1
|
Huang H, Mu Y, Li S. The biological function of Serpinb9 and Serpinb9-based therapy. Front Immunol 2024; 15:1422113. [PMID: 38966643 PMCID: PMC11222584 DOI: 10.3389/fimmu.2024.1422113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/10/2024] [Indexed: 07/06/2024] Open
Abstract
Recent breakthroughs in discovering novel immune signaling pathways have revolutionized different disease treatments. SERPINB9 (Sb9), also known as Proteinase Inhibitor 9 (PI-9), is a well-known endogenous inhibitor of Granzyme B (GzmB). GzmB is a potent cytotoxic molecule secreted by cytotoxic T lymphocytes and natural killer cells, which plays a crucial role in inducing apoptosis in target cells during immune responses. Sb9 acts as a protective mechanism against the potentially harmful effects of GzmB within the cells of the immune system itself. On the other hand, overexpression of Sb9 is an important mechanism of immune evasion in diseases like cancers and viral infections. The intricate functions of Sb9 in different cell types represent a fine-tuned regulatory mechanism for preventing immunopathology, protection against autoimmune diseases, and the regulation of cell death, all of which are essential for maintaining health and responding effectively to disease challenges. Dysregulation of the Sb9 will disrupt human normal physiological condition, potentially leading to a range of diseases, including cancers, inflammatory conditions, viral infections or other pathological disorders. Deepening our understanding of the role of Sb9 will aid in the discovery of innovative and effective treatments for various medical conditions. Therefore, the objective of this review is to consolidate current knowledge regarding the biological role of Sb9. It aims to offer insights into its discovery, structure, functions, distribution, its association with various diseases, and the potential of nanoparticle-based therapies targeting Sb9.
Collapse
Affiliation(s)
- Haozhe Huang
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
- University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yiqing Mu
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
- University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Song Li
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
- University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
2
|
Yao Y, Zheng Y, Wu M, Gao Y, Yu Q, Liu M, Luo X, Wang R, Jiang L. CD133-targeted multifunctional nanomicelles for dual-modality imaging and synergistic high-intensity focus ultrasound (HIFU) ablation on pancreatic cancer in nude mice. J Mater Chem B 2024; 12:5884-5897. [PMID: 38775254 DOI: 10.1039/d4tb00091a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Pancreatic cancer is an aggressive and highly fatal malignant tumor. Recent studies have shown that cancer stem cells (CSCs) play an important role in resisting current therapeutic modalities. Furthermore, CD133 is highly expressed in CSCs. High-intensity focused ultrasound (HIFU) is a promising non-invasive therapeutic strategy for unresectable pancreatic cancers. In our study, we synthesized targeted CD133 organosilane nanomicelles by encapsulating perfluorohexane (PFH). The CD133 antibody on the surface could specifically bind to CD133-positive pancreatic cancer cells and selectively concentrate in pancreatic cancer tumor tissues. PFH was introduced to improve the ablation effect of HIFU due to its liquid-gas phase transition properties. By combining with the dorsal skinfold window chamber model (DSWC) of pancreatic cancer in nude mice, multiphoton fluorescence microscopy was used to evaluate the targeting effect of nanomicelles on pancreatic cancer tumor tissue. These multifunctional nanomicelles synergistically affected HIFU treatment of pancreatic cancer, providing an integrated research platform for diagnosing and treating pancreatic cancer with HIFU.
Collapse
Affiliation(s)
- Yijing Yao
- Department of Ultrasound, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| | - Yiwen Zheng
- Department of Ultrasound, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| | - Mingtai Wu
- Department of Ultrasound, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| | - Yihui Gao
- Department of Ultrasound, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| | - Qian Yu
- Department of Ultrasound, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| | - Mengyao Liu
- Department of Ultrasound, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| | - Xiaoxiao Luo
- Department of Ultrasound, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| | - Rui Wang
- Department of Ultrasound, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| | - Lixin Jiang
- Department of Ultrasound, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| |
Collapse
|
3
|
Yun WS, Yang W, Shim MK, Song S, Choi J, Kim J, Kim J, Moon Y, Jo S, Lim DK, Kim K. Accurately Controlled Tumor Temperature with Silica-Coated Gold Nanorods for Optimal Immune Checkpoint Blockade Therapy. Biomater Res 2024; 28:0024. [PMID: 38694230 PMCID: PMC11062504 DOI: 10.34133/bmr.0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 03/25/2024] [Indexed: 05/04/2024] Open
Abstract
Photothermal therapy (PTT) at mild temperatures ranging from 44 to 45 °C holds tremendous promise as a strategy for inducing potent immunogenic cell death (ICD) within tumor tissues, which can reverse the immunosuppressive tumor microenvironment (ITM) into an immune-responsive milieu. However, accurately and precisely controlling the tumor temperature remains a formidable challenge. Here, we report the precision photothermal immunotherapy by using silica-coated gold nanorods (AuNR@SiO2), and investigating the optimal administration routes and treatment protocols, which enabled to achieve the sustained and controlled mild heating within the tumor tissues. First, the highest photothermal performance of AuNR@SiO2 with 20-nm silica shell thickness than 5 or 40 nm was confirmed in vitro and in vivo. Then, the optimal conditions for precision immunotherapy were further investigated to produce mild temperature (44 to 45 °C) accurately in tumor tissues. The optimal conditions with AuNR@SiO2 result in a distinct cell death with high early/late apoptosis and low necrosis, leading to very efficient ICD compared to lower or higher temperatures. In colon tumor-bearing mice, intratumorally injected AuNR@SiO2 efficiently promotes a mild temperature within the tumor tissues by local irradiation of near-infrared (NIR) laser. This mild PTT substantially increases the population of mature dendritic cells (DCs) and cytotoxic T cells (CTLs) within tumor tissues, ultimately reversing the ITM into an immune-responsive milieu. Furthermore, we found that the combination mild PTT with AuNR@SiO2 and anti-PD-L1 therapy could lead to the 100% complete regression of primary tumors and immunological memory to prevent tumor recurrence. Collectively, this study demonstrates that AuNR@SiO2 with a robust methodology capable of continuously inducing mild temperature accurately within the ITM holds promise as an approach to achieve the precision photothermal immunotherapy.
Collapse
Affiliation(s)
- Wan Su Yun
- College of Pharmacy, Graduate School of Pharmaceutical Sciences,
Ewha Womans University, Seoul 03760, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology,
Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Wonseok Yang
- KU-KIST Graduate School of Converging Science and Technology,
Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Man Kyu Shim
- Medicinal Materials Research Center, Biomedical Research Division,
Korea Institute of Science and Technology (KIST), Seoul02792, Republic of Korea
| | - Sukyung Song
- College of Pharmacy, Graduate School of Pharmaceutical Sciences,
Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jiwoong Choi
- Medicinal Materials Research Center, Biomedical Research Division,
Korea Institute of Science and Technology (KIST), Seoul02792, Republic of Korea
| | - Jeongrae Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences,
Ewha Womans University, Seoul 03760, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology,
Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jinseong Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences,
Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yujeong Moon
- Medicinal Materials Research Center, Biomedical Research Division,
Korea Institute of Science and Technology (KIST), Seoul02792, Republic of Korea
| | - SeongHoon Jo
- Medicinal Materials Research Center, Biomedical Research Division,
Korea Institute of Science and Technology (KIST), Seoul02792, Republic of Korea
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology,
Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department of Integrative Energy Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Brain Science Institute, Korea Institute of Science and Technology (KIST), 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Kwangmeyung Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences,
Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
4
|
Luo Q, Dai L, Li J, Chen H, Hao Y, Li Q, Pan L, Song C, Qian Z, Chen M. Intracellular and extracellular synergistic therapy for restoring macrophage functions via anti-CD47 antibody-conjugated bifunctional nanoparticles in atherosclerosis. Bioact Mater 2024; 34:326-337. [PMID: 38274294 PMCID: PMC10809006 DOI: 10.1016/j.bioactmat.2023.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/27/2024] Open
Abstract
Atherosclerosis is a significant contributor to global cardiovascular disease. Reducing the formation of atherosclerotic plaque effectively can lead to a decrease in cardiovascular diseases. Therefore, controlling macrophage function is crucial. This study presents the creation of a bifunctional nanoparticle that is specific to macrophages to achieve intracellular and extracellular synergistic therapy for restoring macrophage functions. The nanoparticle is conjugated with anti-CD47 antibody to modulate extracellular CD47-SIRPα phagocytic signaling axis on the outer surface of macrophages and encapsulates the NLRP3 inhibitor (CY-09) to regulate intracellular inflammation response of macrophages. The results showed that the nanoparticles accumulate in the atherosclerotic plaque, alter macrophage phagocytosis, inhibit NLRP3 inflammasome activation, and decrease the plaque burden in Apoe-/- mice whilst ensuring safety. Examination of single-cell RNA sequencing indicates that this multifunctional nanoparticle decreases the expression of genes linked to inflammation and manages inflammatory pathways in the plaque lesion. This study proposes a synergistic therapeutic approach that utilizes a bifunctional nanoparticle, conjugated with anti-CD47, to regulate the microenvironment of plaques.
