1
|
Alolga RN, Ayensu I, Sosu JX. Forced Degradation Studies, Elucidation of Degradation Pathways and Degradation Kinetics of Xylopic Acid via LC and LC-MS/MS Analyses. J Pharm Sci 2023; 112:2029-2036. [PMID: 36638960 DOI: 10.1016/j.xphs.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
Stability studies of active pharmaceutical ingredients (APIs) remain an essential quality requirement of the pharmaceutical industry. Stability data of an API could guide in the choice of its processing technique, packaging method and storage conditions. Here, we sought to determine the stability or otherwise of xylopic acid (XA) under various stress conditions as stipulated by the International Conference on Harmonization (ICH). XA is a diterpene kaurene isolate of the African spice, Xylopia aethiopica (Annonaceae) that is credited with diverse biological activities. XA was subjected to various stress conditions (hydrolytic, oxidative, photolytic and thermal) and its degradation products characterized. Seven degradation products were identified and tentatively characterized by LC-MS/MS analysis. The probable degradation pathways for the seven degradation products were then predicted. Using a simple and validated UHPLC-DAD method, the degradation kinetics of XA under the different stress conditions were comprehensively assessed. The degradation of XA under all the stress conditions followed the first order reaction kinetics. XA was found to be less stable in strongly acidic or strongly basic solutions as well as in an oxidizing agent (hydrogen peroxide). The stability of XA was also found to be pH- and temperature-dependent. Its stability was however not affected by UV-light irradiation.
Collapse
Affiliation(s)
- Raphael N Alolga
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| | - Isaac Ayensu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| | - Jerry X Sosu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana; Department of Pharmaceutical Chemistry, School of Pharmacy and Pharmaceutical Sciences, University for Development Studies, Tamale, Ghana
| |
Collapse
|
2
|
Ibrahim TS, Khongorzul P, Muyaba M, Alolga RN. Ent-kaurane diterpenoids from the Annonaceae family: a review of research progress and call for further research. Front Pharmacol 2023; 14:1227574. [PMID: 37456746 PMCID: PMC10345206 DOI: 10.3389/fphar.2023.1227574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023] Open
Abstract
The Annonaceae is one of the plant families with members that are credited with numerous pharmacological functions. Among the group of compounds responsible for these bioactivities are the ent-kaurane diterpenoids. The ent-kauranes are a group of 20-Carbon, tetracyclic diterpenoids that are widely distributed in other plant families including the Annonaceae family. This mini-review focuses mainly on the ent-kaurane diterpenoids isolated from the Annonaceae family, delineates the various biological activities of these compounds, and highlights the research gaps that exist for further scientific scrutiny.
Collapse
Affiliation(s)
- Traore S. Ibrahim
- Department of Pharmacognosy, State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Purevdulam Khongorzul
- Department of Pharmacognosy, State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Moses Muyaba
- Department of Pharmaceutical Chemistry and Pharmacognosy, School of Pharmacy, Eden University, Lusaka, Zambia
| | - Raphael N. Alolga
- Department of Pharmacognosy, State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
3
|
Caliskan G, Sayan A, Kilic I, Haki C, Girgin NK. Has the COVID-19 Pandemic Affected Brain Death Notifications and Organ Donation Time? EXP CLIN TRANSPLANT 2023; 21:460-466. [PMID: 34387157 DOI: 10.6002/ect.2021.0090] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVES The outbreak of coronavirus disease 2019, known as COVID-19, has rapidly evolved to a global pandemic. This pandemic represents an unprecedented public health issue not only for the general population but also for patients on the transplant wait list. Multiple organizations around the world have published recommendations for the proper conduct of transplant procedures, including donor and recipient screening and perioperative management. We investigated the efficacy of these new recommendations and the effects of SARS-CoV-2 infection on the deceased donation rate, donor organ management, and the time from family consent to procurement. MATERIALS AND METHODS The characteristics of potential donors diagnosed with brain death between July 15, 2019, and November 18, 2020, were evaluated retrospectively.Demographic and clinical features,the time elapsed from the clinical diagnosis until confirmation, and rates of acceptance were recorded. Potential donors diagnosed with brain death before the pandemic and during the pandemic were compared according to these variables. RESULTS Within the study period, 40 patients were diagnosed with brain death: 13 before the pandemic and 27 during the pandemic. The organs from 2 donors were procured before the pandemic. Organs from 3 of 8 donors were procured during the pandemic (the organs from 5 of these 8 patients were not donated). The organ donation time was 8.5 ± 2.12 hours (minimum-maximum, 7-10 hours) in the period before the pandemic and 54 ± 11.53 hours (minimummaximum, 45-67 hours) during the pandemic. CONCLUSIONS The number of donors decreased significantly in our hospital during the pandemic and was similarto the overallrate inTurkey.The duration of the donation process has been prolonged, and strategies to improve rates of organ donation, including infection control, have become a focus of concern.
