1
|
Gerçel G, Durakbaşa ÇU. An Analysis Regarding the Ultimate Outcome of Abstracts Presented at the European Paediatric Surgeons' Association Congress. Eur J Pediatr Surg 2024. [PMID: 39442555 DOI: 10.1055/a-2447-8720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
INTRODUCTION The objective of this study is to analyze the conversion rate of abstracts presented at the European Paediatric Surgeons' Association (EUPSA) congress into full-text publications and to conduct a thorough analysis of the attributes and quality of the papers published. MATERIALS AND METHODS Abstract books including the years 2017 to 2022 were reviewed. Searches on PubMed and Google Scholar, utilizing keywords from the titles and the author names, were conducted to trace subsequent full-text publications. A categorical analysis detected variations and trends, with a significance threshold of p < 0.05. Quantitative data were presented as means ± standard deviations, whereas categorical data were represented as counts (n) and percentages (%). RESULTS A total of 2,139 abstracts were presented at the EUPSA annual meetings during five consecutive congresses. The average number of presented abstracts was 427.6 ± 20.4 per year from across 63 different countries. European countries contributed the majority (71%). The presentations included both oral (n = 817, 38.2%) and poster presentations (n = 1,322, 61.8%). They predominantly focused on clinical topics (90.6%). Single-center retrospective studies were the most common study design (43.7%). Out of all abstracts presented, 1,033 (48.3%) were published within an average time interval of 1.39 ± 1.19 years after presentation. Most journals had an impact factor (IF) between 1 and 5 (74.5%). There was no significant year-to-year variation in publication rates (p = 1). Basic science studies were published in journals with significantly higher IF compared with clinical studies (p < 0.001). CONCLUSIONS The publication rate of abstracts presented at the EUPSA annual congress stands at 48.3%, aligning with the rates observed in other similar studies. This suggests that abstracts submitted to the EUPSA congresses were evaluated and scored rigorously, adhering to international selection criteria. Furthermore, the majority of these abstracts were published in journals with moderate to high IFs, providing quantitative evidence of the scientific quality of research within the field of pediatric surgery.
Collapse
Affiliation(s)
- Gonca Gerçel
- Department of Pediatric Surgery, Istanbul Medeniyet University, Faculty of Medicine, Istanbul, Türkiye
| | - Çiğdem Ulukaya Durakbaşa
- Department of Pediatric Surgery, Istanbul Medeniyet University, Faculty of Medicine, Istanbul, Türkiye
| |
Collapse
|
2
|
Wang Y, Ding S. Extracellular vesicles in cancer cachexia: deciphering pathogenic roles and exploring therapeutic horizons. J Transl Med 2024; 22:506. [PMID: 38802952 PMCID: PMC11129506 DOI: 10.1186/s12967-024-05266-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Cancer cachexia (CC) is a debilitating syndrome that affects 50-80% of cancer patients, varying in incidence by cancer type and significantly diminishing their quality of life. This multifactorial syndrome is characterized by muscle and fat loss, systemic inflammation, and metabolic imbalance. Extracellular vesicles (EVs), including exosomes and microvesicles, play a crucial role in the progression of CC. These vesicles, produced by cancer cells and others within the tumor environment, facilitate intercellular communication by transferring proteins, lipids, and nucleic acids. A comprehensive review of the literature from databases such as PubMed, Scopus, and Web of Science reveals insights into the formation, release, and uptake of EVs in CC, underscoring their potential as diagnostic and prognostic biomarkers. The review also explores therapeutic strategies targeting EVs, which include modifying their release and content, utilizing them for drug delivery, genetically altering their contents, and inhibiting key cachexia pathways. Understanding the role of EVs in CC opens new avenues for diagnostic and therapeutic approaches, potentially mitigating the syndrome's impact on patient survival and quality of life.