Collapse
Affiliation(s)
- Qiang Luo
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, 610064, China
| | - Liqun Dai
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Junli Li
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, 610064, China
| | - Heyanni Chen
- West China Medical School, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ying Hao
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, 610064, China
| | - Qing Li
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, 610064, China
| | - Lili Pan
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chengxiang Song
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, 610064, China
| | - Zhiyong Qian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Mao Chen
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, 610064, China
| |
Collapse
|
5
|
Yang F, Dai L, Shi K, Liu Q, Pan M, Mo D, Deng H, Yuan L, Lu Y, Pan L, Yang T, Qian Z. A facile boronophenylalanine modified polydopamine dual drug-loaded nanoparticles for enhanced anti-tumor immune response in hepatocellular carcinoma comprehensive treatment. Biomaterials 2024; 305:122435. [PMID: 38150771 DOI: 10.1016/j.biomaterials.2023.122435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/28/2023] [Accepted: 12/16/2023] [Indexed: 12/29/2023]
Abstract
Hepatocellular carcinoma (HCC) has an insidious onset and high malignancy. Most patients have progressed to intermediate and advanced stages by the time of diagnosis, and the long-term efficacy of traditional treatments is not satisfactory. Immunotherapy has shown great promise in the treatment of HCC in recent years; however, the low immunogenicity and severe immunosuppressive tumor microenvironment result in a low response rate to immunotherapy in HCC patients. Therefore, it is of great significance to improve the immunogenicity of HCC and thus enhance its sensitivity to immunotherapy. Here, we prepared the boronophenylalanine-modified dual drug-loaded polydopamine nanoparticles by a facile method. This system used boronophenylalanine-modified polydopamine nanoparticles as a delivery vehicle and photothermal material for the chemotherapeutic drug doxorubicin and the immune agonist CpG oligodeoxynucleotides (CpG-ODN), with both active targeting and lysosomal escape functions. The cancer cells are rapidly killed by photothermal treatment, and then chemotherapy is used to further kill cancer cells that are inadequately treated by photothermal treatment. The combination of photothermal-chemotherapy synergistically induces the release of relevant antigens from tumor cells, thus initiating anti-tumor immunity; and then cooperates with CpG-ODN to trigger a powerful anti-tumor immune memory effect, potently and durably inhibiting HCC recurrence.
Collapse
Affiliation(s)
- Fan Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Liqun Dai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Kun Shi
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Qingya Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Meng Pan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Dong Mo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Hanzhi Deng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Liping Yuan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yi Lu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lili Pan
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Tingyu Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhiyong Qian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
6
|
Pramanik N, Gupta A, Ghanwatkar Y, Mahato RI. Recent advances in drug delivery and targeting for the treatment of pancreatic cancer. J Control Release 2024; 366:231-260. [PMID: 38171473 PMCID: PMC10922996 DOI: 10.1016/j.jconrel.2023.12.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/24/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024]
Abstract
Despite significant treatment efforts, pancreatic ductal adenocarcinoma (PDAC), the deadliest solid tumor, is still incurable in the preclinical stages due to multifacet stroma, dense desmoplasia, and immune regression. Additionally, tumor heterogeneity and metabolic changes are linked to low grade clinical translational outcomes, which has prompted the investigation of the mechanisms underlying chemoresistance and the creation of effective treatment approaches by selectively targeting genetic pathways. Since targeting upstream molecules in first-line oncogenic signaling pathways typically has little clinical impact, downstream signaling pathways have instead been targeted in both preclinical and clinical studies. In this review, we discuss how the complexity of various tumor microenvironment (TME) components and the oncogenic signaling pathways that they are connected to actively contribute to the development and spread of PDAC, as well as the ways that recent therapeutic approaches have been targeted to restore it. We also illustrate how many endogenous stimuli-responsive linker-based nanocarriers have recently been developed for the specific targeting of distinct oncogenes and their downstream signaling cascades as well as their ongoing clinical trials. We also discuss the present challenges, prospects, and difficulties in the development of first-line oncogene-targeting medicines for the treatment of pancreatic cancer patients.
Collapse
Affiliation(s)
- Nilkamal Pramanik
- Department of Pharmaceutical Sciences, the University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Aditya Gupta
- Department of Pharmaceutical Sciences, the University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Yashwardhan Ghanwatkar
- Department of Pharmaceutical Sciences, the University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, the University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
7
|
Hu Q, Xu L, Huang X, Duan Y, Sun D, Fu Z, Ge Y. Polydopamine-Modified Zeolite Imidazole Framework Drug Delivery System for Photothermal Chemotherapy of Hepatocellular Carcinoma. Biomacromolecules 2023; 24:5964-5976. [PMID: 37938159 DOI: 10.1021/acs.biomac.3c00971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Metal-organic frameworks (MOFs) are promising drug-delivering platforms for their intrinsic capability of loading and releasing different cargoes. To further extend their biomedical practices, the development of collaborative MOF systems with good biocompatibility and synergistic efficacy is essential. Herein, the near-infrared and pH dual-response collaborative zeolitic imidazolate framework-8 (ZIF-8) platform SOR@ZIF-8@PDA (SZP) was constructed, in which the chemotherapeutic drug sorafenib (SOR) was encapsulated in ZIF-8 and via polydopamine (PDA) coating on ZIF-8 by hierarchical self-assembly. PDA coating serves as a photothermal agent for PPT while reducing the toxicity of ZIF-8. SZP achieves intelligent release of therapeutic drugs by responding to the lower pH of the tumor microenvironment and thermal stimulation generated by near-infrared light irradiation. In addition, under light irradiation, SZP could effectively realize treatment of cancer cells through synergistic chemo-photothermal therapy, as evidenced by the enhanced cell apoptosis, inhibited tumor cell proliferation and migration. This collaborative MOFs system showed excellent biocompatibility and antitumor ability in vivo on a mouse HepG2 tumor model. Our results demonstrated that PDA-modified MOFs exhibited a fantastic good development prospect in biomedical applications.
Collapse
Affiliation(s)
- Qinglian Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Liwang Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Xiaoyu Huang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuxuan Duan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Dongchang Sun
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yunfen Ge
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310053, China
| |
Collapse
|
8
|
Kumar V, Mahato RI. Natural killer cells for pancreatic cancer immunotherapy: Role of nanoparticles. Cancer Lett 2023; 579:216462. [PMID: 37924937 PMCID: PMC10842153 DOI: 10.1016/j.canlet.2023.216462] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/04/2023] [Accepted: 10/17/2023] [Indexed: 11/06/2023]
Abstract
Advanced pancreatic cancer patients have a dismal prognosis despite advances in integrative therapy. The field of tumor immunology has witnessed significant advancements for cancer treatment. However, immunotherapy for pancreatic cancer is not very effective due to its highly complex tumor microenvironment (TME). Natural killer (NK) cells are lymphocytes that play an important role in the innate immune system. NK cells do not require antigen pre-sensitization, nor are they confined by the major histocompatibility complex (MHC). NK cells have the potential to eliminate cancer cells through CAR-dependent and CAR-independent pathways, demonstrating reduced levels of systemic toxicity in the process. The availability of several potential sources of NK cells is an additional benefit that contributes to meeting the therapeutic criteria. Adding nanotechnology to enhance the functions of effector NK cells is also an appealing strategy. This article primarily discusses various approaches recently been utilized to enhance the NK functions for the treatment of pancreatic cancer. In addition, new advances in boosting NK cell therapeutic efficacy by nanoparticle mediation are presented, with a focus on pancreatic cancer.
