1
|
Zhang Q, Li L, Yang Q, Chen W, Wang Z, Zhang M. Quantitative Intracellular Delivery of Anticancer Nanodrugs Via an Immunoassay Employing Pt-SiO 2 Janus-Peroxidase Nanozyme. Mol Pharm 2024. [PMID: 39446703 DOI: 10.1021/acs.molpharmaceut.4c00552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
The accurate and efficient quantification of nanodrug dosage is crucial for early anticancer therapy. The enzyme-linked immunosorbent assay (ELISA) has emerged as a robust tool for detecting anticancer nanodrug dosage; however, the development of sensing elements to quantify anticancer nanodrugs still poses a challenge. To overcome this problem, we utilize polysuccinimide-loaded curcumin (CUR @PSIOAm) as a model to employ an ELISA based on peroxidase nanozyme Pt-SiO2 Janus nanoparticles (Pt-SiO2 JNPs) for the indirect quantitative analysis of intracellular anticancer nanodrug dosage. This novel approach employs an immunoassay to indirectly quantify the dosage of anticancer nanodrugs while preserving its structural integrity. The silica components of Pt-SiO2 JNPs adsorb intermediates, while the Pt NP components exhibit high catalytic activity. Pt-SiO2 JNPs are functionalized with anti-PSIOAm antibody (Pt-SiO2 JNPs-Ab) to serve as an immunosensor capable of specific recognition of CUR @PSIOAm. Additionally, we employed cytotoxicity assays and confocal imaging techniques to demonstrate the excellent biocompatibility of CUR @PSIOAm, as well as its specific uptake by cancer cells. According to the experimental results, the limit of detection (LOD) for the immunoassay of Pt-SiO2 JNPs as a marker for detecting CUR @PSIOAm is approximately 4.5-fold lower than that of horseradish peroxidase. Therefore, by optimizing the conditions, we established a direct competitive ELISA using Pt-SiO2 JNPs as colorimetric indicators for the quantitative detection of intracellular CUR @PSIOAm. The LOD for this ELISA was determined to be 0.01 ng/mL, while the loaded CUR amount calculated from the drug loading capacity was found to be 0.22 pg/mL. Furthermore, the recoveries obtained from this established ELISA ranged between 94.0 and 108%, demonstrating excellent accuracy. Consequently, the peroxidase mimic Pt-SiO2 JNPs-based ELISA exhibits significant potential for precise quantification of intracellular anticancer nanodrug dosages.
Collapse
Affiliation(s)
- Qiuning Zhang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement; College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Lei Li
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement; College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Qianqian Yang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement; College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Wei Chen
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement; College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Ziyuan Wang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement; College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Mingcui Zhang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement; College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| |
Collapse
|
2
|
Zhang Z, Tang Y, Wang Y, Xu J, Yang X, Liu M, Mazzone M, Niu N, Sun Y, Tang Y, Xue J. SIN3B Loss Heats up Cold Tumor Microenvironment to Boost Immunotherapy in Pancreatic Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2402244. [PMID: 39316363 DOI: 10.1002/advs.202402244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 08/24/2024] [Indexed: 09/25/2024]
Abstract
Despite progress significant advances in immunotherapy for some solid tumors, pancreatic ductal adenocarcinoma (PDAC) remains unresponsive poorly responsive to such interventions, largely due to its highly immunosuppressive tumor microenvironment (TME) with limited CD8+ T cell infiltration. This study explores the role of the epigenetic factor Sin3B in the PDAC TME. Using murine PDAC models, we found that tumor cell-intrinsic Sin3B loss reshapes the TME, increasing CD8+ T cell infiltration and cytotoxicity, thus impeding tumor progression and enhancing sensitivity to anti-PD1 treatment. Sin3B-deficient tumor cells exhibited amplified CXCL9/10 secretion in response to Interferon-gamma (IFNγ), creating a positive feedback loop via the CXCL9/10-CXCR3 axis, thereby intensifying the anti-tumor immune response against PDAC. Mechanistically, extensive epigenetic regulation is uncovered by Sin3B loss, particularly enhanced H3K27Ac distribution on genes related to immune responses in PDAC cells. Consistent with the murine model findings, analysis of human PDAC samples revealed a significant inverse correlation between SIN3B levels and both CD8+ T cell infiltration and CXCL9/10 expression. Notebly, PDAC patients with lower SIN3B expression showed a more favorable response to anti-PD1 therapy. The findings suggest that targeting SIN3B can enhance cytotoxic T cell infiltration into the tumor site and improve immunotherapy efficacy in PDAC, offering potential avenues for therapeutic biomarker or target in this challenging disease.
Collapse
Affiliation(s)
- Zhengyan Zhang
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yingying Tang
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yu Wang
- Department of Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Junyi Xu
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Xiaotong Yang
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Mingzhu Liu
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, 3000, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, Leuven, 3000, Belgium
| | - Ningning Niu
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yongwei Sun
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yujie Tang
- Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jing Xue
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| |
Collapse
|
3
|
Zhou Y, Ma Y, Sheng J, Ma Y, Ding J, Zhou W. Breaking Down Barriers in Drug Delivery by Stromal Remodeling Approaches in Pancreatic Cancer. Mol Pharm 2024; 21:3764-3776. [PMID: 39049481 DOI: 10.1021/acs.molpharmaceut.4c00329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Pancreatic cancer remains a formidable challenge in oncology due to its aggressive nature and limited treatment options. The dense stroma surrounding pancreatic tumors not only provides structural support but also presents a formidable barrier to effective therapy, hindering drug penetration and immune cell infiltration. This review delves into the intricate interplay between stromal components and cancer cells, highlighting their impact on treatment resistance and prognosis. Strategies for stromal remodeling, including modulation of cancer-associated fibroblasts (CAFs), pancreatic stellate cells (PSCs) activation states, and targeting extracellular matrix (ECM) components, are examined for their potential to enhance drug penetration and improve therapeutic efficacy. Integration of stromal remodeling with conventional therapies, such as chemotherapy and immunotherapy, is discussed along with the emerging field of intelligent nanosystems for targeted drug delivery. This comprehensive overview underscores the importance of stromal remodeling in pancreatic cancer treatment and offers insights into promising avenues for future research and clinical translation.
Collapse
Affiliation(s)
- Ying Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Yunxiao Ma
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Jianwei Sheng
- China Quality Mark Certification (Shandong) Co., LTD, Jinan, Shandong 250100, China
| | - Yiran Ma
- Hunan Bainianyiren Chinese Traditional Medical Institute Co., LTD, Changsha, Hunan 410221, China
| | - Jinsong Ding
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
- Key Laboratory of Biological Nanotechnology of National Health Commission, Changsha, Hunan 410008, China
| |
Collapse
|
4
|
Man X, Li S, Xu G, Li W, Zhu M, Zhang Z, Liang H, Yang F. Developing a Copper(II) Isopropyl 2-Pyridyl Ketone Thiosemicarbazone Compound Based on the IB Subdomain of Human Serum Albumin-Indomethacin Complex: Inhibiting Tumor Growth by Remodeling the Tumor Microenvironment. J Med Chem 2024; 67:5744-5757. [PMID: 38553427 DOI: 10.1021/acs.jmedchem.3c02378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
To develop a next-generation metal agent and dual-agent multitargeted combination therapy, we developed a copper (Cu) compound based on the properties of the human serum albumin (HSA)-indomethacin (IND) complex to remodel the tumor microenvironment (TME). We optimized a series of Cu(II) isopropyl 2-pyridyl ketone thiosemicarbazone compounds to obtain a Cu(II) compound (C4) with significant cytotoxicity and then constructed an HSA-IND-C4 complex (HSA-IND-C4) delivery system. IND and C4 bind to the hydrophobic cavities of the IB and IIA domains of HSA, respectively. In vivo, the HSA-IND-C4 not only showed enhanced antitumor efficacy relative to C4 and C4 + IND but also improved their targeting ability and decreased their side effects. The antitumor mechanism of C4 + IND involved acting on the different components of the TME. IND inhibited tumor-related inflammation, while C4 not only induced apoptosis and autophagy of cancer cells but also inhibited tumor angiogenesis.