Collapse
Affiliation(s)
- Gulbahar Caliskan
- From the Department of Anesthesiology and Intensive Care, Ministry of Health, Bursa City Hospital, Bursa, Turkey
| | | | | | | | | |
Collapse
|
4
|
Liu J, Zhao N, Su SH, Gao Y, Qi B. Anti-Arthritic Effect of Edaravone Against Complete Freund Adjuvant Induced Arthritis via Osteoclast Differentiation and HIF-1α-VEGF-ANG-1 Axis. Drug Des Devel Ther 2023; 17:519-534. [PMID: 36845667 PMCID: PMC9946814 DOI: 10.2147/dddt.s391606] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/15/2022] [Indexed: 02/19/2023] Open
Abstract
Background Bone dysfunction is a crucial problem that occurs during rheumatoid arthritis (RA) disease. Osteoclast plays a significant role in bone resorption and osteoclast differentiation and its enhancement of bone destruction. Edaravone remarkably exhibited free radical scavenging and anti-inflammatory effects. The objective of the current investigation is to comfort the inhibitory effect of Edaravone (ED) against complete Freund adjuvant (CFA) rat model via inhibition of angiogenesis and inflammation. Methods Subcutaneous injection of CFA (1%) was used to induce arthritis; the rats were divided into different groups and received the oral administration of ED. Paw edema, body weight, and arthritis score were regularly estimated. Biochemical parameters were estimated, respectively. We also estimate the level of hypoxia-inducible factor-1α (HIF-1α), angiopoietin 1 (ANG-1), and vascular endothelial growth factor (VEGF). We also checked into how ED affected the differentiation of osteoclasts utilising a co-culture system with monocytes and synovial fibroblasts in arthritis rats. Results ED treatment significantly (P<0.001) suppressed the arthritis score and paw edema and improved the body weight. ED treatment significantly (P<0.001) altered the antioxidant parameters and pro-inflammatory cytokines: inflammatory mediator nuclear kappa B factor (NF-κB), cyclooxygenase-2 (COX-2), and prostaglandin E2 (PGE2), respectively. Furthermore, ED treatment significantly (P<0.001) suppressed the level of ANG-1, HIF-1α, and VEGF, respectively. The results suggest that ED suppressed osteoclast differentiation and also decreased the level of cytokines and osteopontin (OPN), receptor activator for nuclear factor-κ B Ligand (RANKL) and macrophage colony stimulating factor (M-CSF) in the co-culture supernatant of monocytes and synovial fibroblasts. Conclusion Edaravone could mitigate CFA via inhibiting angiogenesis and inflammatory reactions, which may be linked with the HIF-1α-VEGF-ANG-1 axis and also enhance the bone destruction of murine arthritis via suppression of osteoclast differentiation and inflammatory reaction.