Collapse
Affiliation(s)
- Virender Kumar
- Department of Pharmaceutical Sciences University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ram I Mahato
- Department of Pharmaceutical Sciences University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
9
|
Xie Y, Wang M, Qian Y, Li L, Sun Q, Gao M, Li C. Novel PdPtCu Nanozymes for Reprogramming Tumor Microenvironment to Boost Immunotherapy Through Endoplasmic Reticulum Stress and Blocking IDO-Mediated Immune Escape. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303596. [PMID: 37394715 DOI: 10.1002/smll.202303596] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/10/2023] [Indexed: 07/04/2023]
Abstract
Breaking immunosuppressive tumor microenvironment (TME) has unique effects on inhibiting tumor growth and recurrence. Here, an endoplasmic reticulum (ER) targeted PdPtCu nanozyme (PNBCTER ) is prepared to boost immunotherapy. First, PNBCTER has three kinds of enzyme activities, including catalase (CAT), glutathione oxidase (GSHOx), and peroxidase (POD)-like activities, which can reshape the TME. Second, PNBCTER kills tumor cells by photodynamic therapy (PDT) and photothermal therapy (PTT). Third, guided by TER , PNBCTER not only realizes the combination therapy of PDT, PTT and chemodynamic therapy (CDT), but also damages the ER of tumor cells and actives antitumor immune response, which breaks through the immune blockade of TME. Finally, the NLG919 blocks the tryptophan/kynurenine immune escape pathway and reverses the immunosuppressive TME. The strategy that reshaping the TME by enzyme catalysis and breaking immunosuppression provides a novel way for the application of combination therapy in tumor.
Collapse
Affiliation(s)
- Yulin Xie
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Man Wang
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Yanrong Qian
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Lei Li
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Qianqian Sun
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Minghong Gao
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Chunxia Li
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| |
Collapse
|
10
|
Yang Y, Qin Y, Yang S, Liu T, Benassi E, Cui L, Liu Z, Guo X, Li Y. Simple and biodegradable mesoporous silica nanocarriers for enhancing antitumor therapy through photochemical synergism. J Biomater Appl 2023; 38:538-547. [PMID: 37957029 DOI: 10.1177/08853282231200711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
The biosafety and degradability of nanocarriers have always been an important factor restricting their entry into the clinic. In this work, a new nano-system was prepared by coating the photothermal effect of dopamine-doped mesoporous silica nanoparticles with carboxymethyl chitin through electrostatic interaction, and is further anchored with folic acid on the surface for targeted delivery of anti-cancer the drug doxorubicin (DOX). The nano-system (DOX@PDA/MSN-CMCS-FA) is simply modified CMCS after being loaded with DOX and has good dispersibility, and the drug loading is 10.6%. In vitro release studies have shown that the release rate of PDA/MSN-CMCS-FA is 40% in pH 5.5. Effective degradation is debris in 14 d acidic environments. Due to the anti-infrared photothermal effects of PDA doping and DOX chemotherapy, the semi-lethal concentration (IC50) of nanoparticles (NPS) was 14.95 μg/mL, which can inhibit tumor cell growth by photochemical synergistic treatment, and have certain degradation performance.
Collapse
Affiliation(s)
- Yiping Yang
- School of Chemistry and Chemical Engineering, Shihezi University/Key Laboratory of Green Process for Chemical Engineering/Key Laboratory for Chemical Materials of Xinjiang Uygur Autonomous Region/Engineering Center for Chemical Materials of Xinjiang Bingtuan, Shihezi University, Shihezi, China
| | - Yuchang Qin
- School of Chemistry and Chemical Engineering, Shihezi University/Key Laboratory of Green Process for Chemical Engineering/Key Laboratory for Chemical Materials of Xinjiang Uygur Autonomous Region/Engineering Center for Chemical Materials of Xinjiang Bingtuan, Shihezi University, Shihezi, China
| | - Shengchao Yang
- School of Chemistry and Chemical Engineering, Shihezi University/Key Laboratory of Green Process for Chemical Engineering/Key Laboratory for Chemical Materials of Xinjiang Uygur Autonomous Region/Engineering Center for Chemical Materials of Xinjiang Bingtuan, Shihezi University, Shihezi, China
| | - Tianyu Liu
- Department of Materials Science and Engineering, Monash University, Clayton, VIC, Australia
| | - Enrico Benassi
- School of Chemistry and Chemical Engineering, Shihezi University/Key Laboratory of Green Process for Chemical Engineering/Key Laboratory for Chemical Materials of Xinjiang Uygur Autonomous Region/Engineering Center for Chemical Materials of Xinjiang Bingtuan, Shihezi University, Shihezi, China
- Novosibirsk State University, Novosibirsk, Russia
| | - Lin Cui
- School of Chemistry and Chemical Engineering, Shihezi University/Key Laboratory of Green Process for Chemical Engineering/Key Laboratory for Chemical Materials of Xinjiang Uygur Autonomous Region/Engineering Center for Chemical Materials of Xinjiang Bingtuan, Shihezi University, Shihezi, China
| | - Zhiyong Liu
- School of Chemistry and Chemical Engineering, Shihezi University/Key Laboratory of Green Process for Chemical Engineering/Key Laboratory for Chemical Materials of Xinjiang Uygur Autonomous Region/Engineering Center for Chemical Materials of Xinjiang Bingtuan, Shihezi University, Shihezi, China
| | - Xuhong Guo
- School of Chemistry and Chemical Engineering, Shihezi University/Key Laboratory of Green Process for Chemical Engineering/Key Laboratory for Chemical Materials of Xinjiang Uygur Autonomous Region/Engineering Center for Chemical Materials of Xinjiang Bingtuan, Shihezi University, Shihezi, China
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Yongsheng Li
- School of Chemistry and Chemical Engineering, Shihezi University/Key Laboratory of Green Process for Chemical Engineering/Key Laboratory for Chemical Materials of Xinjiang Uygur Autonomous Region/Engineering Center for Chemical Materials of Xinjiang Bingtuan, Shihezi University, Shihezi, China
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
11
|
Huang P, Yang Y, Wang W, Li Z, Gao N, Chen H, Zeng X. Self-driven nanoprodrug platform with enhanced ferroptosis for synergistic photothermal-IDO immunotherapy. Biomaterials 2023; 299:122157. [PMID: 37196407 DOI: 10.1016/j.biomaterials.2023.122157] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/19/2023]
Abstract
Insufficient immune stimulation and stubborn immune resistance are the critical factors limiting tumor immunotherapy. Here, we report a multifunctional nanoprodrug platform with self-driven indoximod (IND) release and oxidative stress amplification. The aim is to awaken immune responses and block the indoleamine 2,3-dioxygenase (IDO) pathway through a combination of ferroptosis, photothermal therapy, and immunotherapy. This nanosystem improved the delivery efficiency of IND due to click chemistry linked ROS responsive prodrug and self-driven drug release. Meanwhile, the tactic of simultaneously increasing ROS and eliminating GSH amplified oxidative stress and strengthened ferroptosis, which further enhanced immunogenicity along with polydopamine-based photothermal therapy. IDO immunization combined with ferroptosis as well as photothermal therapy not only stimulated immune response, but also reversed immune suppression with enhanced immune memory. Therefore, primary tumor, distant tumor, and cancer metastasis were inhibited. This study provides a perspective on immunotherapeutics for cancer treatment.
Collapse
Affiliation(s)
- Ping Huang
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yao Yang
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Wenyan Wang
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Zimu Li
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Nansha Gao
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Hongzhong Chen
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Xiaowei Zeng
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
12
|
Duan H, Li L, He S. Advances and Prospects in the Treatment of Pancreatic Cancer. Int J Nanomedicine 2023; 18:3973-3988. [PMID: 37489138 PMCID: PMC10363367 DOI: 10.2147/ijn.s413496] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/11/2023] [Indexed: 07/26/2023] Open
Abstract
Pancreatic cancer is a highly malignant and incurable disease, characterized by its aggressive nature and high fatality rate. The most common type is pancreatic ductal adenocarcinoma (PDAC), which has poor prognosis and high mortality rate. Current treatments for pancreatic cancer mainly encompass surgery, chemotherapy, radiotherapy, targeted therapy, and combination regimens. However, despite efforts to improve prognosis, and the 5-year survival rate for pancreatic cancer remains very low. Therefore, it's urgent to explore novel therapeutic approaches. With the rapid development of therapeutic strategies in recent years, new ideas have been provided for treating pancreatic cancer. This review expositions the advancements in nano drug delivery system, molecular targeted drugs, and photo-thermal treatment combined with nanotechnology for pancreatic cancer. It comprehensively analyzes the prospects of combined drug delivery strategies for treating pancreatic cancer, aiming at a deeper understanding of the existing drugs and therapeutic approaches, promoting the development of new therapeutic drugs, and attempting to enhance the therapeutic effect for patients with this disease.