Collapse
Affiliation(s)
- Xueyu Man
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Shanhe Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Gang Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Wenjuan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Minghui Zhu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Zhenlei Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Feng Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
| |
Collapse
|
5
|
Li M, Liu Y, Zhang Y, Yu N, Li J. Sono-Activatable Semiconducting Polymer Nanoreshapers Multiply Remodel Tumor Microenvironment for Potent Immunotherapy of Orthotopic Pancreatic Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2305150. [PMID: 37870196 PMCID: PMC10724419 DOI: 10.1002/advs.202305150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/11/2023] [Indexed: 10/24/2023]
Abstract
Due to the complicated tumor microenvironment that compromises the efficacies of various therapies, the effective treatment of pancreatic cancer remains a big challenge. Sono-activatable semiconducting polymer nanoreshapers (SPNDN H) are constructed to multiply remodel tumor microenvironment of orthotopic pancreatic cancer for potent immunotherapy. SPNDN H contain a semiconducting polymer, hydrogen sulfide (H2 S) donor, and indoleamine 2,3-dioxygenase (IDO) inhibitor (NLG919), which are encapsulated by singlet oxygen (1 O2 )-responsive shells with modification of hyaluronidase (HAase). After accumulation in orthotopic pancreatic tumor sites, SPNDN H degrade the major content of tumor microenvironment hyaluronic acid to promote nanoparticle enrichment and immune cell infiltration, and also release H2 S to relieve tumor hypoxia via inhibiting mitochondrion functions. Moreover, the relieved hypoxia enables amplified sonodynamic therapy (SDT) under ultrasound (US) irradiation with generation of 1 O2 , which leads to immunogenic cell death (ICD) and destruction of 1 O2 -responsive components to realize sono-activatable NLG919 release for reversing IDO-based immunosuppression. Through such a multiple remodeling mechanism, a potent antitumor immunological effect is triggered after SPNDN H-based treatment. Therefore, the growths of orthotopic pancreatic tumors in mouse models are almost inhibited and tumor metastases are effectively restricted. This study offers a sono-activatable nanoplatform to multiply remodel tumor microenvironment for effective and precise immunotherapy of deep-tissue orthotopic tumors.
Collapse
Affiliation(s)
- Meng Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Biological Science and Medical EngineeringDonghua UniversityShanghai201620China
| | - Yue Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Biological Science and Medical EngineeringDonghua UniversityShanghai201620China
| | - Yijing Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Biological Science and Medical EngineeringDonghua UniversityShanghai201620China
| | - Ningyue Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Biological Science and Medical EngineeringDonghua UniversityShanghai201620China
| | - Jingchao Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Biological Science and Medical EngineeringDonghua UniversityShanghai201620China
| |
Collapse
|
6
|
Zhu Z, Yi B, Tang Z, Chen X, Li M, Xu T, Zhao Z, Tang C. Lactobacillus casei combined with Lactobacillus reuteri alleviate pancreatic cancer by inhibiting TLR4 to promote macrophage M1 polarization and regulate gut microbial homeostasis. BMC Cancer 2023; 23:1044. [PMID: 37904102 PMCID: PMC10614400 DOI: 10.1186/s12885-023-11557-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 10/22/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Pancreatic cancer is a highly lethal disease with no effective treatments. Lactobacillus casei (L. casei) and Lactobacillus reuteri (L. reuteri) exhibited therapeutic effects on several cancers, but their roles in pancreatic cancer are unknown. This study aims to explore how L. casei & L. reuteri influence pancreatic cancer and the underlying mechanisms. METHODS Pancreatic cancer cells were treated with L. casei & L. reuteri and co-cultured with macrophages in a transwell system in vitro. Pancreatic cancer xenograft model was established and L. casei & L. reuteri was used to treat mice in vivo. MTT, CCK-8 assay or immunohistochemical staining were used to determine the proliferation of pancreatic cancer cells or tumor tissues. Transwell assay was applied to test the migration and invasion of pancreatic cells. RT-qPCR was utilized to assess TLR4 and MyD88 expressions in pancreatic cells or tumor tissues. WB, immunofluorescence staining, or flow cytometry was used to evaluate the M1/M2 polarization of macrophages. Besides, the composition of gut microbiota of tumor-bearing mice was determined by 16 S rRNA sequencing, and ultra-high performance liquid chromatography-mass spectrometry (UPLC-MS) untargeted metabolomics was used to evaluate the metabolic profiles of feces. RESULTS L. casei & L. reuteri inhibited the proliferation, migration, invasion of pancreatic cancer cells and pancreatic cancer cell-induced M2 polarization of macrophages by suppressing TLR4. Meanwhile, L. casei & L. reuteri repressed pancreatic cancer growth and promoted M1 macrophage polarization. Besides, L. casei & L. reuteri reduced fecal Alloprevotella and increased fecal azelate and glutamate in nude mice, while TLR4 inhibitor TAK-242 increased Clostridia UCG-014, azelate, uridine, methionine sulfoxide, oxypurinol, and decreased glyceryl monoester in the feces of pancreatic tumor-bearing mice. Fecal oxypurinol and glyceryl monoester levels were positively or negatively associated with gut Clostridia UCG-014 abundance, respectively. CONCLUSION L. casei & L. reuteri alleviate pancreatic cancer by inhibiting TLR4 to promote macrophage M1 polarization and regulate gut microbial homeostasis.
Collapse
Affiliation(s)
- Zemin Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Zhuzhou Central Hospital, Zhuzhou, China
| | - Bo Yi
- Department of Hepatobiliary and Pancreatic Surgery, Zhuzhou Central Hospital, Zhuzhou, China
| | - Zikai Tang
- Department of Hepatobiliary and Pancreatic Surgery, Zhuzhou Central Hospital, Zhuzhou, China
| | - Xun Chen
- Department of Hepatobiliary and Pancreatic Surgery, Zhuzhou Central Hospital, Zhuzhou, China
- Department of Trauma Center, Zhuzhou Central Hospital, Zhuzhou, China
| | - Ming Li
- Department of Trauma Center, Zhuzhou Central Hospital, Zhuzhou, China
| | - Tao Xu
- Department of Hepatobiliary and Pancreatic Surgery, Zhuzhou Central Hospital, Zhuzhou, China
| | - Zhijian Zhao
- Department of Hepatobiliary and Pancreatic Surgery, Zhuzhou Central Hospital, Zhuzhou, China.
| | - Caixi Tang
- Department of Hepatobiliary and Pancreatic Surgery, Zhuzhou Central Hospital, Zhuzhou, China.