Collapse
Affiliation(s)
- Jichao Liu
- Department of Hand and Foot Micro Burn Plastic Surgery, 3201 Hospital, Hanzhong, People’s Republic of China
| | - Nan Zhao
- Department of Neurosurgery, The First Hospital of Kunming, Kunming, People’s Republic of China
| | - Shi-Han Su
- Department of Internal Medicine-Neurology, 920th Hospital of Joint Logistics Support Force, Kunming, People’s Republic of China
| | - Yun Gao
- Department of Neurosurgery, The First Hospital of Kunming, Kunming, People’s Republic of China
| | - Bo Qi
- Department of Orthopaedics, 920th Hospital of Joint Logistics Support Force, Kunming, People’s Republic of China,Correspondence: Bo Qi, Department of Orthopaedics, 920th Hospital of Joint Logistics Support Force, Kunming, 650000, People’s Republic of China, Email
| |
Collapse
|
5
|
Alolga RN, Wang SL, Ayensu I, Nebeolisa CS. Pharmacokinetics and in vitro liver microsomal enzyme metabolism of Xylopic acid. J Pharm Biomed Anal 2023; 224:115200. [PMID: 36563593 DOI: 10.1016/j.jpba.2022.115200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/07/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
Xylopic acid (XA) is a bioactive diterpene kaurene isolate of the Guinea pepper fruit, Xylopia aethiopica (Annonaceae) with numerous well-established biological effects. In this study, we aimed to fill certain scientific voids in terms of the scientific literature on XA, specifically, its pharmacokinetic (PK) parameters and in vitro liver microsomal enzyme metabolism. A new LC-MS/MS method was developed and validated for the determination of the plasma concentration-time profile of XA. The method was found to be accurate, precise, selective and repeatable with lowest limit of quantification (LLOQ) of 10 ng/mL and run time of 15 min. The maximum plasma concentration (Cmax), time at which maximum plasma concentration was attained (Tmax), half-life (t1/2), clearance (CL) and mean residence time (MRT) of XA were 167.03 ± 6.18 ng/mL; 10 h; 13.03 ± 7.33 h; 0.04 ± 0.01 mL/h/kg and 23.83 ± 11.02 h respectively. Six metabolites (M1-M6) were tentatively identified after XA was subjected to in vitro liver microsomal enzyme metabolism. The metabolites were the products of methylation (M1), glucuronidation (M2), deacetylation (M3), glucosylation (M4), hydroxylation and glutamic acid addition (M5) and glutathionylation (M6). The outcome of this study provides useful insights that could guide further research on XA.
Collapse
Affiliation(s)
- Raphael N Alolga
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| | - Shi-Lei Wang
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Isaac Ayensu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| | - Chiemezie S Nebeolisa
- Department of Microbiology and Biological Pharmacy, School of Life Sciences, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
6
|
Metabonomics and 16S rRNA gene sequencing to study the therapeutic mechanism of Danggui Sini decoction on collagen-induced rheumatoid arthritis rats with Cold Bi syndrome. J Pharm Biomed Anal 2023; 222:115109. [DOI: 10.1016/j.jpba.2022.115109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/28/2022] [Accepted: 10/11/2022] [Indexed: 03/14/2023]
|
7
|
Zheng K, Bai J, Yang H, Xu Y, Pan G, Wang H, Geng D. Nanomaterial-assisted theranosis of bone diseases. Bioact Mater 2022; 24:263-312. [PMID: 36632509 PMCID: PMC9813540 DOI: 10.1016/j.bioactmat.2022.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 12/27/2022] Open
Abstract
Bone-related diseases refer to a group of skeletal disorders that are characterized by bone and cartilage destruction. Conventional approaches can regulate bone homeostasis to a certain extent. However, these therapies are still associated with some undesirable problems. Fortunately, recent advances in nanomaterials have provided unprecedented opportunities for diagnosis and therapy of bone-related diseases. This review provides a comprehensive and up-to-date overview of current advanced theranostic nanomaterials in bone-related diseases. First, the potential utility of nanomaterials for biological imaging and biomarker detection is illustrated. Second, nanomaterials serve as therapeutic delivery platforms with special functions for bone homeostasis regulation and cellular modulation are highlighted. Finally, perspectives in this field are offered, including current key bottlenecks and future directions, which may be helpful for exploiting nanomaterials with novel properties and unique functions. This review will provide scientific guidance to enhance the development of advanced nanomaterials for the diagnosis and therapy of bone-related diseases.
Collapse
Affiliation(s)
- Kai Zheng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, China
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, China,Corresponding author.Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China.