Collapse
Affiliation(s)
- Huaiyu Duan
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People’s Republic of China
| | - Li Li
- Department of Hepatobiliary Pancreatic Oncology, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, People’s Republic of China
| | - Shiming He
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People’s Republic of China
| |
Collapse
|
13
|
Wang Z, Wu B, Nie G, Wei J, Li Y. Regulation of metabolism in pancreatic ductal adenocarcinoma via nanotechnology-enabled strategies. Cancer Lett 2023; 560:216138. [PMID: 36934836 DOI: 10.1016/j.canlet.2023.216138] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly fatal malignancy with insidious onset and early distal metastasis. Metabolic reprogramming, the autonomous changes in cellular bioenergetics driven by aberrant genetic events and crosstalk between cancer and non-cancer cells in the desmoplastic microenvironment, is pivotal for the rapid progression of PDAC. As an attractive therapeutic target, nucleoside metabolism is regulated by various anti-metabolic drugs for the clinical treatment of PDAC. Despite various challenges, such as poor drug delivery efficiency and off-target side effects, metabolic modification and intervention are emerging as promising strategies for PDAC therapy, enabled by the rapid development of nanotechnology-based drug delivery strategies. In this review, we discuss the metabolic characteristics of PDAC and highlight how the development of nanomedicine has boosted the development of new therapeutics for PDAC by modulating critical targets in metabolic reprogramming.
Collapse
Affiliation(s)
- Zhiqin Wang
- College of Pharmaceutical Science, Jilin University, Changchun, 130021, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, PR China
| | - Bowen Wu
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, PR China; School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Guangjun Nie
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, PR China; GBA National Institute for Nanotechnology Innovation, Guangzhou, 510530, PR China
| | - Jingyan Wei
- College of Pharmaceutical Science, Jilin University, Changchun, 130021, PR China.
| | - Yiye Li
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, PR China.
| |
Collapse
|
14
|
Mohapatra A, Mondal J, Sathiyamoorthy P, Mohanty A, Revuri V, Rajendrakumar SK, Lee YK, Park IK. Thermosusceptible Nitric-Oxide-Releasing Nitrogel for Strengthening Antitumor Immune Responses with Tumor Collagen Diminution and Deep Tissue Delivery during NIR Laser-Assisted Photoimmunotherapy. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36896475 DOI: 10.1021/acsami.3c01896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Combined cancer immunotherapy has demonstrated promising potential with an amplified antitumor response and immunosuppressive tumor microenvironment (TME) modulation. However, one of the main issues that cause treatment failure is the poor diffusion and insufficient penetration of therapeutic and immunomodulatory agents in solid tumors. Herein, a cancer treatment approach that combines photothermal therapy (PTT) and nitric oxide (NO) gas therapy for tumor extracellular matrix (ECM) degradation, along with NLG919, an indoleamine 2,3-dioxygenase (IDO) inhibitor that reduces tryptophan catabolism to kynurenine, and DMXAA, a stimulator of interferon gene (STING) agonist that stimulates antigen cross-presentation, is proposed to overcome this issue. Upon NIR (808 nm) laser irradiation, NO-GEL achieved the desired thermal ablation by releasing sufficient tumor antigens through immunogenic cell death (ICD). NO delivery triggered local diffusion of excess NO gas for effectively degrading tumor collagen in the ECM, homogeneously delivered NLG919 throughout the tumor tissue, inhibited IDO expression that was upregulated by PTT, and reduced the immune suppressive activities. The sustained release of DMXAA prolonged dendritic cell maturation and CD8+ T cell activation against the tumor. In summary, NO-GEL therapeutics offer a significant tumor regression with PTT and STING agonist combination that stimulates a durable antitumor immune response. Additional unification of IDO inhibition during PTT supplements the immunotherapy by reducing the T cell apoptosis and immune suppressive cell infiltration to TME. NO-GEL with the STING agonist and IDO inhibitor is an effective therapeutic combination to counter possible limitations during solid tumor immunotherapy.
Collapse
Affiliation(s)
- Adityanarayan Mohapatra
- Department of Biomedical Science, BK21 PLUS Center for Creative Biomedical Scientists, Chonnam National University Medical School, Gwangju 61469, South Korea
| | - Jagannath Mondal
- Department of Green Bioengineering, Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Padmanaban Sathiyamoorthy
- Department of Biomedical Science, BK21 PLUS Center for Creative Biomedical Scientists, Chonnam National University Medical School, Gwangju 61469, South Korea
| | - Ayeskanta Mohanty
- Department of Biomedical Science, BK21 PLUS Center for Creative Biomedical Scientists, Chonnam National University Medical School, Gwangju 61469, South Korea
| | - Vishnu Revuri
- Department of Green Bioengineering, Korea National University of Transportation, Chungju 27469, Republic of Korea
| | | | - Yong-Kyu Lee
- Department of Green Bioengineering, Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Science, BK21 PLUS Center for Creative Biomedical Scientists, Chonnam National University Medical School, Gwangju 61469, South Korea
| |
Collapse
|
15
|
Yang XY, Lu YF, Xu JX, Du YZ, Yu RS. Recent Advances in Well-Designed Therapeutic Nanosystems for the Pancreatic Ductal Adenocarcinoma Treatment Dilemma. Molecules 2023; 28:molecules28031506. [PMID: 36771172 PMCID: PMC9920782 DOI: 10.3390/molecules28031506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant tumor with an extremely poor prognosis and low survival rate. Due to its inconspicuous symptoms, PDAC is difficult to diagnose early. Most patients are diagnosed in the middle and late stages, losing the opportunity for surgery. Chemotherapy is the main treatment in clinical practice and improves the survival of patients to some extent. However, the improved prognosis is associated with higher side effects, and the overall prognosis is far from satisfactory. In addition to resistance to chemotherapy, PDAC is significantly resistant to targeted therapy and immunotherapy. The failure of multiple treatment modalities indicates great dilemmas in treating PDAC, including high molecular heterogeneity, high drug resistance, an immunosuppressive microenvironment, and a dense matrix. Nanomedicine shows great potential to overcome the therapeutic barriers of PDAC. Through the careful design and rational modification of nanomaterials, multifunctional intelligent nanosystems can be obtained. These nanosystems can adapt to the environment's needs and compensate for conventional treatments' shortcomings. This review is focused on recent advances in the use of well-designed nanosystems in different therapeutic modalities to overcome the PDAC treatment dilemma, including a variety of novel therapeutic modalities. Finally, these nanosystems' bottlenecks in treating PDAC and the prospect of future clinical translation are briefly discussed.
Collapse
Affiliation(s)
- Xiao-Yan Yang
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, China
| | - Yuan-Fei Lu
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, China
| | - Jian-Xia Xu
- Department of Radiology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, 318 Chaowang Road, Hangzhou 310005, China
| | - Yong-Zhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Correspondence: (Y.-Z.D.); (R.-S.Y.); Tel.: +86-571-88208435 (Y.-Z.D.); +86-571-87783925 (R.-S.Y.)
| | - Ri-Sheng Yu
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, China
- Correspondence: (Y.-Z.D.); (R.-S.Y.); Tel.: +86-571-88208435 (Y.-Z.D.); +86-571-87783925 (R.-S.Y.)
| |
Collapse
|
16
|
Xu W, Lu J, Guo Z, Ye J, Gao X, Li Y, Xie W, Zhao L. Hypoxia Alleviated and One Photo-Triggered Thermal/Dynamic Nanoplatform for Immunogenic Cell Death-Initiated Cancer Immunotherapy. ACS APPLIED BIO MATERIALS 2022; 5:5865-5876. [PMID: 36410719 DOI: 10.1021/acsabm.2c00823] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Immunogenic cell death (ICD) induced by treatment modalities like chemotherapy, radiotherapy, and photothermal and photodynamic therapy has shown great potential to improve the low response rate of various solid tumors in cancer immunotherapy. However, extensive studies have revealed that the efficacy of cancer treatment is limited by the hypoxia and immunosuppression in the tumor microenvironment (TME). To address these challenges, a hypoxia alleviated and one phototriggered thermal/dynamic nanoplatform based on MnO2@PDA/ICG-BSA (MPIB) is developed for oxygen (O2) self-supply enhanced cancer phototherapy (PT). First, MnO2 transfers intracellular overexpression H2O2 into O2 in the acidic TME through its catalase-like activity to improve the hypoxia and also provide O2 for the following photodynamic therapy. Then, under single NIR-808 nm light irradiation (called the "phototherapeutic window"), excellent photothermal and photodynamic performance of the MPIB is activated for combined PT. Finally, assisted with immune adjuvant cytosine-phospho-guanine, obvious ICD and systemic antitumor immunity was elicited in PT-treated mice and demonstrated significant growth inhibition on distant tumors. This MPIB-based nanoplatform highlights the promise to overcome the limitations of hypoxia and also challenges of immunosuppressive tumor microenvironments for improved cancer immunotherapy.
