, Republic of Korea
| | - Hong Jun Lee
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.,Research Institute eBiogen Inc., Seoul, Republic of Korea
| | - Jinah Jang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeonsangbuk-do 37673, Republic of Korea.,Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeonsangbuk-do 37673, Republic of Korea.,Institute for Convergence Research and Education in Advanced Technology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hee-Gyeong Yi
- Department of Rural and Biosystems Engineering, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Dong Soo Lee
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine or College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeonsangbuk-do 37673, Republic of Korea.,Institute for Convergence Research and Education in Advanced Technology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
26
|
Zhang H, Guo J, Wang Y, Sun L, Zhao Y. Stretchable and Conductive Composite Structural Color Hydrogel Films as Bionic Electronic Skins. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102156. [PMID: 34436831 PMCID: PMC8529447 DOI: 10.1002/advs.202102156] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/30/2021] [Indexed: 05/19/2023]
Abstract
Electronic skins have received increasing attention in biomedical areas. Current efforts about electronic skins are focused on the development of multifunctional materials to improve their performance. Here, the authors propose a novel natural-synthetic polymers composite structural color hydrogel film with high stretchability, flexibility, conductivity, and superior self-reporting ability to construct ideal multiple-signal bionic electronic skins. The composite hydrogel film is prepared by using the mixture of polyacrylamide (PAM), silk fibroin (SF), poly(3,4-ethylenedioxythiophene):poly (4-styrene sulfonate) (PEDOT:PSS, PP), and graphene oxide (GO) to replicate colloidal crystal templates and construct inverse opal scaffolds, followed by subsequent acid treatment. Due to these specific structures and components, the resultant film is imparted with vivid structural color and high conductivity while retaining the composite hydrogel's original stretchability and flexibility. The authors demonstrate that the composite hydrogel film has obvious color variation and electromechanical properties during the stretching and bending process, which could thus be utilized as a multi-signal response electronic skin to realize real-time color sensing and electrical response during human motions. These features indicate that the proposed composite structural color hydrogel film can widen the practical value of bionic electronic skins.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Rheumatology and ImmunologyInstitute of Translational MedicineThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210008China
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Jiahui Guo
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Yu Wang
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Lingyu Sun
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyInstitute of Translational MedicineThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210008China
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Chemistry and Biomedicine Innovation CenterNanjing UniversityNanjing210023China
| |
Collapse
|
27
|
des Rieux A. Stem cells and their extracellular vesicles as natural and bioinspired carriers for the treatment of neurological disorders. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
28
|
Lv H, Wu B, Song J, Wu W, Cai W, Xu J. Hydrogel, a novel therapeutic and delivery strategy, in the treatment of intrauterine adhesions. J Mater Chem B 2021; 9:6536-6552. [PMID: 34324619 DOI: 10.1039/d1tb01005k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Intrauterine adhesions (IUAs) are caused by damage to the underlying lining of the endometrium. They' re related to disorder of endometrial repair. In recent years, hydrogels with controllable biological activity have been widely used for treating IUAs. They encapsulate estrogen, cytokines, cells, or exosomes, forming a delivery system to release therapeutic components for the treatment of IUAs. In addition, the hydrogel acting as a barrier can be degraded in the body automatically, reducing the risk of infection caused by secondary surgeries. In this review, we summarize the recent progress of hydrogels and their application in IUAs as both a novel alternative therapeutic and an artificial delivery strategy.