- Department of Trauma Center, Zhuzhou Central Hospital, Zhuzhou, China.
| |
Collapse
|
7
|
Zhou X, Zhang P, Liu N, Zhang X, Lv H, Xu W, Huo M. Enhancing chemotherapy for pancreatic cancer through efficient and sustained tumor microenvironment remodeling with a fibroblast-targeted nanosystem. J Control Release 2023; 361:161-177. [PMID: 37536546 DOI: 10.1016/j.jconrel.2023.07.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/12/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Pancreatic cancer (PC) carries a poor prognosis among all malignancies and poses great challenges to clinical drug accessibility due to the severely fibrotic and hypoxic tumor microenvironment (TME). Therein, cancer-associated fibroblasts (CAFs), which are extremely abundant in PC, play a key role in forming the complex PC microenvironment. Therefore, a highly efficient TME reprogramming therapeutic paradigm that can specifically inhibit CAF function is urgently needed. Herein, we successfully developed a novel CAF-tailored nanosystem (Dex-GP-DOCA, DPD) loaded with a potent anti-fibrosis flavonoid compound (Quercetin, QUE), which possesses biological responsiveness to fibroblast activation protein alpha (FAP-α), prolonged TME remodeling and enhancement of clinical chemotherapeutics. Specifically, DPD/QUE allowed for extracellular matrix (ECM) reduction, vessel normalization, hypoxia-induced drug resistance reversal, and blockade of Wnt16 paracrine in CAFs. More importantly, this chemotherapy conducive microenvironment persisted for at least 8 days following treatment with DPD/QUE. It should also be noted that the effective and prolonged microenvironment modulation induced by DPD/QUE significantly improved the chemotherapy sensitivity of Abraxane and gemcitabine, the first-line chemotherapeutic drugs for PC, with inhibition rates increasing from 37.5% and 40.0% to 87.5% and 85.2%, respectively. Overall, our CAFs-targeted nanosystem showed promising prospects for remodeling the TME and facilitating chemotherapy for refractory pancreatic cancer.
Collapse
Affiliation(s)
- Xinyuan Zhou
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Pan Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Nan Liu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Xiao Zhang
- Department of clinical pharmacy, Qianfoshan Hospital, The First Hospital Affiliation with Shandong First Medical University, Jinan 250012, People's Republic of China
| | - Hui Lv
- Department of clinical pharmacy, Qianfoshan Hospital, The First Hospital Affiliation with Shandong First Medical University, Jinan 250012, People's Republic of China
| | - Wei Xu
- Department of clinical pharmacy, Qianfoshan Hospital, The First Hospital Affiliation with Shandong First Medical University, Jinan 250012, People's Republic of China.
| | - Meirong Huo
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| |
Collapse
|
8
|
Ahmed T. Biomaterial-based in vitro 3D modeling of glioblastoma multiforme. CANCER PATHOGENESIS AND THERAPY 2023; 1:177-194. [PMID: 38327839 PMCID: PMC10846340 DOI: 10.1016/j.cpt.2023.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/24/2022] [Accepted: 01/04/2023] [Indexed: 02/09/2024]
Abstract
Adult-onset brain cancers, such as glioblastomas, are particularly lethal. People with glioblastoma multiforme (GBM) do not anticipate living for more than 15 months if there is no cure. The results of conventional treatments over the past 20 years have been underwhelming. Tumor aggressiveness, location, and lack of systemic therapies that can penetrate the blood-brain barrier are all contributing factors. For GBM treatments that appear promising in preclinical studies, there is a considerable rate of failure in phase I and II clinical trials. Unfortunately, access becomes impossible due to the intricate architecture of tumors. In vitro, bioengineered cancer models are currently being used by researchers to study disease development, test novel therapies, and advance specialized medications. Many different techniques for creating in vitro systems have arisen over the past few decades due to developments in cellular and tissue engineering. Later-stage research may yield better results if in vitro models that resemble brain tissue and the blood-brain barrier are used. With the use of 3D preclinical models made available by biomaterials, researchers have discovered that it is possible to overcome these limitations. Innovative in vitro models for the treatment of GBM are possible using biomaterials and novel drug carriers. This review discusses the benefits and drawbacks of 3D in vitro glioblastoma modeling systems.
Collapse
Affiliation(s)
- Tanvir Ahmed
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| |
Collapse
|
9
|
Xi Y, Chen H, Xi Y, Hai W, Qu Q, Zhang M, Li B. Visualization research on ENT1/NIS dual-function gene therapy to reverse drug resistance mediated by MUC1 in GEM-resistant pancreatic cancer. Nucl Med Biol 2023; 120-121:108350. [PMID: 37229950 DOI: 10.1016/j.nucmedbio.2023.108350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023]
Abstract
PURPOSE To use bifunctional target genes to increase the intracellular transport of gemcitabine (GEM) to reverse chemotherapy resistance and to simultaneously use reporter gene imaging to localize therapeutic genes. The therapeutic effect was evaluated by [18F]FLT PET/CT to visualize the effect of gene therapy. METHODS A viral gene vector containing the pancreatic cancer-targeting promoter MUC1 for specific transcription of equilibrative nucleoside transporter 1 (ENT1) and NIS (nuclide transport channel) was employed. [125I]NaI uptake tests and [131I]NaI SPECT imaging were performed to verify the function of NIS and the target function of MUC1. The correlation between [18F]FLT uptake and GEM resistance were assessed, and the influence ENT1 and thymidine kinase 1 (TK1) expression on [18F]FLT micro-PET/CT was measured, which provides a theoretical basis for the use of [18F]FLT micro-PET/CT to evaluate the efficacy of gene therapy. RESULTS First, functions of gene therapy were confirmed: ENT1 reversed the drug resistance of GEM-resistant pancreatic cancer cells by increasing GEM intracellular transport; MUC1 drove NIS target gene expression in pancreatic cancer; and therapeutic genes could be localized using [131I]NaI SPECT reporter gene imaging. Second, the [18F]FLT uptake ratio was affected by drug resistance and GEM treatment. The mechanism underlying this effect was related to ENT1 and TK1. Increased expression of ENT1 inhibited the expression of TK1 after GEM chemotherapy to reduce the uptake of [18F]FLT. Finally, micro-PET/CT indicated that the SUVmax of [18F]FLT could predict survival time. SUVmax exhibited an increasing trend in resistant pancreatic cancer but a trend of inhibition after upregulation of ENT1, which was more significant after GEM treatment. CONCLUSIONS Bifunctional targeted genes can localize therapeutic genes through reporter gene imaging, reverse the drug resistance of GEM-resistant pancreatic cancer and be visually evaluated through [18F]FLT micro-PET/CT.