Collapse
Affiliation(s)
- Wanling Xu
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing100084, China
| | - Jingsong Lu
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing100084, China
| | - Zhenhu Guo
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing100084, China
| | - Jielin Ye
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing100084, China
| | - Xiaohan Gao
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing100084, China
| | - Ying Li
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing100084, China
| | - Wensheng Xie
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing100084, China
| | - Lingyun Zhao
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing100084, China
| |
Collapse
|
17
|
Xia Y, Yang R, Zhu J, Wang H, Li Y, Fan J, Fu C. Engineered nanomaterials trigger abscopal effect in immunotherapy of metastatic cancers. Front Bioeng Biotechnol 2022; 10:890257. [PMID: 36394039 PMCID: PMC9643844 DOI: 10.3389/fbioe.2022.890257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 10/14/2022] [Indexed: 11/24/2022] Open
Abstract
Despite advances in cancer treatment, metastatic cancer is still the main cause of death in cancer patients. At present, the treatment of metastatic cancer is limited to palliative care. The abscopal effect is a rare phenomenon in which shrinkage of metastatic tumors occurs simultaneously with the shrinkage of a tumor receiving localized treatment, such as local radiotherapy or immunotherapy. Immunotherapy shows promise for cancer treatment, but it also leads to consequences such as low responsiveness and immune-related adverse events. As a promising target-based approach, intravenous or intratumoral injection of nanomaterials provides new opportunities for improving cancer immunotherapy. Chemically modified nanomaterials may be able to trigger the abscopal effect by regulating immune cells. This review discusses the use of nanomaterials in killing metastatic tumor cells through the regulation of immune cells and the prospects of such nanomaterials for clinical use.
Collapse
Affiliation(s)
- Yuanliang Xia
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Ruohan Yang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Jianshu Zhu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Hengyi Wang
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yuehong Li
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Jiawei Fan
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Changfeng Fu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Changfeng Fu,
| |
Collapse
|
18
|
Huang D, Wu T, Lan S, Liu C, Guo Z, Zhang W. In situ photothermal nano-vaccine based on tumor cell membrane-coated black phosphorus-Au for photo-immunotherapy of metastatic breast tumors. Biomaterials 2022; 289:121808. [PMID: 36137415 DOI: 10.1016/j.biomaterials.2022.121808] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/01/2022] [Accepted: 09/13/2022] [Indexed: 11/02/2022]
Abstract
Cancer vaccines which can activate antitumor immune response have great potential for metastatic tumors treatment. However, clinical translation of cancer vaccines remained challenging due to weak tumor antigen immunogenicity, inefficient in vivo delivery, and immunosuppressive tumor microenvironment. Nanomaterials-based photothermal treatment (PTT) triggers immunogenic cell death while providing in situ tumor-associated antigens for subsequent anti-tumor immunity. Here, an in situ photothermal nano-vaccine (designated as BCNCCM) based on cancer cell membrane (CCM) was explored by co-encapsulating immune adjuvant CpG oligodeoxynucleotide (ODN) loaded black phosphorus-Au (BP-Au) nanosheets together with an indoleamine 2,3-dioxygenase (IDO) inhibitor (NLG919) by CCM, for the elimination of primary and metastatic breast tumors. The nano-vaccine could be delivered to tumor site selectively by CCM targeting and exhibit vaccine-like functions through the combined effect of in situ generated tumor-associate agents after PTT and immune adjuvant CpG, resulting in trigger of tumor-specific immunity. Furthermore, tumor inhibition was enhanced owing to the reversed immunosuppressive microenvironment mediated by IDO inhibitors. The nano-vaccine not only had good therapeutic effect on primary and metastatic tumors, but also could prevent tumor recurrence by producing systemic immune memory. Therefore, the photothermal nano-vaccine which coordinate in situ vaccine-like function and immune modulation may be a promising stragegy for photo-immunotherapy of metastatic tumors.
Collapse
Affiliation(s)
- Deqiu Huang
- School of Medical Information Engineering, Guangzhou University of Chinese Medicine. Guangzhou. Guangdong. PR China
| | - Tong Wu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine. Guangzhou. Guangdong. PR China
| | - Siyuan Lan
- Research Center for Integrative Medicine of Guangzhou University of Chinese Medicine (Key Laboratory of Chinese Medicine Pathogenesis and Therapy Research), School of Basic Medical Sciences, Guangzhou University of Chinese Medicine. Guangzhou. Guangdong. PR China
| | - Chengkuan Liu
- Research Center for Integrative Medicine of Guangzhou University of Chinese Medicine (Key Laboratory of Chinese Medicine Pathogenesis and Therapy Research), School of Basic Medical Sciences, Guangzhou University of Chinese Medicine. Guangzhou. Guangdong. PR China
| | - Zhouyi Guo
- MOE Key Laboratory of Laser Life Science & SATCM Third Grade Laboratory of Chinese Medicine and Photonics Technology, College of Biophotonics, South China Normal University, Guangzhou, 510631, Guangdong, China.
| | - Wen Zhang
- Research Center for Integrative Medicine of Guangzhou University of Chinese Medicine (Key Laboratory of Chinese Medicine Pathogenesis and Therapy Research), School of Basic Medical Sciences, Guangzhou University of Chinese Medicine. Guangzhou. Guangdong. PR China; Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine. Guangzhou. Guangdong. PR China.
| |
Collapse
|
19
|
Uthaman S, Cutshaw G, Ghazvini S, Bardhan R. Nanomaterials for Natural Killer Cell-Based Immunoimaging and Immunotherapies in Cancer. ACS APPLIED MATERIALS & INTERFACES 2022; 15:10.1021/acsami.2c08619. [PMID: 36006784 PMCID: PMC10176446 DOI: 10.1021/acsami.2c08619] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Natural killer (NK) cells are an important component of the tumor immunosurveillance; activated NK cells can recognize and directly lyse tumor cells eliciting a potent antitumor immune response. Due to their intrinsic ability to unleash cytotoxicity against tumor cells, NK cell-based adoptive cell therapies have gained rapid clinical significance, and many clinical trials are ongoing. However, priming and activating NK cells, infiltration of activated NK cells in the immunosuppressive tumor microenvironment, and tracking the infiltrated NK cells in the tumors remain a critical challenge. To address these challenges, NK cells have been successfully interfaced with nanomaterials where the morphology, composition, and surface characteristics of nanoparticles (NPs) were leveraged to enable longitudinal tracking of NK cells in tumors or deliver therapeutics to prime NK cells. Distinct from other published reviews, in this tutorial review, we summarize the recent findings in the past decade where NPs were used to label NK cells for immunoimaging or deliver treatment to activate NK cells and induce long-term immunity against tumors. We discuss the NP properties that are key to surmounting the current challenges in NK cells and the different strategies employed to advance NK cells-based diagnostics and therapeutics. We conclude the review with an outlook on future directions in NP-NK cell hybrid interfaces, and overall clinical impact and patient response to such interfaces that need to be addressed to enable their clinical translation.
Collapse
|
20
|
Ju Y, Liao H, Richardson JJ, Guo J, Caruso F. Nanostructured particles assembled from natural building blocks for advanced therapies. Chem Soc Rev 2022; 51:4287-4336. [PMID: 35471996 DOI: 10.1039/d1cs00343g] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Advanced treatments based on immune system manipulation, gene transcription and regulation, specific organ and cell targeting, and/or photon energy conversion have emerged as promising therapeutic strategies against a range of challenging diseases. Naturally derived macromolecules (e.g., proteins, lipids, polysaccharides, and polyphenols) have increasingly found use as fundamental building blocks for nanostructured particles as their advantageous properties, including biocompatibility, biodegradability, inherent bioactivity, and diverse chemical properties make them suitable for advanced therapeutic applications. This review provides a timely and comprehensive summary of the use of a broad range of natural building blocks in the rapidly developing field of advanced therapeutics with insights specific to nanostructured particles. We focus on an up-to-date overview of the assembly of nanostructured particles using natural building blocks and summarize their key scientific and preclinical milestones for advanced therapies, including adoptive cell therapy, immunotherapy, gene therapy, active targeted drug delivery, photoacoustic therapy and imaging, photothermal therapy, and combinational therapy. A cross-comparison of the advantages and disadvantages of different natural building blocks are highlighted to elucidate the key design principles for such bio-derived nanoparticles toward improving their performance and adoption. Current challenges and future research directions are also discussed, which will accelerate our understanding of designing, engineering, and applying nanostructured particles for advanced therapies.