Collapse
Affiliation(s)
- Houyi Lv
- Department of Reproductive Medicine, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | | | | | | | | | | |
Collapse
|
29
|
Ajiteru O, Choi KY, Lim TH, Kim DY, Hong H, Lee YJ, Lee JS, Lee H, Suh YJ, Sultan MT, Lee OJ, Kim SH, Park CH. A digital light processing 3D printed magnetic bioreactor system using silk magnetic bioink. Biofabrication 2021; 13. [PMID: 33887719 DOI: 10.1088/1758-5090/abfaee] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/22/2021] [Indexed: 12/13/2022]
Abstract
Among various bioreactors used in the field of tissue engineering and regenerative medicine, a magnetic bioreactor is more capable of providing steady force to the cells while avoiding direct manipulation of the materials. However, most of them are complex and difficult to fabricate, with drawbacks in terms of consistency and biocompatibility. In this study, a magnetic bioreactor system and a magnetic hydrogel were manufactured by single-stage three-dimensional (3D) printing with digital light processing (DLP) technique for differentiation of myoblast cells. The hydrogel was composed of a magnetic part containing iron oxide and glycidyl-methacrylated silk fibroin, and a cellular part printed by adding mouse myoblast cell (C2C12) to gelatin glycidyl methacrylate, that was placed in the magnetic bioreactor system to stimulate the cells in the hydrogel. The composite hydrogel was steadily printed by a one-stage layering technique using a DLP printer. The magnetic bioreactor offered mechanical stretching of the cells in the hydrogel in 3D ways, so that the cellular differentiation could be executed in three dimensions just like the human environment. Cell viability, as well as gene expression using quantitative reverse transcription-polymerase chain reaction, were assessed after magneto-mechanical stimulation of the myoblast cell-embedded hydrogel in the magnetic bioreactor system. Comparison with the control group revealed that the magnetic bioreactor system accelerated differentiation of mouse myoblast cells in the hydrogel and increased myotube diameter and lengthin vitro. The DLP-printed magnetic bioreactor and the hydrogel were simply manufactured and easy-to-use, providing an efficient environment for applying noninvasive mechanical force via FDA-approved silk fibroin and iron oxide biocomposite hydrogel, to stimulate cells without any evidence of cytotoxicity, demonstrating the potential for application in muscle tissue engineering.
Collapse
Affiliation(s)
- Olatunji Ajiteru
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Kyu Young Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Hallym University College of Medicine, Kangnam Sacred Heart Hospital, Seoul 07441, Republic of Korea
| | - Tae Hyeon Lim
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Do Yeon Kim
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Heesun Hong
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Young Jin Lee
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Ji Seung Lee
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Hanna Lee
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Ye Ji Suh
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Md Tipu Sultan
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Ok Joo Lee
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Soon Hee Kim
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Chan Hum Park
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do 24252, Republic of Korea.,Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, School of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| |
Collapse
|
30
|
Yonesi M, Garcia-Nieto M, Guinea GV, Panetsos F, Pérez-Rigueiro J, González-Nieto D. Silk Fibroin: An Ancient Material for Repairing the Injured Nervous System. Pharmaceutics 2021; 13:429. [PMID: 33806846 PMCID: PMC8004633 DOI: 10.3390/pharmaceutics13030429] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/25/2022] Open
Abstract
Silk refers to a family of natural fibers spun by several species of invertebrates such as spiders and silkworms. In particular, silkworm silk, the silk spun by Bombyx mori larvae, has been primarily used in the textile industry and in clinical settings as a main component of sutures for tissue repairing and wound ligation. The biocompatibility, remarkable mechanical performance, controllable degradation, and the possibility of producing silk-based materials in several formats, have laid the basic principles that have triggered and extended the use of this material in regenerative medicine. The field of neural soft tissue engineering is not an exception, as it has taken advantage of the properties of silk to promote neuronal growth and nerve guidance. In addition, silk has notable intrinsic properties and the by-products derived from its degradation show anti-inflammatory and antioxidant properties. Finally, this material can be employed for the controlled release of factors and drugs, as well as for the encapsulation and implantation of exogenous stem and progenitor cells with therapeutic capacity. In this article, we review the state of the art on manufacturing methodologies and properties of fiber-based and non-fiber-based formats, as well as the application of silk-based biomaterials to neuroprotect and regenerate the damaged nervous system. We review previous studies that strategically have used silk to enhance therapeutics dealing with highly prevalent central and peripheral disorders such as stroke, Alzheimer's disease, Parkinson's disease, and peripheral trauma. Finally, we discuss previous research focused on the modification of this biomaterial, through biofunctionalization techniques and/or the creation of novel composite formulations, that aim to transform silk, beyond its natural performance, into more efficient silk-based-polymers towards the clinical arena of neuroprotection and regeneration in nervous system diseases.
Collapse
Affiliation(s)
- Mahdi Yonesi
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; (M.Y.); (G.V.G.)
- Silk Biomed SL, 28260 Madrid, Spain;
| | | | - Gustavo V. Guinea
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; (M.Y.); (G.V.G.)
- Silk Biomed SL, 28260 Madrid, Spain;
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Fivos Panetsos
- Silk Biomed SL, 28260 Madrid, Spain;
- Neurocomputing and Neurorobotics Research Group, Faculty of Biology and Faculty of Optics, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), 28040 Madrid, Spain
| | - José Pérez-Rigueiro
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; (M.Y.); (G.V.G.)
- Silk Biomed SL, 28260 Madrid, Spain;
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Daniel González-Nieto
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; (M.Y.); (G.V.G.)
- Silk Biomed SL, 28260 Madrid, Spain;
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicaciones, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| |
Collapse
|