Collapse
Affiliation(s)
- Yun Xi
- Department of Nuclear Medicine, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| | - Hong Chen
- Department of Nuclear Medicine, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| | - Yue Xi
- Department of Nuclear Medicine, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| | - Wangxi Hai
- Department of Nuclear Medicine, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| | - Qian Qu
- Department of Nuclear Medicine, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| | - Min Zhang
- Department of Nuclear Medicine, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China.
| | - Biao Li
- Department of Nuclear Medicine, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China.
| |
Collapse
|
10
|
Knipper K, Damanakis AI, Zhao Y, Bruns CJ, Schmidt T, Popp FC, Quaas A, Lyu SI. Specific Subtypes of Carcinoma-Associated Fibroblasts Are Correlated with Worse Survival in Resectable Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2023; 15:cancers15072049. [PMID: 37046710 PMCID: PMC10093167 DOI: 10.3390/cancers15072049] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
PURPOSE The pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancer entities. Effective therapy options are still lacking. The tumor microenvironment possibly bears further treatment possibilities. This study aimed to describe the expression patterns of four established carcinoma-associated fibroblast (CAFs) markers and their correlation in PDAC tissue samples. METHODS This project included 321 patients with PDAC who underwent surgery with a curative intent in one of the PANCALYZE study centers. Immunohistochemical stainings for FAP, PDGFR, periostin, and SMA were performed. The expression patterns of each marker were divided into low- and high-expressing CAFs and correlated with patients' survival. RESULTS Tumors showing SMAhigh-, PeriostinhighSMAhigh-, or PeriostinhighSMAlowPDGFRlowFAPhigh-positive CAFs demonstrated significantly worse survival. Additionally, a high expression of SMA in PDAC tissue samples was shown to be an independent risk factor for worse survival. CONCLUSION This project identified three subgroups of PDAC with different expression patterns of CAF markers which showed significantly worse survival. This could be the base for the further characterization of the fibroblast subgroups in PDAC and contribute to the development of new targeted therapy options against CAFs.
Collapse
Affiliation(s)
- Karl Knipper
- Department of General, Visceral and Cancer Surgery, University Hospital of Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
| | - Alexander I Damanakis
- Department of General, Visceral and Cancer Surgery, University Hospital of Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
| | - Yue Zhao
- Department of General, Visceral and Cancer Surgery, University Hospital of Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
| | - Christiane J Bruns
- Department of General, Visceral and Cancer Surgery, University Hospital of Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
| | - Thomas Schmidt
- Department of General, Visceral and Cancer Surgery, University Hospital of Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
| | - Felix C Popp
- Department of General, Visceral and Cancer Surgery, University Hospital of Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
| | - Alexander Quaas
- Institute of Pathology, University Hospital of Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
| | - Su Ir Lyu
- Institute of Pathology, University Hospital of Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
| |
Collapse
|
11
|
Shi Y, Pu K, Yao H, Chen Y, Zheng X, Zhao L, Ma X, Ge C. Gold Nanorods Inhibit Tumor Metastasis by Regulating MMP-9 Activity: Implications for Radiotherapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9034-9043. [PMID: 36762612 DOI: 10.1021/acsami.2c20944] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Dysregulation of matrix metalloproteinase (MMP) is strongly implicated in tumor invasion and metastasis. Nanomaterials can interact with proteins and have impacts on protein activity, which provides a potential strategy for inhibiting tumor invasion and metastasis. However, the regulation of MMP activity by nanomaterials has not been fully determined. Herein, we have found that gold nanorods (Au NRs) are able to induce the change of the secondary structure of MMP-9 and thereby inhibit their activity. Interestingly, the inhibition of MMP-9 activity is highly dependent on the aspect ratio of Au NRs, and an aspect ratio of 3.3 shows the maximum inhibition efficiency. Molecular dynamics simulations combined with mathematical statistics algorithm reveal the binding behaviors and interaction modes of MMP-9 with Au NRs in atomic details and disclose the mechanism of aspect ratio-dependent inhibition effect of Au NRs on MMP-9 activity. Au NRs with an aspect ratio of 3.3 successfully suppress the X-ray-activated invasion and metastasis of tumor by inhibiting MMP-9 activity. Our findings provide important guidance for the modulation of MMP-9 activity by tuning key parameters of nanomaterials and demonstrate that gold nanorods could be developed as potential MMP inhibitors.
Collapse
Affiliation(s)
- Ying Shi
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) & Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Kefeng Pu
- Nano-Bio-Chem Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Haodong Yao
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100190, China
| | - Yingting Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) & Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Xuewen Zheng
- Nano-Bio-Chem Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Lina Zhao
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaochuan Ma
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) & Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Cuicui Ge
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) & Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
12
|
Tang S, Kapoor E, Ding L, Yu A, Tang W, Hang Y, Smith LM, Sil D, Oupický D. Effect of tocopherol conjugation on polycation-mediated siRNA delivery to orthotopic pancreatic tumors. BIOMATERIALS ADVANCES 2023; 145:213236. [PMID: 36512927 PMCID: PMC9852068 DOI: 10.1016/j.bioadv.2022.213236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive form of cancer with a five-year survival rate of around 10 %. CXCR4 and STAT3 display crucial effects on proliferation, metastasis, angiogenesis, and formation of immunosuppressive microenvironment in pancreatic tumors. Here, we have tested the hypothesis that conjugation of α-tocopherol (TOC) to a polycation (PAMD), synthesized from CXCR4-antagonist AMD3100, will improve delivery of therapeutic siRNA to silence STAT3 in PDAC tumors. PAMD-TOC/siSTAT3 nanoparticles showed superior anti-cancer and anti-migration performance compared to the parent PAMD/siSTAT3 nanoparticles in both murine and human PDAC cell lines. The biodistribution of the nanoparticles in orthotropic mouse KPC8060 and human PANC-1 models, indicated that tumor accumulation of PAMD-TOC/siRNA nanoparticles was improved greatly as compared to PAMD/siRNA nanoparticles. This improved cellular uptake, penetration, and tumor accumulation of PAMD-TOC/siSTAT3 nanoparticles, also contributed to the suppression of tumor growth, metastasis and improved survival. Overall, this study presents a prospective treatment strategy for PDAC.
Collapse
Affiliation(s)
- Siyuan Tang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ekta Kapoor
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ling Ding
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ao Yu
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Weimin Tang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yu Hang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Lynette M Smith
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE, USA
| | - Diptesh Sil
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - David Oupický
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
13
|
Xu Q, Lan X, Lin H, Xi Q, Wang M, Quan X, Yao G, Yu Z, Wang Y, Yu M. Tumor microenvironment-regulating nanomedicine design to fight multi-drug resistant tumors. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1842. [PMID: 35989568 DOI: 10.1002/wnan.1842] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 01/31/2023]
Abstract
The tumor microenvironment (TME) is a very cunning system that enables tumor cells to escape death post-traditional antitumor treatments through the comprehensive effect of different factors, thereby leading to drug resistance. Deep insights into TME characteristics and tumor resistance encourage the construction of nanomedicines that can remodel the TME against drug resistance. Tremendous interest in combining TME-regulation measurement with traditional tumor treatment to fight multidrug-resistant tumors has been inspired by the increasing understanding of the role of TME reconstruction in improving the antitumor efficiency of drug-resistant tumor therapy. This review focuses on the underlying relationships between specific TME characteristics (such as hypoxia, acidity, immunity, microorganisms, and metabolism) and drug resistance in tumor treatments. The exciting antitumor activities strengthened by TME regulation are also discussed in-depth, providing solutions from the perspective of nanomedicine design. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Qinqin Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Xinyue Lan
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People's Republic of China.,Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Huimin Lin
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Qiye Xi
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Manchun Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Xiaolong Quan
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Guangyu Yao
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Zhiqiang Yu
- Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, People's Republic of China
| | - Yongxia Wang
- Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, People's Republic of China
| | - Meng Yu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
14
|
Tumor extracellular matrix modulating strategies for enhanced antitumor therapy of nanomedicines. Mater Today Bio 2022; 16:100364. [PMID: 35875197 PMCID: PMC9305626 DOI: 10.1016/j.mtbio.2022.100364] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 11/22/2022] Open
Abstract
Nanomedicines have shown a promising strategy for cancer therapy because of their higher safety and efficiency relative to small-molecule drugs, while the dense extracellular matrix (ECM) in tumors often acts as a physical barrier to hamper the accumulation and diffusion of nanoparticles, thus compromising the anticancer efficacy. To address this issue, two major strategies including degrading ECM components and inhibiting ECM formation have been adopted to enhance the therapeutic efficacies of nanomedicines. In this review, we summarize the recent progresses of tumor ECM modulating strategies for enhanced antitumor therapy of nanomedicines. Through degrading ECM components or inhibiting ECM formation, the accumulation and diffusion of nanoparticles in tumors can be facilitated, leading to enhanced efficacies of chemotherapy and phototherapy. Moreover, the ECM degradation can improve the infiltration of immune cells into tumor tissues, thus achieving strong immune response to reject tumors. The adoptions of these two ECM modulating strategies to improve the efficacies of chemotherapy, phototherapy, and immunotherapy are discussed in detail. A conclusion, current challenges and outlook are then given. Extracellular matrix modulating strategies have been adopted to enhance the therapeutic efficacies of nanomedicines. Degrading extracellular matrix components or inhibiting extracellular matrix formation can improve the accumulation and diffusion of nanoparticles in tumors and the infiltration of immune cells into tumor tissues. The adoptions of two extracellular matrix modulating strategies to improve the efficacies of chemotherapy, phototherapy, and immunotherapy are summarized.