Collapse
Affiliation(s)
- Yi Ju
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia. .,School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
| | - Haotian Liao
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China. .,Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Sichuan 610065, China
| | - Joseph J Richardson
- Department of Materials Engineering, University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo 113-8656, Japan
| | - Junling Guo
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China. .,State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China. .,Bioproducts Institute, Departments of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
21
|
Moharil P, Wan Z, Pardeshi A, Li J, Huang H, Luo Z, Rathod S, Zhang Z, Chen Y, Zhang B, Fernandez CA, Sun J, Li S. Engineering a folic acid-decorated ultrasmall gemcitabine nanocarrier for breast cancer therapy: Dual targeting of tumor cells and tumor-associated macrophages. Acta Pharm Sin B 2022; 12:1148-1162. [PMID: 35530140 PMCID: PMC9072252 DOI: 10.1016/j.apsb.2021.09.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/29/2021] [Accepted: 08/18/2021] [Indexed: 12/26/2022] Open
Abstract
Combination of passive targeting with active targeting is a promising approach to improve the therapeutic efficacy of nanotherapy. However, most reported polymeric systems have sizes above 100 nm, which limits effective extravasation into tumors that are poorly vascularized and have dense stroma. This will, in turn, limit the overall effectiveness of the subsequent uptake by tumor cells via active targeting. In this study, we combined the passive targeting via ultra-small-sized gemcitabine (GEM)-based nanoparticles (NPs) with the active targeting provided by folic acid (FA) conjugation for enhanced dual targeted delivery to tumor cells and tumor-associated macrophages (TAMs). We developed an FA-modified prodrug carrier based on GEM (PGEM) to load doxorubicin (DOX), for co-delivery of GEM and DOX to tumors. The co-delivery system showed small particle size of ∼10 nm in diameter. The ligand-free and FA-targeted micelles showed comparable drug loading efficiency and a sustained DOX release profile. The FA-conjugated micelles effectively increased DOX uptake in cultured KB cancer cells that express a high level of folate receptor (FR), but no obvious increase was observed in 4T1.2 breast cancer cells that have a low-level expression of FR. Interestingly, in vivo, systemic delivery of FA-PGEM/DOX led to enhanced accumulation of the NPs in tumor and drastic reduction of tumor growth in a murine 4T1.2 breast cancer model. Mechanistic study showed that 4T1.2 tumor grown in mice expressed a significantly higher level of FOLR2, which was selectively expressed on TAMs. Thus, targeting of TAM may also contribute to the improved in vivo targeted delivery and therapeutic efficacy.
Collapse
Affiliation(s)
| | | | - Apurva Pardeshi
- Center for Pharmacogenetics, Department of Pharmaceutical Science, School of Pharmacy, University of Pittsburgh, PA 15261, USA
| | - Jiang Li
- Center for Pharmacogenetics, Department of Pharmaceutical Science, School of Pharmacy, University of Pittsburgh, PA 15261, USA
| | - Haozhe Huang
- Center for Pharmacogenetics, Department of Pharmaceutical Science, School of Pharmacy, University of Pittsburgh, PA 15261, USA
| | - Zhangyi Luo
- Center for Pharmacogenetics, Department of Pharmaceutical Science, School of Pharmacy, University of Pittsburgh, PA 15261, USA
| | - Sanjay Rathod
- Center for Pharmacogenetics, Department of Pharmaceutical Science, School of Pharmacy, University of Pittsburgh, PA 15261, USA
| | - Ziqian Zhang
- Center for Pharmacogenetics, Department of Pharmaceutical Science, School of Pharmacy, University of Pittsburgh, PA 15261, USA
| | - Yuang Chen
- Center for Pharmacogenetics, Department of Pharmaceutical Science, School of Pharmacy, University of Pittsburgh, PA 15261, USA
| | - Bei Zhang
- Center for Pharmacogenetics, Department of Pharmaceutical Science, School of Pharmacy, University of Pittsburgh, PA 15261, USA
| | - Christian A. Fernandez
- Center for Pharmacogenetics, Department of Pharmaceutical Science, School of Pharmacy, University of Pittsburgh, PA 15261, USA
| | - Jingjing Sun
- Center for Pharmacogenetics, Department of Pharmaceutical Science, School of Pharmacy, University of Pittsburgh, PA 15261, USA
| | - Song Li
- Center for Pharmacogenetics, Department of Pharmaceutical Science, School of Pharmacy, University of Pittsburgh, PA 15261, USA
| |
Collapse
|
22
|
He X, Chen S, Mao X. Utilization of metal or non-metal-based functional materials as efficient composites in cancer therapies. RSC Adv 2022; 12:6540-6551. [PMID: 35424648 PMCID: PMC8982229 DOI: 10.1039/d1ra08335j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/30/2022] [Indexed: 12/03/2022] Open
Abstract
There has been great progress in cancer treatment through traditional approaches, even though some of them are still trapped in relative complications such as certain side effects and prospective chances of full recovery. As a conventional method, the immunotherapy approach is regarded as an effective approach to cure cancer. It is mainly promoted by immune checkpoint blocking and adoptive cell therapy, which can utilize the human immune system to attack tumor cells and make them necrose completely or stop proliferating cancer cells. Currently however, immunotherapy shows limited success due to the limitation of real applicable cases of targeted tumor environments and immune systems. Considering the urgent need to construct suitable strategies towards cancer therapy, metallic materials can be used as delivery systems for immunotherapeutic agents in the human body. Metallic materials exhibit a high degree of specificity, effectiveness, diagnostic ability, imaging ability and therapeutic effects with different biomolecules or polymers, which is an effective option for cancer treatment. In addition, these modified metallic materials contain immune-modulators, which can activate immune cells to regulate tumor microenvironments and enhance anti-cancer immunity. Additionally, they can be used as adjuvants with immunomodulatory activities, or as carriers for molecular transport to specific targets, which results in the loading of specific ligands to facilitate specific uptake. Here, we provide an overview of the different types of metallic materials used as efficient composites in cancer immunotherapy. We elaborate on the advancements using metallic materials with functional agents as effective composites in synergistic cancer treatment. Some nonmetallic functional composites also appear as a common phenomenon. Ascribed to the design of the composites themselves, the materials' surface structural characteristics are introduced as the drug-loading substrate. The physical and chemical properties of the functional materials emphasize that further research is required to fully characterize their mechanism, showing appropriate relevance for material toxicology and biomedical applications.
Collapse
Affiliation(s)
- Xiaoxiao He
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University Chongqing 400016 P. R. China
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University Chongqing 400016 P. R. China
| | - Shiyue Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University Chongqing 400016 P. R. China
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University Chongqing 400016 P. R. China
| | - Xiang Mao
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University Chongqing 400016 P. R. China
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University Chongqing 400016 P. R. China
| |
Collapse
|
23
|
Zhang J, Lin Y, Lin Z, Wei Q, Qian J, Ruan R, Jiang X, Hou L, Song J, Ding J, Yang H. Stimuli-Responsive Nanoparticles for Controlled Drug Delivery in Synergistic Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103444. [PMID: 34927373 PMCID: PMC8844476 DOI: 10.1002/advs.202103444] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/28/2021] [Indexed: 05/10/2023]
Abstract
Cancer immunotherapy has achieved promising clinical progress over the recent years for its potential to treat metastatic tumors and inhibit their recurrences effectively. However, low patient response rates and dose-limiting toxicity remain as major dilemmas for immunotherapy. Stimuli-responsive nanoparticles (srNPs) combined with immunotherapy offer the possibility to amplify anti-tumor immune responses, where the weak acidity, high concentration of glutathione, overexpressions of enzymes, and reactive oxygen species, and external stimuli in tumors act as triggers for controlled drug release. This review highlights the design of srNPs based on tumor microenvironment and/or external stimuli to combine with different anti-tumor drugs, especially the immunoregulatory agents, which eventually realize synergistic immunotherapy of malignant primary or metastatic tumors and acquire a long-term immune memory to prevent tumor recurrence. The authors hope that this review can provide theoretical guidance for the construction and clinical transformation of smart srNPs for controlled drug delivery in synergistic cancer immunotherapy.