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, China
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Huaiyu Wang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China,Corresponding author.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, China,Corresponding author. Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
8
|
Opoku‐Damoah Y, Zhang R, Ta HT, Xu ZP. Therapeutic gas-releasing nanomedicines with controlled release: Advances and perspectives. EXPLORATION (BEIJING, CHINA) 2022; 2:20210181. [PMID: 37325503 PMCID: PMC10190986 DOI: 10.1002/exp.20210181] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/15/2022] [Indexed: 06/16/2023]
Abstract
Nanoparticle-based drug delivery has become one of the most popular approaches for maximising drug therapeutic potentials. With the notable improvements, a greater challenge hinges on the formulation of gasotransmitters with unique challenges that are not met in liquid and solid active ingredients. Gas molecules upon release from formulations for therapeutic purposes have not really been discussed extensively. Herein, we take a critical look at four key gasotransmitters, that is, carbon monoxide (CO), nitric oxide (NO), hydrogen sulphide (H2S) and sulphur dioxide (SO2), their possible modification into prodrugs known as gas-releasing molecules (GRMs), and their release from GRMs. Different nanosystems and their mediatory roles for efficient shuttling, targeting and release of these therapeutic gases are also reviewed extensively. This review thoroughly looks at the diverse ways in which these GRM prodrugs in delivery nanosystems are designed to respond to intrinsic and extrinsic stimuli for sustained release. In this review, we seek to provide a succinct summary for the development of therapeutic gases into potent prodrugs that can be adapted in nanomedicine for potential clinical use.
Collapse
Affiliation(s)
- Yaw Opoku‐Damoah
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQueenslandAustralia
| | - Run Zhang
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQueenslandAustralia
| | - Hang T. Ta
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQueenslandAustralia
- School of Environment and ScienceGriffith UniversityBrisbaneQueenslandAustralia
- Queensland Micro and Nanotechnology CentreGriffith UniversityBrisbaneQueenslandAustralia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
9
|
Xu L, Chang C, Jiang P, Wei K, Zhang R, Jin Y, Zhao J, Xu L, Shi Y, Guo S, He D. Metabolomics in rheumatoid arthritis: Advances and review. Front Immunol 2022; 13:961708. [PMID: 36032122 PMCID: PMC9404373 DOI: 10.3389/fimmu.2022.961708] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/25/2022] [Indexed: 12/11/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease accompanied by metabolic alterations. The metabolic profiles of patients with RA can be determined using targeted and non-targeted metabolomics technology. Metabolic changes in glucose, lipid, and amino acid levels are involved in glycolysis, the tricarboxylic acid cycle, the pentose phosphate pathway, the arachidonic acid metabolic pathway, and amino acid metabolism. These alterations in metabolic pathways and metabolites can fulfill bio-energetic requirements, promote cell proliferation, drive inflammatory mediator secretion, mediate leukocyte infiltration, induce joint destruction and muscle atrophy, and regulate cell proliferation, which may reflect the etiologies of RA. Differential metabolites can be used as biomarkers for the diagnosis, prognosis, and risk prediction, improving the specificity and accuracy of diagnostics and prognosis prediction. Additionally, metabolic changes associated with therapeutic responses can improve the understanding of drug mechanism. Metabolic homeostasis and regulation are new therapeutic strategies for RA. In this review, we provide a comprehensive overview of advances in metabolomics for RA.
Collapse
Affiliation(s)
- Lingxia Xu
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Cen Chang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Ping Jiang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Kai Wei
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Runrun Zhang
- Department of Rheumatology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yehua Jin
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianan Zhao
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Linshuai Xu
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Shi
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Shicheng Guo
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI, United States
- *Correspondence: Shicheng Guo, ; Dongyi He,
| | - Dongyi He
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Shicheng Guo, ; Dongyi He,
| |
Collapse
|
10
|
Activities and Molecular Mechanisms of Diterpenes, Diterpenoids, and Their Derivatives in Rheumatoid Arthritis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4787643. [PMID: 35368757 PMCID: PMC8975657 DOI: 10.1155/2022/4787643] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/11/2021] [Accepted: 02/02/2022] [Indexed: 12/11/2022]
Abstract
Diterpenes and their derivatives have many biological activities, including anti-inflammatory and immunomodulatory effects. To date, several diterpenes, diterpenoids, and their laboratory-derived products have been demonstrated for antiarthritic activities. This study summarizes the literature about diterpenes and their derivatives acting against rheumatoid arthritis (RA) depending on the database reports until 31 August 2021. For this, we have conducted an extensive search in databases such as PubMed, Science Direct, Google Scholar, and Clinicaltrials.gov using specific relevant keywords. The search yielded 2708 published records, among which 48 have been included in this study. The findings offer several potential diterpenes and their derivatives as anti-RA in various test models. Among the diterpenes and their derivatives, andrographolide, triptolide, and tanshinone IIA have been found to exhibit anti-RA activity through diverse pathways. In addition, some important derivatives of triptolide and tanshinone IIA have also been shown to have anti-RA effects. Overall, findings suggest that these substances could reduce arthritis score, downregulate oxidative, proinflammatory, and inflammatory biomarkers, modulate various arthritis pathways, and improve joint destruction and clinical arthritic conditions, signs, symptoms, and physical functions in humans and numerous experimental animals, mainly through cytokine and chemokine as well as several physiological protein interaction pathways. Taken all together, diterpenes, diterpenoids, and their derivatives may be promising tools for RA management.