Collapse
Affiliation(s)
- Yifeng Wang
- Department of Thoracic Surgery, Affiliated Hospital 2 of Nantong University, Nantong First People's Hospital, Nantong, 226001, P.R. China
- School of Medicine, Nantong University, Nantong, 226001, P.R. China
| | - Shengguang Ding
- Department of Thoracic Surgery, Affiliated Hospital 2 of Nantong University, Nantong First People's Hospital, Nantong, 226001, P.R. China.
| |
Collapse
|
3
|
Rahmati S, Khazaei M, Abpeikar Z, Soleimanizadeh A, Rezakhani L. Exosome-loaded decellularized tissue: Opening a new window for regenerative medicine. J Tissue Viability 2024; 33:332-344. [PMID: 38594147 DOI: 10.1016/j.jtv.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 03/29/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024]
Abstract
Mesenchymal stem cell-derived exosomes (MSCs-EXO) have received a lot of interest recently as a potential therapeutic tool in regenerative medicine. Extracellular vesicles (EVs) known as exosomes (EXOs) are crucial for cell-cell communication throughout a variety of activities including stress response, aging, angiogenesis, and cell differentiation. Exploration of the potential use of EXOs as essential therapeutic effectors of MSCs to encourage tissue regeneration was motivated by success in the field of regenerative medicine. EXOs have been administered to target tissues using a variety of methods, including direct, intravenous, intraperitoneal injection, oral delivery, and hydrogel-based encapsulation, in various disease models. Despite the significant advances in EXO therapy, various methods are still being researched to optimize the therapeutic applications of these nanoparticles, and it is not completely clear which approach to EXO administration will have the greatest effects. Here, we will review emerging developments in the applications of EXOs loaded into decellularized tissues as therapeutic agents for use in regenerative medicine in various tissues.
Collapse
Affiliation(s)
- Shima Rahmati
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Abpeikar
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Arghavan Soleimanizadeh
- Faculty of Medicine, Graduate School 'Molecular Medicine, University of Ulm, 89081, Ulm, Germany
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
4
|
Schiltz L, Grivetti E, Tanner GI, Qazi TH. Recent Advances in Implantable Biomaterials for the Treatment of Volumetric Muscle Loss. Cells Tissues Organs 2024; 213:486-502. [PMID: 38219727 DOI: 10.1159/000536262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/10/2024] [Indexed: 01/16/2024] Open
Abstract
BACKGROUND Volumetric muscle loss (VML) causes pain and disability in patients who sustain traumatic injury from invasive surgical procedures, vehicle accidents, and battlefield wounds. Clinical treatment of VML injuries is challenging, and although options such as free-flap autologous grafting exist, patients inevitably develop excessive scarring and fatty infiltration, leading to muscle weakness and reduced quality of life. SUMMARY New bioengineering approaches, including cell therapy, drug delivery, and biomaterial implantation, have emerged as therapies to restore muscle function and structure to pre-injury levels. Of these, acellular biomaterial implants have attracted wide interest owing to their broad potential design space and high translational potential as medical devices. Implantable biomaterials fill the VML defect and create a conduit that permits the migration of regenerative cells from the intact muscle tissue to the injury site. Invading cells and regenerating myofibers are sensitive to the biomaterial's structural and biochemical properties, which can play instructive roles in guiding cell fate and organization into functional tissue. KEY MESSAGES Many diverse biomaterials have been developed for skeletal muscle regeneration with variations in biophysical and biochemical properties, and while many have been tested in vitro, few have proven their regenerative potential in clinically relevant in vivo models. Here, we provide an overview of recent advances in the design, fabrication, and application of acellular biomaterials made from synthetic or natural materials for the repair of VML defects. We specifically focus on biomaterials with rationally designed structural (i.e., porosity, topography, alignment) and biochemical (i.e., proteins, peptides, growth factors) components, highlighting their regenerative effects in clinically relevant VML models.