Collapse
Affiliation(s)
- Jin Zhang
- Qingyuan Innovation LaboratoryCollege of Chemical EngineeringFuzhou University2 Xueyuan RoadFuzhou350108P. R. China
| | - Yandai Lin
- Qingyuan Innovation LaboratoryCollege of Chemical EngineeringFuzhou University2 Xueyuan RoadFuzhou350108P. R. China
| | - Zhe Lin
- Ruisi (Fujian) Biomedical Engineering Research Center Co LtdFuzhou350100P. R. China
| | - Qi Wei
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
- State Key Laboratory of Molecular Engineering of PolymersFudan University220 Handan RoadShanghai200433P. R. China
| | - Jiaqi Qian
- Qingyuan Innovation LaboratoryCollege of Chemical EngineeringFuzhou University2 Xueyuan RoadFuzhou350108P. R. China
| | - Renjie Ruan
- Qingyuan Innovation LaboratoryCollege of Chemical EngineeringFuzhou University2 Xueyuan RoadFuzhou350108P. R. China
| | - Xiancai Jiang
- Qingyuan Innovation LaboratoryCollege of Chemical EngineeringFuzhou University2 Xueyuan RoadFuzhou350108P. R. China
| | - Linxi Hou
- Qingyuan Innovation LaboratoryCollege of Chemical EngineeringFuzhou University2 Xueyuan RoadFuzhou350108P. R. China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and BiologyState Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou University2 Xueyuan RoadFuzhou350108P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
- State Key Laboratory of Molecular Engineering of PolymersFudan University220 Handan RoadShanghai200433P. R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and BiologyState Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou University2 Xueyuan RoadFuzhou350108P. R. China
| |
Collapse
|
24
|
Engineered nanomaterials for synergistic photo-immunotherapy. Biomaterials 2022; 282:121425. [DOI: 10.1016/j.biomaterials.2022.121425] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/19/2022] [Accepted: 02/17/2022] [Indexed: 02/07/2023]
|
25
|
Zhang X, Bu X, Jia W, Ying Y, Lv S, Jiang G. Near-Infrared Light-Activated Oxygen Generator a Multidynamic Photo-Nanoplatform for Effective Anti-Cutaneous Squamous Cell Carcinoma Treatment. Int J Nanomedicine 2022; 17:5761-5777. [PMID: 36466785 PMCID: PMC9717597 DOI: 10.2147/ijn.s378321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction Nanophototherapy has emerged as a novel and promising therapeutic strategy for cancer treatment; however, its efficacy in dermatological tumors and precancerous lesions remains severely limited. This study aimed to use the gas-liquid injection technique to fully utilize the synergistic photodynamic therapy (PDT)/photothermal therapy (PTT) of nanomaterials to enhance the antitumor effect. Methods A novel oxygen-generating nanocomposite (TSL-IR820-CAT) was synthesized by encapsulating the photosensitizer IR820 and catalase (CAT) using a matrix encapsulation method based on thermosensitive liposomes (TSL).-The liquid injection technology enhances the treatment of cutaneous squamous cell carcinoma (cSCC). The combined PDT/PTT therapeutic effect of TSL-IR820-CAT on cSCC was investigated using in vivo and in vitro experiments. Results TSL-IR820-CAT, with good stability, efficient drug release, and photothermal conversion ability, was successfully developed. Nanoparticles injected through a needle-free syringe efficiently accumulate in the tumor tissue. As TSL-IR820-CAT was consumed by A431 cells, some of it localized to the mitochondria and produced oxygen to relieve hypoxia, thereby enhancing the efficacy of PDT. PDT/PTT combination therapy resulted in irreversible apoptosis and inhibited cSCC growth. TSL-IR820-CAT coupled with gas-liquid injection was free from apparent systemic side effects. Conclusion This article discusses new strategies and ideas for treating skin tumors and has significant application value.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Dermatology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, People's Republic of China.,Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China.,Department of Dermatology, Xuzhou Children's Hospital, Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People's Republic of China
| | - Xiangbo Bu
- Department of Orthopaedics, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, 221009, People's Republic of China
| | - Wenyu Jia
- Department of Dermatology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, People's Republic of China.,Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Yu Ying
- Department of Dermatology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, People's Republic of China.,Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Shanrong Lv
- Department of Dermatology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, People's Republic of China.,Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Guan Jiang
- Department of Dermatology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, People's Republic of China.,Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| |
Collapse
|
26
|
Chen R, Zhao C, Chen Z, Shi X, Zhu H, Bu Q, Wang L, Wang C, He H. A bionic cellulose nanofiber-based nanocage wound dressing for NIR-triggered multiple synergistic therapy of tumors and infected wounds. Biomaterials 2021; 281:121330. [PMID: 34973556 DOI: 10.1016/j.biomaterials.2021.121330] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 12/20/2022]
Abstract
Tumor recurrence and drug-resistant bacterial infection are the main reasons that wounds heal with difficulty after skin tumor treatment. The near infrared- (NIR-) and pH-responsive, bionic, cellulose nanofiber-based (CNF-based) nanocage wound dressing with biocompatibility, bioviscosity, and shape adaptability is designed for dual NIR-triggered photothermal therapy of tumor and infection-induced wound healing. The wound dressing with the intertwining three dimensional (3D) nanocage network structure is skillfully constructed using NIR-responsive cellulose nanofibers and pH-responsive cellulose nanofibers as the skeleton, which endows the dressing with a high drug-loading capacity of doxorubicin (400 mg·g-1), and indocyanine green (25 mg·g-1). Moreover, the NIR- and pH-responsive bionic "On/Off" switches of the dressing enable a controllable and efficient drug release onto the wound area. The dual NIR-triggered wound dressing with excellent photothermal conversion performance possesses good antibacterial properties against Escherichia coli, Staphylococcus aureus, and drug-resistant Staphylococcus aureus. It could effectively eliminate bacterial biofilms and kill A375 tumor cells. Interestingly, the bionic wound dressing with shape adaptability could adapt and treat irregular postoperative skin tumor wounds and drug-resistant bacterial infection via the synergistic therapy of photothermal, photodynamic, and chemotherapy, which provides an ideal strategy for clinical intervention.
Collapse
Affiliation(s)
- Rimei Chen
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, PR China
| | - Chao Zhao
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, PR China
| | - Zhiping Chen
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, PR China
| | - Xiaoyu Shi
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, PR China
| | - Hongxiang Zhu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, PR China
| | - Qing Bu
- The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, PR China
| | - Lei Wang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, PR China
| | - Chunfang Wang
- Affilated Hospital of You Jiang Medical College for Nationalities, Baise, 533099, PR China
| | - Hui He
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, PR China.
| |
Collapse
|
27
|
Nanomedicine in Pancreatic Cancer: Current Status and Future Opportunities for Overcoming Therapy Resistance. Cancers (Basel) 2021; 13:cancers13246175. [PMID: 34944794 PMCID: PMC8699181 DOI: 10.3390/cancers13246175] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Despite access to a vast arsenal of anticancer agents, many fail to realise their full therapeutic potential in clinical practice. One key determinant of this is the evolution of multifaceted resistance mechanisms within the tumour that may either pre-exist or develop during the course of therapy. This is particularly evident in pancreatic cancer, where limited responses to treatment underlie dismal survival rates, highlighting the urgent need for new therapeutic approaches. Here, we discuss the major features of pancreatic tumours that contribute to therapy resistance, and how they may be alleviated through exploitation of the mounting and exciting promise of nanomedicines; a unique collection of nanoscale platforms with tunable and multifunctional capabilities that have already elicited a widespread impact on cancer management. Abstract The development of drug resistance remains one of the greatest clinical oncology challenges that can radically dampen the prospect of achieving complete and durable tumour control. Efforts to mitigate drug resistance are therefore of utmost importance, and nanotechnology is rapidly emerging for its potential to overcome such issues. Studies have showcased the ability of nanomedicines to bypass drug efflux pumps, counteract immune suppression, serve as radioenhancers, correct metabolic disturbances and elicit numerous other effects that collectively alleviate various mechanisms of tumour resistance. Much of this progress can be attributed to the remarkable benefits that nanoparticles offer as drug delivery vehicles, such as improvements in pharmacokinetics, protection against degradation and spatiotemporally controlled release kinetics. These attributes provide scope for precision targeting of drugs to tumours that can enhance sensitivity to treatment and have formed the basis for the successful clinical translation of multiple nanoformulations to date. In this review, we focus on the longstanding reputation of pancreatic cancer as one of the most difficult-to-treat malignancies where resistance plays a dominant role in therapy failure. We outline the mechanisms that contribute to the treatment-refractory nature of these tumours, and how they may be effectively addressed by harnessing the unique capabilities of nanomedicines. Moreover, we include a brief perspective on the likely future direction of nanotechnology in pancreatic cancer, discussing how efforts to develop multidrug formulations will guide the field further towards a therapeutic solution for these highly intractable tumours.