Collapse
|
15
|
He Z, Wang J, Zhu C, Xu J, Chen P, Jiang X, Chen Y, Jiang J, Sun C. Exosome-derived FGD5-AS1 promotes tumor-associated macrophage M2 polarization-mediated pancreatic cancer cell proliferation and metastasis. Cancer Lett 2022; 548:215751. [PMID: 35718269 DOI: 10.1016/j.canlet.2022.215751] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/02/2022] [Accepted: 05/17/2022] [Indexed: 11/02/2022]
Abstract
Inflammatory molecules and exosomes are crucial for signal transduction between tumor-associated macrophages and tumor cells. IL-6, a key inflammatory molecule secreted by M2 macrophages after polarization, can mediate malignant progression of pancreatic cancer (PC). However, the functions and mechanisms of IL-6 and tumor-derived exosomes in tumor-associated macrophages and PC remain unclear. Transcriptome chip and quantitative reverse transcription PCR experiments indicated that FGD5-AS1 induced IL-6 and high FGD5-AS1 expression correlated with the poor prognosis in PC patients. RNA pulldown, mass spectrometry, and dual luciferase reporter assays were used to identify the mechanism of exosomal FGD5-AS1 in promoting PC progression and M2 macrophage polarization. FGD5-AS1 exerted cancer-promoting functions when co-cultured with M2 macrophages. PC-derived exosomal FGD5-AS1 stimulated M2 macrophage polarization by activating STAT3/NF-κB pathway. FGD5-AS1 interacts with p300, resulting in STAT3 acetylation, thus promoting nuclear localization and transcriptional activity of STAT3/NF-κB. These data indicated that PC cells generate FGD5-AS1-rich exosomes, which cause M2 macrophage polarization to promote the malignant behaviors of PC cells. Targeting exosomal FGD5-AS1 may provide a potential diagnosis and treatment strategy for PC.
Collapse
Affiliation(s)
- Zhiwei He
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, PR China
| | - Jie Wang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan City, Hubei Province, 430060, PR China
| | - Changhao Zhu
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, PR China
| | - Jian Xu
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan City, Hubei Province, 430060, PR China
| | - Peng Chen
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, PR China
| | - Xueyi Jiang
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, PR China
| | - Yankun Chen
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, PR China
| | - Jianxin Jiang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan City, Hubei Province, 430060, PR China.
| | - Chengyi Sun
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, PR China.
| |
Collapse
|
16
|
Mohammed DF, Madlool HA, Faris M, Shalan BH, Hasan HH, Azeez NF, Abbas FH. Harnessing inorganic nanomaterials for chemodynamic cancer therapy. Nanomedicine (Lond) 2022; 17:1891-1906. [PMID: 36647807 DOI: 10.2217/nnm-2022-0187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The most important aspect of chemodynamic therapy (CDT) is the harnessing of Fenton or Fenton-like chemistry for cancer therapy within the tumor microenvironment, which occurs because of the moderate acidity and overexpressed H2O2 in the tumor microenvironment. Hydroxyl radicals (•OH) produced within tumor cells via Fenton and Fenton-like reactions cause cancer cell death. Reactive oxygen species-mediated CDT demonstrates a desired anticancer impact without the need for external stimulation or the development of drug resistance. Cancer therapy based on CDT is known as a viable cancer therapy modality. This review discusses the most recent CDT advancements and provides some typical instances. As a result, potential methods for further improving CDT efficiency under the guidance of Fenton chemistry are offered.
Collapse
Affiliation(s)
- Dhelal F Mohammed
- Department of Pharmacy, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | - Hussein A Madlool
- Radiological Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | - Mohammed Faris
- Department of Dentistry, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | - Bashar Hadi Shalan
- Anesthesia Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | - Huda Hadi Hasan
- Department of Business Administration, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | - Nidaa F Azeez
- Department of Medical Physics, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | - Fatima Hashim Abbas
- Department of Medical Laboratory Techniques, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| |
Collapse
|
17
|
Qiang W, Lei Y, Yuan L, Yuan J, Zhang J, Shan Y, Tian H, Shi B, Guo H. SGLT-2 as a potential target in pancreatic cancer: the preliminary clue from The Cancer Genome Atlas data. J Gastrointest Oncol 2022; 13:2539-2552. [PMID: 36388652 PMCID: PMC9660074 DOI: 10.21037/jgo-22-900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/17/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Sodium-glucose co-transporters-2 (SGLT-2) has been reported as overexpressed in tumors including pancreatic cancer (PC). The aim of this study was to investigate the clinicopathological and prognostic significance, as well as the potential role of SGLT-2 in PC development and progression. METHODS The expression of SGLT-2 was assessed using The Cancer Genome Atlas (TCGA) PC dataset (179 cases). The overall survival (OS) and disease-free survival (DFS) of PC patients with high and low SLC5A2 expression were compared using the online database Gene Expression Profiling Interactive Analysis (GEPIA). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using The Database for Annotation Visualization and Integrated Discovery (DAVID) online tool. The genetic correlations of SLC5A2 genes in different subtypes of PC were analyzed by using cBioPortal and LinkedOmics online databases. RESULTS No relationship between SGLT-2 expression and PC risk factors, tumor location, histology grade, or tumor-node-metastasis (TNM) stage was identified. Further, SGLT-2 could not be used as prognosis predictor. The KEGG analyses demonstrated that high SGLT-2 expression is correlated with activation of pathways related with chemical carcinogenesis, energy metabolism and drug metabolism, and the suppression of nucleotide excision repair, messenger RNA (mRNA) surveillance, and cell cycle regulation. Specifically, high SGLT-2 level also coexisted with upregulation of gene symbols for pancreatic progenitor subtype for PC. CONCLUSIONS There is potential for SGLT-2 as a potential target for PC treatment, and SGLT-2 inhibitors should be further evaluated as a novel therapy in PC.