Collapse
Affiliation(s)
- Leia Schiltz
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Elizabeth Grivetti
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Gabrielle I Tanner
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Taimoor H Qazi
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
5
|
Sandonà M, Esposito F, Cargnoni A, Silini A, Romele P, Parolini O, Saccone V. Amniotic Membrane-Derived Stromal Cells Release Extracellular Vesicles That Favor Regeneration of Dystrophic Skeletal Muscles. Int J Mol Sci 2023; 24:12457. [PMID: 37569832 PMCID: PMC10418925 DOI: 10.3390/ijms241512457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a muscle disease caused by mutations in the dystrophin gene characterized by myofiber fragility and progressive muscle degeneration. The genetic defect results in a reduced number of self-renewing muscle stem cells (MuSCs) and an impairment of their activation and differentiation, which lead to the exhaustion of skeletal muscle regeneration potential and muscle replacement by fibrotic and fatty tissue. In this study, we focused on an unexplored strategy to improve MuSC function and to preserve their niche based on the regenerative properties of mesenchymal stromal cells from the amniotic membrane (hAMSCs), that are multipotent cells recognized to have a role in tissue repair in different disease models. We demonstrate that the hAMSC secretome (CM hAMSC) and extracellular vesicles (EVs) isolated thereof directly stimulate the in vitro proliferation and differentiation of human myoblasts and mouse MuSC from dystrophic muscles. Furthermore, we demonstrate that hAMSC secreted factors modulate the muscle stem cell niche in dystrophic-mdx-mice. Interestingly, local injection of EV hAMSC in mdx muscles correlated with an increase in the number of activated Pax7+/Ki67+ MuSCs and in new fiber formation. EV hAMSCs also significantly reduced muscle collagen deposition, thus counteracting fibrosis and MuSCs exhaustion, two hallmarks of DMD. Herein for the first time we demonstrate that CM hAMSC and EVs derived thereof promote muscle regeneration by supporting proliferation and differentiation of resident muscle stem cells. These results pave the way for the development of a novel treatment to counteract DMD progression by reducing fibrosis and enhancing myogenesis in dystrophic muscles.
Collapse
Affiliation(s)
- Martina Sandonà
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Santa Lucia, Via Fosso di Fiorano 64, 00143 Rome, Italy; (M.S.); (F.E.)
| | - Federica Esposito
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Santa Lucia, Via Fosso di Fiorano 64, 00143 Rome, Italy; (M.S.); (F.E.)
- Unit of Histology and Medical Embryology, Division DAHFMO, University of Rome La Sapienza, 00185 Rome, Italy
| | - Anna Cargnoni
- Centro di Ricerca “E. Menni”, Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy; (A.C.); (A.S.); (P.R.)
| | - Antonietta Silini
- Centro di Ricerca “E. Menni”, Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy; (A.C.); (A.S.); (P.R.)
| | - Pietro Romele
- Centro di Ricerca “E. Menni”, Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy; (A.C.); (A.S.); (P.R.)
| | - Ornella Parolini
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Largo A. Gemelli, 00168 Rome, Italy
| | - Valentina Saccone
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Santa Lucia, Via Fosso di Fiorano 64, 00143 Rome, Italy; (M.S.); (F.E.)
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
| |
Collapse
|
6
|
Zhang E, Phan P, Zhao Z. Cellular nanovesicles for therapeutic immunomodulation: A perspective on engineering strategies and new advances. Acta Pharm Sin B 2023; 13:1789-1827. [PMID: 37250173 PMCID: PMC10213819 DOI: 10.1016/j.apsb.2022.08.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/11/2022] [Accepted: 07/28/2022] [Indexed: 02/08/2023] Open
Abstract
Cellular nanovesicles which are referred to as cell-derived, nanosized lipid bilayer structures, have emerged as a promising platform for regulating immune responses. Owing to their outstanding advantages such as high biocompatibility, prominent structural stability, and high loading capacity, cellular nanovesicles are suitable for delivering various immunomodulatory molecules, such as small molecules, nucleic acids, peptides, and proteins. Immunomodulation induced by cellular nanovesicles has been exploited to modulate immune cell behaviors, which is considered as a novel cell-free immunotherapeutic strategy for the prevention and treatment of diverse diseases. Here we review emerging concepts and new advances in leveraging cellular nanovesicles to activate or suppress immune responses, with the aim to explicate their applications for immunomodulation. We overview the general considerations and principles for the design of engineered cellular nanovesicles with tailored immunomodulatory activities. We also discuss new advances in engineering cellular nanovesicles as immunotherapies for treating major diseases.