Collapse
|
28
|
Liu F, Liu X, Chen F, Fu Q. Mussel-inspired chemistry: A promising strategy for natural polysaccharides in biomedical applications. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101472] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
29
|
Capsule-like molecular imprinted polymer nanoparticles for targeted and chemophotothermal synergistic cancer therapy. Colloids Surf B Biointerfaces 2021; 208:112126. [PMID: 34600360 DOI: 10.1016/j.colsurfb.2021.112126] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/11/2021] [Accepted: 09/16/2021] [Indexed: 12/19/2022]
Abstract
Selective cancer cell targeting, controlled drug release, easy construction and multiple therapeutic modalities are some of the desirable characteristics of drug delivery systems. We designed and built simple capsule-like molecular imprinted polymer (MIP)-based nanoparticles for targeted and chemo-photothermal synergistic cancer therapy. Using dopamine (DA) as functional monomer, cross-linking agent as well as photo-thermal agent, ZIF-8 (zeoliticimidazolate framework-8) as drug carrier, epitope of EGFR (epidermal growth factor receptor) as template molecules, molecular imprinted polymer (MIP) drug carrier was constructed. The ability of MIP layer to bind to EGFR epitope endowed the MD (DOX@MIP) particles to recognize EGFR-overexpressing cancer cells, while the pH-responsiveness and photothermal conversion ability of PDA (polydopamine) achieved chemo-photothermal synergistic effects upon NIR irradiation. Taken together, the MD nanoparticles integrated cancer cell targeting recognition, intelligent drug release, biocompatibility and chemo-photothermal effects, and is therefore a promising tool for targeted cancer therapy with minimal toxicity to normal cells, as well as tumor imaging.
Collapse
|
30
|
Zhang Y, Du X, Liu S, Yan H, Ji J, Xi Y, Yang X, Zhai G. NIR-triggerable ROS-responsive cluster-bomb-like nanoplatform for enhanced tumor penetration, phototherapy efficiency and antitumor immunity. Biomaterials 2021; 278:121135. [PMID: 34562837 DOI: 10.1016/j.biomaterials.2021.121135] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/25/2022]
Abstract
The restricted tumor penetration has been regarded as the Achilles' Heels of most nanomedicines, largely limiting their efficacy. To address this challenge, a cluster-bomb-like nanoplatform named CPIM is prepared, which for the first time combines size-transforming and transcytosis strategies, thus enhancing both passive and active transport. For passive diffusion, the "cluster-bomb" CPIM (135 nm) releases drug-loaded "bomblets" (IR780/1-methyl-tryptophan (1 MT) loaded PAMAM, <10 nm) in response to the high reactive-oxygen-species (ROS) concentration in tumor microenvironment (TME), which promotes intratumoral diffusion. Besides, IR780 generates ROS upon NIR irradiation and intensifies this responsiveness; therefore, there exists a NIR-triggered self-destructive behavior, rendering CPIM spatiotemporal controllability. For active transport, the nanoplatform is proven to be delivered via transcytosis with/without NIR irradiation. Regarding the anti-cancer performance, CPIM strengthens the photodynamic therapy (PDT)/photothermal therapy (PTT) activity of IR780 and IDO pathway inhibition effect of 1 MT, thus exhibiting a strongest inhibitory effect on primary tumor. CPIM also optimally induces immunogenic cell death, reverses the "cold" TME to a "hot" one and evokes systemic immune response, thus exerting an abscopal and anti-metastasis effects. In conclusion, this work provides a facile, simple yet effective strategy to enhance the tumor penetration, tumor-killing effect and antitumor immunity of nanomedicines.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine Shandong University, Jinan, Shandong, 250012, PR China
| | - Xiyou Du
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine Shandong University, Jinan, Shandong, 250012, PR China
| | - Shangui Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine Shandong University, Jinan, Shandong, 250012, PR China
| | - Huixian Yan
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine Shandong University, Jinan, Shandong, 250012, PR China
| | - Jianbo Ji
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine Shandong University, Jinan, Shandong, 250012, PR China
| | - Yanwei Xi
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine Shandong University, Jinan, Shandong, 250012, PR China
| | - Xiaoye Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine Shandong University, Jinan, Shandong, 250012, PR China.
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine Shandong University, Jinan, Shandong, 250012, PR China.
| |
Collapse
|
31
|
Hu D, Xu H, Zhang W, Xu X, Xiao B, Shi X, Zhou Z, Slater NKH, Shen Y, Tang J. Vanadyl nanocomplexes enhance photothermia-induced cancer immunotherapy to inhibit tumor metastasis and recurrence. Biomaterials 2021; 277:121130. [PMID: 34534862 DOI: 10.1016/j.biomaterials.2021.121130] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/07/2021] [Accepted: 09/11/2021] [Indexed: 01/26/2023]
Abstract
Conventional photothermal therapy (PTT) is insufficient to induce a strong and potent anti-tumor immune response. Herein, we present a vanadyl nanocomplex, which simultaneously serves as a photothermal agent (PTA) and an immunogenic cell death (ICD) inducer to enhance the anti-tumor immunity of PTT. The vanadyl nanocomplex (STVN) is constructed via facile one-step coordination assembly under ambient conditions. STVN not only has a strong and stable photothermal effect under near-infrared (NIR) irradiation, but also can cause severe endoplasmic reticulum (ER) stress by itself, leading to ICD and activating the systemic immune responses. In the absence of any adjuvants, NIR-irradiated STVN almost completely ablates primary tumors and simultaneously inhibits distant tumors in mice bearing bilateral melanoma. Meanwhile, the intratumorally injected STVN combined with NIR effectively suppressed melanoma lung metastasis as well as tumor recurrence, displaying that local STVN-mediated PTT could trigger a systemic anti-tumor immunity. Therefore, STVN, as a novel immunogenicity-enhanced PTA, affords a "one stone two birds" strategy for improved photothermia-induced cancer immunotherapy.
Collapse
Affiliation(s)
- Doudou Hu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China; Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Hongxia Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Wei Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Xiaodan Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Bing Xiao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Xueying Shi
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Zhuxian Zhou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Nigel K H Slater
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Youqing Shen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Jianbin Tang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China.
| |
Collapse
|
32
|
Huang Z, Chen Y, Zhang J, Li W, Shi M, Qiao M, Zhao X, Hu H, Chen D. Laser/GSH-Activatable Oxaliplatin/Phthalocyanine-Based Coordination Polymer Nanoparticles Combining Chemophotodynamic Therapy to Improve Cancer Immunotherapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:39934-39948. [PMID: 34396771 DOI: 10.1021/acsami.1c11327] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
There are two severe obstacles in cancer immunotherapy. The first is that the low response rate challenges the immune response owing to the immunosuppressive tumor microenvironment (ITM) and poor immunogenicity of the tumor. The second obstacle is that the dense and intricate pathophysiology barrier seriously restricts deep drug delivery in solid tumors. A laser/glutathione (GSH)-activatable nanosystem with tumor penetration for achieving highly efficient immunotherapy is reported. The core of the nanosystem was synthesized by coordinating zinc ions with GSH-activatable oxaliplatin (OXA) prodrugs and carboxylated phthalocyanine. Such an OXA/phthalocyanine-based coordination polymer nanoparticle (OPCPN) was wrapped by a phospholipid bilayer and NTKPEG. NTKPEG is a PEGylated indoleamine 2,3-dioxygenase 1 (IDO1) inhibitor prodrug containing a thioketal (TK) linker, which was modified on the OPCPN (OPCPN@NTKPEG). Upon the laser irradiation tumor site, ROS production of the OPCPN@NTKPEG triggers cleavage of NTKPEG by degradation of TK for promoted tumor penetration and uptake. OXA, phthalocyanine, and IDO1 inhibitor were released by the intracellular high-level GSH. OXA inhibits cell growth and is combined with photodynamic therapy (PDT) to induce immunogenic cell death (ICD). The IDO1 inhibitor reversed the ITM by suppressing IDO1-mediated Trp degradation and exhaustion of cytotoxic T cells. Laser/GSH-activatable drug delivery was more conducive to enhancing ICD and reversing ITM in deep tumors. Chemo-PDT with OPCPN@NTKPEG significantly regressed tumor growth and reduced metastasis by improved cancer immunotherapy.
Collapse
Affiliation(s)
- Ziyuan Huang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Yuying Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Jiulong Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Wenpan Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Menghao Shi
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Mingxi Qiao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Xiuli Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Haiyang Hu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Dawei Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| |
Collapse
|