Collapse
Affiliation(s)
- Wei Qiang
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuyang Lei
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Liyue Yuan
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Internal Medicine, Xi'an Baqiao District People's Hospital, Xi'an, China
| | - Jia Yuan
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Emergency Department, Xi'an Hospital of Civil Aviation, Xi'an, China
| | - Jiaojiao Zhang
- Department of Pathology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuanyuan Shan
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hong Tian
- Research Center of Reproductive Medicine, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Bingyin Shi
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hui Guo
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
18
|
|
19
|
Smart pH-responsive polyhydralazine/bortezomib nanoparticles for remodeling tumor microenvironment and enhancing chemotherapy. Biomaterials 2022; 288:121737. [PMID: 36031455 DOI: 10.1016/j.biomaterials.2022.121737] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/01/2022] [Accepted: 08/06/2022] [Indexed: 01/01/2023]
Abstract
The clinical translation of nanomedicines has been impeded by the unfavorable tumor microenvironment (TME), particularly the tortuous vasculature networks, which significantly influence the transport and distribution of nanomedicines into tumors. In this work, a smart pH-responsive bortezomib (BTZ)-loaded polyhydralazine nanoparticle (PHDZ/BTZ) is presented, which has a great capacity to augment the accumulation of BTZ in tumors by dilating tumor blood vessels via specific release of vasodilator hydralazine (HDZ). The Lewis acid-base coordination effect between the boronic bond of BTZ and amino of HDZ empowered PHDZ/BTZ nanoparticles with great stability and high drug loading contents. Once triggered by the acidic tumor environment, HDZ could be released quickly to remodel TME through tumor vessel dilation, hypoxia attenuation, and lead to an increased intratumoral BTZ accumulation. Additionally, our investigation revealed that this pH-responsive nanoparticle dramatically suppressed tumor growth, inhibited the occurrence of lung metastasis with fewer side effects and induced immunogenic cell death (ICD), thereby eliciting immune activation including massive cytotoxic T lymphocytes (CTLs) infiltration in tumors and efficient serum proinflammatory cytokine secretion compared with free BTZ treatment. Thus, with efficient drug loading capacity and potent immune activation, PHDZ nanoparticles exhibit great potential in the delivery of boronic acid-containing drugs aimed at a wide range of diseases.
Collapse
|
20
|
Mohammadzadeh V, Rahiman N, Hosseinikhah SM, Barani M, Rahdar A, Jaafari MR, Sargazi S, Zirak MR, Pandey S, Bhattacharjee R, Gupta AK, Thakur VK, Sibuh BZ, Gupta PK. Novel EPR-enhanced strategies for targeted drug delivery in pancreatic cancer: An update. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103459] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Kutoka PT, Seidu TA, Baye V, Khamis AM, Omonova CTQ, Wang B. Current nano-strategies to target tumor microenvironment (TME) to improve anti-tumor efficiency. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Radioactive organic semiconducting polymer nanoparticles for multimodal cancer theranostics. J Colloid Interface Sci 2022; 619:219-228. [PMID: 35397457 DOI: 10.1016/j.jcis.2022.03.107] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/03/2022] [Accepted: 03/24/2022] [Indexed: 01/16/2023]
Abstract
Theranostics with integrations of both imaging and therapeutic elements can enable early diagnosis and effective treatment of cancer. Herein, we report the development of radioactive semiconducting polymer nanoparticles (rSPNs) for multimodal cancer theranostics. Such rSPNs constructed through labeling poly(ethylene glycol) (PEG) grafted SPNs with iodine-131 (131I) exhibit ideal photothermal property, excellent singlet oxygen (1O2) generating ability and good radiolabeling stability. Owing to their small particle dimension and PEG surface corona, rSPNs show an effective accumulation into subcutaneous tumors of living mice after systemic administration. The good fluorescence property and stable radiolabeling of rSPNs enable contrast signals for near-infrared (NIR) fluorescence and single photon emission computed tomography (SPECT) dual-model imaging of tumors. Moreover, rSPNs provide combinational action of photothermal therapy (PTT), photodynamic therapy (PDT) and radiotherapy under NIR laser irradiation, resulting in much higher therapeutic efficacy in inhibiting tumor growth and metastasis relative to SPNs-mediated treatment. This study thus offers a multifunctional organic nanosystem for multimodal cancer theranostics.
Collapse
|
23
|
Yang L, Jia J, Li S. Advances in the Application of Exosomes Identification Using Surface-Enhanced Raman Spectroscopy for the Early Detection of Cancers. Front Bioeng Biotechnol 2022; 9:808933. [PMID: 35087806 PMCID: PMC8786808 DOI: 10.3389/fbioe.2021.808933] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/17/2021] [Indexed: 12/21/2022] Open
Abstract
Exosomes are small nanoscale vesicles with a double-layered lipid membrane structure secreted by cells, and almost all types of cells can secrete exosomes. Exosomes carry a variety of biologically active contents such as nucleic acids and proteins, and play an important role not only in intercellular information exchange and signal transduction, but also in various pathophysiological processes in the human body. Surface-enhanced Raman Spectroscopy (SERS) uses light to interact with nanostructured materials such as gold and silver to produce a strong surface plasmon resonance effect, which can significantly enhance the Raman signal of molecules adsorbed on the surface of nanostructures to obtain a rich fingerprint of the sample itself or Raman probe molecules with ultra-sensitivity. The unique advantages of SERS, such as non-invasive and high sensitivity, good selectivity, fast analysis speed, and low water interference, make it a promising technology for life science and clinical testing applications. In this paper, we briefly introduce exosomes and the current main detection methods. We also describe the basic principles of SERS and the progress of the application of unlabeled and labeled SERS in exosome detection. This paper also summarizes the value of SERS-based exosome assays for early tumor diagnosis.
Collapse
Affiliation(s)
- Lu Yang
- Department of Internal Medicine, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute), Shenyang, China
| | - Jingyuan Jia
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, China
- *Correspondence: Jingyuan Jia, ; Shenglong Li,
| | - Shenglong Li
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute), Shenyang, China
- *Correspondence: Jingyuan Jia, ; Shenglong Li,
| |
Collapse
|
24
|
Dong C, Yang P, Wang X, Wang H, Tang Y, Zhang H, Yu L, Chen Y, Wang W. Multifunctional Composite Nanosystems for Precise/Enhanced Sonodynamic Oxidative Tumor Treatment. Bioconjug Chem 2021; 33:1035-1048. [PMID: 34784710 DOI: 10.1021/acs.bioconjchem.1c00478] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Ultrasound-activated therapies have been regarded as the efficient strategy for tumor treatment, among which sonosensitizer-enabled sonodynamic oxidative tumor therapy features intrinsic advantages as compared to other exogenous trigger-activated dynamic therapies. Nanomedicine-based nanosonosensitizer design has been extensively explored for improving the therapeutic efficacy of sonodynamic therapy (SDT) of tumor. This review focuses on solving two specific issues, i.e., precise and enhanced sonodynamic oxidative tumor treatment, by rationally designing and engineering multifunctional composite nanosonosensitizers. This multifunctional design can augment the therapeutic efficacy of SDT against tumor by either improving the production of reactive oxygen species or inducing the synergistic effect of SDT-based combinatorial therapies. Especially, this multifunctional design is also capable of endowing the nanosonosensitizer with bioimaging functionality, which can effectively guide and monitor the therapeutic procedure of the introduced sonodynamic oxidative tumor treatment. The design principles, underlying material chemistry for constructing multifunctional composite nanosonosensitizers, intrinsic synergistic mechanism, and bioimaging guided/monitored precise SDT are summarized and discussed in detail with the most representative paradigms. Finally, the existing critical issues, available challenges, and potential future developments of this research area are also discussed for promoting the further clinical translations of these multifunctional composite nanosonosensitizers in SDT-based tumor treatment.