Collapse
Affiliation(s)
- Endong Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Philana Phan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Zongmin Zhao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA
- Translational Oncology Program, University of Illinois Cancer Center, Chicago, IL 60612, USA
| |
Collapse
|
7
|
Larouche JA, Wallace EC, Spence BD, Buras E, Aguilar CA. Spatiotemporal mapping of immune and stem cell dysregulation after volumetric muscle loss. JCI Insight 2023; 8:e162835. [PMID: 36821376 PMCID: PMC10132146 DOI: 10.1172/jci.insight.162835] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 02/21/2023] [Indexed: 02/24/2023] Open
Abstract
Volumetric muscle loss (VML) is an acute trauma that results in persistent inflammation, supplantation of muscle tissue with fibrotic scarring, and decreased muscle function. The cell types, nature of cellular communication, and tissue locations that drive the aberrant VML response have remained elusive. Herein, we used spatial transcriptomics on a mouse model of VML and observed that VML engenders a unique spatial profibrotic pattern driven by crosstalk between fibrotic and inflammatory macrophages and mesenchymal-derived cells. The dysregulated response impinged on muscle stem cell-mediated repair, and targeting this circuit resulted in increased regeneration and reductions in inflammation and fibrosis. Collectively, these results enhance our understanding of the cellular crosstalk that drives aberrant regeneration and provides further insight into possible avenues for fibrotic therapy exploration.
Collapse
Affiliation(s)
| | | | | | - Eric Buras
- Biointerfaces Institute
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, and
| | - Carlos A. Aguilar
- Department of Biomedical Engineering
- Biointerfaces Institute
- Program in Cellular and Molecular Biology, University of Michigan (UM), Ann Arbor, Michigan, USA
| |
Collapse
|
8
|
Jones CL, Penney BT, Theodossiou SK. Engineering Cell-ECM-Material Interactions for Musculoskeletal Regeneration. Bioengineering (Basel) 2023; 10:bioengineering10040453. [PMID: 37106640 PMCID: PMC10135874 DOI: 10.3390/bioengineering10040453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
The extracellular microenvironment regulates many of the mechanical and biochemical cues that direct musculoskeletal development and are involved in musculoskeletal disease. The extracellular matrix (ECM) is a main component of this microenvironment. Tissue engineered approaches towards regenerating muscle, cartilage, tendon, and bone target the ECM because it supplies critical signals for regenerating musculoskeletal tissues. Engineered ECM-material scaffolds that mimic key mechanical and biochemical components of the ECM are of particular interest in musculoskeletal tissue engineering. Such materials are biocompatible, can be fabricated to have desirable mechanical and biochemical properties, and can be further chemically or genetically modified to support cell differentiation or halt degenerative disease progression. In this review, we survey how engineered approaches using natural and ECM-derived materials and scaffold systems can harness the unique characteristics of the ECM to support musculoskeletal tissue regeneration, with a focus on skeletal muscle, cartilage, tendon, and bone. We summarize the strengths of current approaches and look towards a future of materials and culture systems with engineered and highly tailored cell-ECM-material interactions to drive musculoskeletal tissue restoration. The works highlighted in this review strongly support the continued exploration of ECM and other engineered materials as tools to control cell fate and make large-scale musculoskeletal regeneration a reality.
Collapse
Affiliation(s)
- Calvin L Jones
- Department of Mechanical and Biomedical Engineering, Boise State University, 1910 University Dr MS2085, Boise, ID 83725, USA
| | - Brian T Penney
- Department of Mechanical and Biomedical Engineering, Boise State University, 1910 University Dr MS2085, Boise, ID 83725, USA
| | - Sophia K Theodossiou
- Department of Mechanical and Biomedical Engineering, Boise State University, 1910 University Dr MS2085, Boise, ID 83725, USA
| |
Collapse
|
9
|
Biodistribution of Intratracheal, Intranasal, and Intravenous Injections of Human Mesenchymal Stromal Cell-Derived Extracellular Vesicles in a Mouse Model for Drug Delivery Studies. Pharmaceutics 2023; 15:pharmaceutics15020548. [PMID: 36839873 PMCID: PMC9964290 DOI: 10.3390/pharmaceutics15020548] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Mesenchymal stromal cell-derived extracellular vesicles (MSC-EVs) are extensively studied as therapeutic tools. Evaluation of their biodistribution is fundamental to understanding MSC-EVs' impact on target organs. In our work, MSC-EVs were initially labeled with DiR, a fluorescent lipophilic dye, and administered to BALB/c mice (2.00 × 1010 EV/mice) through the following routes: intravenous (IV), intratracheal (IT) and intranasal (IN). DiR-labeled MSC-EVs were monitored immediately after injection, and after 3 and 24 hours (h). Whole-body analysis, 3 h after IV injection, showed an accumulation of MSC-EVs in the mice abdominal region, compared to IT and IN, where EVs mainly localized at the levels of the chest and brain region, respectively. After 24 h, EV-injected mice retained a stronger positivity in the same regions identified after 3 h from injection. The analyses of isolated organs confirmed the accumulation of EVs in the spleen and liver after IV administration. Twenty-four hours after the IT injection of MSC-EVs, a stronger positivity was detected selectively in the isolated lungs, while for IN, the signal was confined to the brain. In conclusion, these results show that local administration of EVs can increase their concentration in selective organs, limiting their systemic biodistribution and possibly the extra-organ effects. Biodistribution studies can help in the selection of the most appropriate way of administration of MSC-EVs for the treatment of different diseases.