Collapse
|
11
|
Regulation of Nrf2 and NF-κB activities may contribute to the anti-inflammatory mechanism of xylopic acid. Inflammopharmacology 2022; 30:1835-1841. [PMID: 35260973 DOI: 10.1007/s10787-022-00950-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/15/2022] [Indexed: 12/12/2022]
Abstract
Xylopic acid (XA) is a kaurene diterpene which naturally exists in African plants such as Xylopia aethiopica. It has been established to exhibit acute and chronic anti-inflammatory activities from our earlier studies. This current work sets out to shed light on the potential molecular target(s) of xylopic acid. Selection of investigated targets (NF-κB, Nrf2 and PTP1B) was based on an unbiased approach, using the SPiDER in silico prediction tool, and a candidate approach, examining well-known anti-inflammatory targets. Reporter gene assays were used to test for altered NF-κB and Nrf2 activities in transfected HEK or CHO cells, respectively, and immunoblot and flow cytometric analyses examined protein expression of the Nrf2/NF-kB target genes HO-1 and VCAM-1 in HUVEC. An effect of XA on PTP1B activity assay was studied using an in vitro enzyme assay with recombinant human enzyme and pNPP as substrate as well as by looking at insulin receptor phosphorylation in HepG2 cells. XA at 30 µM significantly (p < 0.001) inhibited the NF-κB-dependent reporter gene expression and enhanced activation of Nrf2 in a concentration-dependent manner when compared to the control. XA also marginally increased HO-1 protein expression levels while expression of VCAM-1 was reduced to 70% in XA-treated endothelial cells. However, XA did not show any sign of inhibition of PTP1B or a related phosphatase. Our findings suggest that the anti-inflammatory mechanism of XA entails the inhibitory effect on NF-κB and an increased activity of Nrf2, accompanied by increased expression of HO-1 and reduced expression of VCAM-1.
Collapse
|
12
|
Meng X, Zhang X, Su X, Liu X, Ren K, Ning C, Zhang Q, Zhang S. Daphnes Cortex and its licorice-processed products suppress inflammation via the TLR4/NF-κB/NLRP3 signaling pathway and regulation of the metabolic profile in the treatment of rheumatoid arthritis. JOURNAL OF ETHNOPHARMACOLOGY 2022; 283:114657. [PMID: 34600080 DOI: 10.1016/j.jep.2021.114657] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 05/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Daphnes Cortex (Daphne Giraldii Nitsche, DGN) is a popular traditional Chinese herbal medicine for traumatic injuries and rheumatoid arthritis (RA) in the Shaanxi and Gansu provinces of China. Due to skin irritation caused by raw DGN (RDGN), licorice-processed DGN products are usually used in clinical practice. However, the efficacy and mechanisms of action between DGN and its licorice-processed DGN products in treating RA have not been compared. AIMS This study compared the efficacy and elucidated the mechanisms in vitro and in vivo between RDGN and its licorice-processed DGN products in treating RA. MATERIALS AND METHODS A collagen-induced RA rat model was established, and treated with different doses of RDGN and its licorice-processed DGN products for 4 weeks to explore the therapeutic effects. The anti-inflammatory effects were assessed in RAW 264.7 macrophages stimulated by lipopolysaccharide (LPS). Analyses of the differential quality markers (DQMs) between DGN and its licorice-processed DGN products using ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry, and non-targeted metabolomics analyses of rat synovial tissues were used to systematically explore correlations between DGN processing and its efficacy. RESULTS Licorice-processed DGN products significantly ameliorated RA symptoms in CIA rats. Licorice-processed DGN products also regulated inflammatory cytokines, matrix metalloproteinases, and vascular endothelial growth factor in the serum and cell supernatants. Licorice-processed DGN products significantly inhibited Toll-like receptor 4/nuclear factor kappa B/NOD-like receptor family, pyrin domain containing 3 (TLR4/NF-κB/NLRP3) signaling in CIA rats and LPS-induced RAW264.7 cells. The DQMs between RDGN and its licorice-processed DGN products were identified, most of which were amino acids or energy-related metabolites present in licorice-processed DGN products. Correlations between DQMs with differential metabolites and differential metabolic pathways were established. CONCLUSIONS Licorice-processed DGN products displayed better anti-inflammatory effects via the TLR4/NF-κB/NLRP3 signaling pathway on CIA rats and LPS-induced RAW264.7 cells, and regulation of the metabolic profile in treating RA.