Collapse
Affiliation(s)
- Caihong Dong
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Ping Yang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Xi Wang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Hantao Wang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Yang Tang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Haixian Zhang
- Department of Ultrasound, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
| | - Luodan Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Wenping Wang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| |
Collapse
|
25
|
Wang H, Ding W, Shi H, Bao H, Lu Y, Jiang TA. Combination therapy with low-frequency ultrasound irradiation and radiofrequency ablation as a synergistic treatment for pancreatic cancer. Bioengineered 2021; 12:9832-9846. [PMID: 34696663 PMCID: PMC8810087 DOI: 10.1080/21655979.2021.1995581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We aim to evaluate the efficacies of combination therapy with low-frequency ultrasound-stimulated microbubbles (USMB) and radiofrequency ablation (RFA) on suppressing the proliferation of pancreatic cancer cell and treating Panc02 subcutaneous xenograft mice. The proliferation of HPDE6-C7 and Panc02 cells after the treatment of USMB and RFA alone or combination were evaluated by CCK-8 assay. Scratch test was performed to assess the cell migration capability. Panc02-bearing mice were received 14-day treatment of USMB and RFA alone or combination. Tumor size and survival rate were recorded once two days. The serum levels of immune-related factors and changes of apoptosis- and autophagy-related factors were detected by ELISA and western blotting methods. As a result, CKK-8 assays revealed significant inhibition on Panc02 cell proliferation in combination therapy with USMB and RFA relative to other groups (all p < 0.05). Strong synergistic effect of USMB combined with RFA was confirmed via the calculated combination index (CI) <0.4. In addition, combination therapy of USMB and RFA significantly inhibited the migration of Panc02 cells. Moreover, combined treatment remarkably inhibited the size and width of xenograft and improved the survival in Panc02-bearing mice. Furthermore, 14-day combination therapy of USMB and RFA in Panc02-bearing mice significantly facilitated the apoptosis and autophagy of tumor cells. In summary, combination therapy of USMB and RFA showed synergistic anti-tumor efficacies on Panc02 cells attributing to the promotion on apoptosis and autophagy in Panc02 subcutaneous xenograft mice.
Collapse
Affiliation(s)
- Huiyang Wang
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenxiu Ding
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongwei Shi
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haiwei Bao
- Department of Ultrasound Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuting Lu
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tian An Jiang
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pulsed Electric Field Technology for Medical Transformation, Hangzhou, China
| |
Collapse
|
26
|
Zhang Y, He J. Tumor vasculature-targeting nanomedicines. Acta Biomater 2021; 134:1-12. [PMID: 34271167 DOI: 10.1016/j.actbio.2021.07.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 12/15/2022]
Abstract
Uncontrolled tumor growth and subsequent distant metastasis are highly dependent on an adequate nutrient supply from tumor blood vessels, which have relatively different pathophysiological characteristics from those of normal vasculature. Obviously, strategies targeting tumor vasculature, such as anti-angiogenic drugs and vascular disrupting agents, are attractive methods for cancer therapy. However, the off-target effects and high dose administration of these drug regimens critically restrict their clinical applications. In recent years, nanomedicines focused on tumor vasculature have been shown to be superior to traditional therapeutic methods and do not induce side effects. This review will first highlight the recent development of tumor vasculature-targeting nanomedicines from the following four aspects: 1) angiogenesis-inhibiting nanomedicines (AINs); 2) vasculature-disrupting nanomedicines (VDNs); 3) vasculature infarction nanomedicines (VINs); and 4) vasculature-regulating nanomedicines (VRNs). Furthermore, the design principles, limitations, and future directions are also discussed. STATEMENT OF SIGNIFICANCE: Based on the essential roles of tumor blood vessels, the therapeutic strategies targeting tumor vasculature have exhibited good clinical therapeutic outcomes. However, poor patient adherence to free drug administration limits their clinical usage. Nanomedicines have great potential to overcome the abovementioned obstacle. This review summarizes the tumor-vasculature targeting nanomedicines from four aspects: 1) angiogenesis-inhibiting nanomedicines (AINs); 2) vasculature-disrupting nanomedicines (VDNs); 3) vasculature infarction nanomedicines (VINs); and 4) vasculature regulating nanomedicines (VRNs). In addition, this review provides perspectives on this research field.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, 110022, PR China
| | - Jingni He
- Department of General Surgery, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang 110022, PR China.
| |
Collapse
|
27
|
Sun M, Xie M, Zhang T, Wang Y, Huang W, Xia L. m 6A Methylation Modification Patterns and Tumor Microenvironment Infiltration Characterization in Pancreatic Cancer. Front Immunol 2021; 12:739768. [PMID: 34616403 PMCID: PMC8488339 DOI: 10.3389/fimmu.2021.739768] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 09/06/2021] [Indexed: 01/14/2023] Open
Abstract
Recent studies have shown that RNA N6-methyladenosine (m6A) modification plays an important part in tumorigenesis and immune-related biological processes. However, the comprehensive landscape of immune cell infiltration characteristics in the tumor microenvironment (TME) mediated by m6A methylation modification in pancreatic cancer has not yet been elucidated. Based on consensus clustering algorithm, we identified two m6A modification subtypes and then determined two m6A-related gene subtypes among 434 pancreatic cancer samples. The TME characteristics of the identified gene subtypes were highly consistent with the immune-hot phenotype and the immune-cold phenotype respectively. According to the m6A score extracted from the m6A-related signature genes, patients can be divided into high and low m6A score groups. The low score group displayed a better prognosis and relatively strong immune infiltration. Further analysis showed that low m6A score correlated with lower tumor mutation burden and PD-L1 expression, and indicated a better response to immunotherapy. In general, m6A methylation modification is closely related to the diversity and complexity of immune infiltration in TME. Evaluating the m6A modification pattern and immune infiltration characteristics of individual tumors can help deepen our understanding of the tumor microenvironment landscape and promote a more effective clinical practice of immunotherapy.
Collapse
Affiliation(s)
- Mengyu Sun
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Xie
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tongyue Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yijun Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjie Huang
- Hubei Key Laboratory of Hepato-Pancreato Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
28
|
Yao X, Mao Y, Wu D, Zhu Y, Lu J, Huang Y, Guo Y, Wang Z, Zhu S, Li X, Lu Y. Exosomal circ_0030167 derived from BM-MSCs inhibits the invasion, migration, proliferation and stemness of pancreatic cancer cells by sponging miR-338-5p and targeting the Wif1/Wnt8/β-catenin axis. Cancer Lett 2021; 512:38-50. [PMID: 33971282 DOI: 10.1016/j.canlet.2021.04.030] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/11/2022]
Abstract
Pancreatic cancer (PC) is one of the most lethal malignant tumors and has the lowest survival rate due to early metastasis and drug resistance. Exosomes derived from bone marrow mesenchymal stem cells (BM-MSCs) have emerged as crucial regulators of the progression of various tumors. These vesicles contain abundant circRNAs that have important biological functions. This study aimed to elucidate the role of exosomal circRNAs in PC progression. In this study, we successfully isolated BM-MSCs from human bone marrow based on their surface marker expression and osteogenic and adipogenic differentiation potential. We found that BM-MSC-derived exosomes significantly reduced the invasion, migration, and proliferation of PC cells, as well as tumor stemness. According to whole-transcriptome resequencing and clustering heat map analysis, we identified the key molecule circ_0030167 and miR-338-5p, its downstream target. We revealed that circ_0030167 mainly regulates miR-338-5p, enhances Wif1 expression, and inhibits the Wnt8/β-catenin pathway, thereby inhibiting the stemness of PC cells and tumor progression. Overall, BM-MSC exosomal circ_0030167 contributes to the progression and stemness of PC cells via the miR-338-5p/wif1/Wnt 8/β-catenin axis. Our study provides a new perspective for the treatment of PC.