Collapse
|
10
|
McLaughlin C, Datta P, Singh YP, Lo A, Horchler S, Elcheva IA, Ozbolat IT, Ravnic DJ, Koduru SV. Mesenchymal Stem Cell-Derived Extracellular Vesicles for Therapeutic Use and in Bioengineering Applications. Cells 2022; 11:3366. [PMID: 36359762 PMCID: PMC9657427 DOI: 10.3390/cells11213366] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/10/2022] [Accepted: 10/19/2022] [Indexed: 07/25/2023] Open
Abstract
Extracellular vesicles (EVs) are small lipid bilayer-delimited particles that are naturally released from cells into body fluids, and therefore can travel and convey regulatory functions in the distal parts of the body. EVs can transmit paracrine signaling by carrying over cytokines, chemokines, growth factors, interleukins (ILs), transcription factors, and nucleic acids such as DNA, mRNAs, microRNAs, piRNAs, lncRNAs, sn/snoRNAs, mtRNAs and circRNAs; these EVs travel to predecided destinations to perform their functions. While mesenchymal stem cells (MSCs) have been shown to improve healing and facilitate treatments of various diseases, the allogenic use of these cells is often accompanied by serious adverse effects after transplantation. MSC-produced EVs are less immunogenic and can serve as an alternative to cellular therapies by transmitting signaling or delivering biomaterials to diseased areas of the body. This review article is focused on understanding the properties of EVs derived from different types of MSCs and MSC-EV-based therapeutic options. The potential of modern technologies such as 3D bioprinting to advance EV-based therapies is also discussed.
Collapse
Affiliation(s)
- Caroline McLaughlin
- Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Pallab Datta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Kolkata, West Bengal 700054, India
| | - Yogendra P. Singh
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of Life Sciences, Penn State University, University Park, PA 16802, USA
| | - Alexis Lo
- Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Summer Horchler
- Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Irina A. Elcheva
- Department of Pediatrics, Hematology/Oncology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Ibrahim T. Ozbolat
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of Life Sciences, Penn State University, University Park, PA 16802, USA
| | - Dino J. Ravnic
- Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Srinivas V. Koduru
- Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA 17033, USA
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
11
|
Dolan CP, Clark AR, Motherwell JM, Janakiram NB, Valerio MS, Dearth CL, Goldman SM. The impact of bilateral injuries on the pathophysiology and functional outcomes of volumetric muscle loss. NPJ Regen Med 2022; 7:59. [PMID: 36243737 PMCID: PMC9569363 DOI: 10.1038/s41536-022-00255-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/05/2022] [Indexed: 11/09/2022] Open
Abstract
Volumetric muscle loss (VML)-defined as the irrecoverable loss of skeletal muscle tissue with associated persistent functional deficits-is among the most common and highly debilitating combat-related extremity injuries. This is particularly true in cases of severe polytrauma wherein multiple extremities may be involved as a result of high energy wounding mechanisms. As such, significant investment and effort has been made toward developing a clinically viable intervention capable of restoring the form and function of the affected musculature. While these investigations conducted to date have varied with respect to the species, breed, and sex of the chosen pre-clinical in-vivo model system, the majority of these studies have been performed in unilateral injury models, an aspect which may not fully exemplify the clinical representation of the multiply injured patient. Furthermore, while various components of the basal pathophysiology of VML (e.g., fibrosis and inflammation) have been investigated, relatively little effort has focused on how the pathophysiology and efficacy of pro-regenerative technologies is altered when there are multiple VML injuries. Thus, the purpose of this study was two-fold: (1) to investigate if/how the pathophysiology of unilateral VML injuries differs from bilateral VML injuries and (2) to interrogate the effect of bilateral VML injuries on the efficacy of a well-characterized regenerative therapy, minced muscle autograft (MMG). In contrast to our hypothesis, we show that bilateral VML injuries exhibit a similar systemic inflammatory response and improved muscle functional recovery, compared to unilateral injured animals. Furthermore, MMG treatment was found to only be effective at promoting an increase in functional outcomes in unilateral VML injuries. The findings presented herein add to the growing knowledge base of the pathophysiology of VML, and, importantly, reiterate the importance of comprehensively characterizing preclinical models which are utilized for early-stage screening of putative therapies as they can directly influence the translational research pipeline.