Collapse
Affiliation(s)
- Xianglong Meng
- College of Chinese Materia Medica and food engineering, Shanxi University of Chinese Medicine, Jinzhong, China.
| | - Xiaoyan Zhang
- College of Chinese Materia Medica and food engineering, Shanxi University of Chinese Medicine, Jinzhong, China.
| | - Xiaojuan Su
- College of Chinese Materia Medica and food engineering, Shanxi University of Chinese Medicine, Jinzhong, China.
| | - Xiaoqin Liu
- College of Chinese Materia Medica and food engineering, Shanxi University of Chinese Medicine, Jinzhong, China.
| | - Kele Ren
- College of Chinese Materia Medica and food engineering, Shanxi University of Chinese Medicine, Jinzhong, China.
| | - Chenxu Ning
- College of Chinese Materia Medica and food engineering, Shanxi University of Chinese Medicine, Jinzhong, China.
| | - Qi Zhang
- College of Chinese Materia Medica and food engineering, Shanxi University of Chinese Medicine, Jinzhong, China; College of Pharmacy, Shenyang Pharmaceutical University, Benxi, China.
| | - ShuoSheng Zhang
- College of Chinese Materia Medica and food engineering, Shanxi University of Chinese Medicine, Jinzhong, China.
| |
Collapse
|
13
|
Zhang YM, Shen J, Zhao JM, Guan J, Wei XR, Miao DY, Li W, Xie YC, Zhao YQ. Cedrol from Ginger Ameliorates Rheumatoid Arthritis via Reducing Inflammation and Selectively Inhibiting JAK3 Phosphorylation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5332-5343. [PMID: 33908779 DOI: 10.1021/acs.jafc.1c00284] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ginger, as a food spice, is widely applied due to its extensive effects. Cedrol (CE) found in ginger is a sesquiterpene with anti-inflammatory activity. The objective of this research is to discuss the efficacy of CE on ameliorating rheumatoid arthritis (RA). CE inhibited chronic inflammation and pain in a dose-dependent manner accompanied by rapid onset and long duration. Besides, CE treatment effectively ameliorated the paw edema volume and arthritis score with no significant effect on body weight. Organ index, T-cell and B-cell proliferation, histopathology, and immunohistochemistry demonstrated that CE had immunological enhancement and attenuated RA effects. Remarkably, inhibition of phosphorylated-JAK3 protein, thereby abating the secretion of pro-inflammatory cytokines and inflammation-related mediators, was involved in the potential mechanism of CE efficiency through forming a hydrogen bond with ARG953 and ILE955 in the JAK3 active pocket. At the same time, the pharmacokinetic results showed that the absolute bioavailability of CE at 20, 40, and 80 mg/kg was 30.30, 23.68, and 16.11%, respectively. The current results offered clues for mastering the ameliorated RA of CE and further perfected the effective substance basis on the anti-inflammatory effect of ginger, which was beneficial for further applications.
Collapse
Affiliation(s)
- Yu-Meng Zhang
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jian Shen
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University, Hangzhou 310000, China
| | - Jun-Ming Zhao
- Liaoning Xinzhong Modern Medicine Company Ltd., Shenyang 110016, China
| | - Jian Guan
- Liaoning Xinzhong Modern Medicine Company Ltd., Shenyang 110016, China
| | - Xin-Rui Wei
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dong-Yu Miao
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wei Li
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yi-Cheng Xie
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University, Hangzhou 310000, China
| | - Yu-Qing Zhao
- Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|