Collapse
Affiliation(s)
- Connor P Dolan
- DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD, USA.,Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Andrew R Clark
- DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD, USA.,Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Jessica M Motherwell
- DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD, USA.,Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Naveena B Janakiram
- DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD, USA.,Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Michael S Valerio
- DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD, USA.,Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Christopher L Dearth
- DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD, USA.,Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Stephen M Goldman
- DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD, USA. .,Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, USA.
| |
Collapse
|
12
|
Pozzobon M, D’Agostino S, Roubelakis MG, Cargnoni A, Gramignoli R, Wolbank S, Gindraux F, Bollini S, Kerdjoudj H, Fenelon M, Di Pietro R, Basile M, Borutinskaitė V, Piva R, Schoeberlein A, Eissner G, Giebel B, Ponsaerts P. General consensus on multimodal functions and validation analysis of perinatal derivatives for regenerative medicine applications. Front Bioeng Biotechnol 2022; 10:961987. [PMID: 36263355 PMCID: PMC9574482 DOI: 10.3389/fbioe.2022.961987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/01/2022] [Indexed: 11/26/2022] Open
Abstract
Perinatal tissues, such as placenta and umbilical cord contain a variety of somatic stem cell types, spanning from the largely used hematopoietic stem and progenitor cells to the most recently described broadly multipotent epithelial and stromal cells. As perinatal derivatives (PnD), several of these cell types and related products provide an interesting regenerative potential for a variety of diseases. Within COST SPRINT Action, we continue our review series, revising and summarizing the modalities of action and proposed medical approaches using PnD products: cells, secretome, extracellular vesicles, and decellularized tissues. Focusing on the brain, bone, skeletal muscle, heart, intestinal, liver, and lung pathologies, we discuss the importance of potency testing in validating PnD therapeutics, and critically evaluate the concept of PnD application in the field of tissue regeneration. Hereby we aim to shed light on the actual therapeutic properties of PnD, with an open eye for future clinical application. This review is part of a quadrinomial series on functional/potency assays for validation of PnD, spanning biological functions, such as immunomodulation, anti-microbial/anti-cancer, anti-inflammation, wound healing, angiogenesis, and regeneration.
Collapse
Affiliation(s)
- Michela Pozzobon
- Department of Women’s and Children’s Health, University of Padova, Padova, Italy
| | - Stefania D’Agostino
- Department of Women’s and Children’s Health, University of Padova, Padova, Italy
| | - Maria G. Roubelakis
- Laboratory of Biology, Medical School of Athens, National and Kapodistrian University of Athens, Athens, Greece
| | - Anna Cargnoni
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Roberto Gramignoli
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Susanne Wolbank
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, The Research Center in Cooperation with AUVA Trauma Research Center, Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Florelle Gindraux
- Service de Chirurgie Orthopédique, Traumatologique et plastique, CHU Besançon, Laboratoire de Nanomédecine, Imagerie, Thérapeutique EA 4662, University Bourgogne Franche-Comté, Besançon, France
| | - Sveva Bollini
- Department of Experimental Medicine (DIMES), School of Medical and Pharmaceutical Sciences, University of Genova, Genova, Italy
| | - Halima Kerdjoudj
- University of Reims Champagne Ardenne, EA 4691 BIOS “Biomatériaux et Inflammation en Site Osseux”, UFR d’Odontologie, Reims, France
| | | | - Roberta Di Pietro
- Department of Medicine and Ageing Sciences, Section of Biomorphology, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Mariangela Basile
- Department of Medicine and Ageing Sciences, Section of Biomorphology, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Veronika Borutinskaitė
- Department of Molecular Cell Biology, Institute of Biochemistry, Vilnius University, Vilnius, Lithuania
| | - Roberta Piva
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Andreina Schoeberlein
- Department of Obstetrics and Feto-maternal Medicine, Inselspital, Bern University Hospital, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Guenther Eissner
- Systems Biology Ireland, School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
13
|
Kiran S, Dwivedi P, Kumar V, Price RL, Singh UP. Immunomodulation and Biomaterials: Key Players to Repair Volumetric Muscle Loss. Cells 2021; 10:cells10082016. [PMID: 34440785 PMCID: PMC8394423 DOI: 10.3390/cells10082016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 11/21/2022] Open
Abstract
Volumetric muscle loss (VML) is defined as a condition in which a large volume of skeletal muscle is lost due to physical insult. VML often results in a heightened immune response, resulting in significant long-term functional impairment. Estimates indicate that ~250,000 fractures occur in the US alone that involve VML. Currently, there is no active treatment to fully recover or repair muscle loss in VML patients. The health economics burden due to VML is rapidly increasing around the world. Immunologists, developmental biologists, and muscle pathophysiologists are exploring both immune responses and biomaterials to meet this challenging situation. The inflammatory response in muscle injury involves a non-specific inflammatory response at the injured site that is coordination between the immune system, especially macrophages and muscle. The potential role of biomaterials in the regenerative process of skeletal muscle injury is currently an important topic. To this end, cell therapy holds great promise for the regeneration of damaged muscle following VML. However, the delivery of cells into the injured muscle site poses a major challenge as it might cause an adverse immune response or inflammation. To overcome this obstacle, in recent years various biomaterials with diverse physical and chemical nature have been developed and verified for the treatment of various muscle injuries. These biomaterials, with desired tunable physicochemical properties, can be used in combination with stem cells and growth factors to repair VML. In the current review, we focus on how various immune cells, in conjunction with biomaterials, can be used to promote muscle regeneration and, most importantly, suppress VML pathology.
Collapse
Affiliation(s)
- Sonia Kiran
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.K.); (V.K.)
| | - Pankaj Dwivedi
- Department of Pharmaceutical and Administrative Sciences, University of Health Science and Pharmacy, St. Louis, MO 63110, USA;
| | - Vijay Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.K.); (V.K.)
| | - Robert L. Price
- Department of Cell and Developmental Biology, University of South Carolina, Columbia, SC 29208, USA;
| | - Udai P. Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.K.); (V.K.)
- Correspondence:
| |
Collapse
|
14
|
Ziemkiewicz N, Hilliard G, Pullen NA, Garg K. The Role of Innate and Adaptive Immune Cells in Skeletal Muscle Regeneration. Int J Mol Sci 2021; 22:3265. [PMID: 33806895 PMCID: PMC8005179 DOI: 10.3390/ijms22063265] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 02/06/2023] Open
Abstract
Skeletal muscle regeneration is highly dependent on the inflammatory response. A wide variety of innate and adaptive immune cells orchestrate the complex process of muscle repair. This review provides information about the various types of immune cells and biomolecules that have been shown to mediate muscle regeneration following injury and degenerative diseases. Recently developed cell and drug-based immunomodulatory strategies are highlighted. An improved understanding of the immune response to injured and diseased skeletal muscle will be essential for the development of therapeutic strategies.
Collapse
Affiliation(s)
- Natalia Ziemkiewicz
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, 3507 Lindell Blvd, St. Louis, MO 63103, USA;
| | - Genevieve Hilliard
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA;
| | - Nicholas A. Pullen
- School of Biological Sciences, College of Natural and Health Sciences, University of Northern Colorado, Greeley, Colorado, CO 80639, USA;
| | - Koyal Garg
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, 3507 Lindell Blvd, St. Louis, MO 63103, USA;
| |
Collapse
|