Collapse
Affiliation(s)
- Xihao Yao
- Research Center of Clinical Medical and Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu province, 226001, PR China
| | - Yingqing Mao
- Research Center of Clinical Medical and Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu province, 226001, PR China; Department of General Surgery, The Sixth People's Hospital of Nantong City, Nantong, Jiangsu province, 226001, PR China
| | - Di Wu
- Research Center of Clinical Medical and Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu province, 226001, PR China
| | - Yi Zhu
- Research Center of Clinical Medical and Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu province, 226001, PR China
| | - Jingjing Lu
- Research Center of Clinical Medical and Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu province, 226001, PR China
| | - Yan Huang
- Research Center of Clinical Medical and Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu province, 226001, PR China
| | - Yibing Guo
- Research Center of Clinical Medical and Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu province, 226001, PR China
| | - Zhiwei Wang
- Research Center of Clinical Medical and Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu province, 226001, PR China
| | - Shajun Zhu
- Research Center of Clinical Medical and Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu province, 226001, PR China
| | - Xiaohong Li
- Research Center of Clinical Medical and Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu province, 226001, PR China.
| | - Yuhua Lu
- Research Center of Clinical Medical and Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu province, 226001, PR China.
| |
Collapse
|
29
|
Huang SH, Peng S, Wang QY, Hu QH, Zhang RQ, Liu L, Liu Q, Lin J, Zhou QH. Gold nanorods conjugated with biocompatible zwitterionic polypeptide for combined chemo-photothermal therapy of cervical cancer. Colloids Surf B Biointerfaces 2021; 207:112014. [PMID: 34391166 DOI: 10.1016/j.colsurfb.2021.112014] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 01/19/2023]
Abstract
Combined chemo-photothermal therapy of gold nanorods (GNRs) for cancer treatment shows better therapeutic efficiency than mono-chemotherapy, which has gained worldwide interests of scientists and clinician in both laboratory and clinic application. However, high cytotoxicity, declined delivery efficiency, and unsatisfactory therapy effect of the GNRs are still challenging in anti-cancer treatment. Herein, a series of pH-sensitively zwitterionic polypeptide conjugated GNRs were synthesized via a gold-thiol interaction for combination of chemo-photothermal therapy in cervical cancer treatment. The acid-labile hydrazone bond was utilized to incorporate the doxorubicin (DOX) for pH-sensitive drug release under tumoral environment. The as prepared GNRs conjugates demonstrated pH-triggered surface charge conversion from negative to positive when transporting from blood circulation to tumor extracellular environment, which can facilitate the cellular uptake via electrostatic interaction. After cellular internalization, the drug release was promoted by cleavage of the hydrazone in GNRs conjugates under cancer intracellular acid environment. As the effective near-infrared (NIR) photothermal materials, the as prepared GNRs conjugates can absorb NIR photo energy and convert it into heat under irradiation, which can efficiently kill the tumor cells. In cell assay, the GNRs conjugates displayed excellent biocompatibility against normal cell, enhanced cancer cell uptake, and remarkable cancer cell killing effects. In HeLa tumor-bearing mice, the GNRs conjugates demonstrated enhanced tumor inhibition efficacy by combination of chemo-photothermal therapy.
Collapse
Affiliation(s)
- Shuang-Hui Huang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, First Ring Road, 4th Section No.16, Chengdu, Sichuan 610041, China
| | - Si Peng
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, First Ring Road, 4th Section No.16, Chengdu, Sichuan 610041, China
| | - Qiu-Yue Wang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, First Ring Road, 4th Section No.16, Chengdu, Sichuan 610041, China
| | - Qiu-Hui Hu
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, First Ring Road, 4th Section No.16, Chengdu, Sichuan 610041, China
| | - Run-Qin Zhang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, First Ring Road, 4th Section No.16, Chengdu, Sichuan 610041, China
| | - Ling Liu
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, First Ring Road, 4th Section No.16, Chengdu, Sichuan 610041, China
| | - Qiang Liu
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, First Ring Road, 4th Section No.16, Chengdu, Sichuan 610041, China
| | - Juan Lin
- School of Biomedical Sciences and Technology, Chengdu Medical College, Xindu Road No.783, Chengdu, Sichuan 610500, China.
| | - Qing-Han Zhou
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, First Ring Road, 4th Section No.16, Chengdu, Sichuan 610041, China.
| |
Collapse
|
30
|
Jiang H, Liu L, Li G. Primary Synchronous Ipsilateral Renal Fibrosarcoma and Renal Pelvic Carcinoma: A Case Report and Literature Review. Onco Targets Ther 2021; 14:4119-4125. [PMID: 34262296 PMCID: PMC8275115 DOI: 10.2147/ott.s317094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/30/2021] [Indexed: 01/22/2023] Open
Abstract
Renal fibrosarcoma is a rare tumor, with only a few cases reported so far, and simultaneous occurrence of ipsilateral renal fibrosarcoma and renal pelvic carcinoma in a patient is extraordinarily rare. A 66-year-old man admitted to our hospital with right renal percutaneous nephrostomy and recurrent fever. And the patient underwent laparoendoscopic nephrectomy and partial ureterectomy for pyonephrotic nonfunctioning kidneys. Postoperative pathology showed fibrosarcoma of right kidney and carcinoma of the renal pelvis. This is the first case of simultaneous occurrence of ipsilateral renal fibrosarcoma and renal pelvic carcinoma in a patient. The diagnosis of fibrosarcoma is one of ultimate immunohistologic exclusion, because there are no specific immunologic markers for fibroblasts. Electron microscopy combined with light microscopy and IHC is helpful for the case of renal fibrosarcoma which is difficult to diagnose. Clinically, radical nephrectomy is the main strategy for primary localized renal fibrosarcoma. At present, it is still necessary to carry out basic biology research to better understand etiology and therapeutical strategy of renal fibrosarcoma.
Collapse
Affiliation(s)
- Hua Jiang
- Department of Urology, The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, 519100, People's Republic of China
| | - Lulu Liu
- Department of Urology, The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, 519100, People's Republic of China
| | - Ganhong Li
- Department of Urology, The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, 519100, People's Republic of China
| |
Collapse
|
31
|
Tan Z, Xue H, Sun Y, Zhang C, Song Y, Qi Y. The Role of Tumor Inflammatory Microenvironment in Lung Cancer. Front Pharmacol 2021; 12:688625. [PMID: 34079469 PMCID: PMC8166205 DOI: 10.3389/fphar.2021.688625] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is the most common and fatal malignant tumor in the world. The tumor microenvironment (TME) is closely related to the occurrence and development of lung cancer, in which the inflammatory microenvironment plays an important role. Inflammatory cells and inflammatory factors in the tumor inflammatory microenvironment promote the activation of the NF-κB and STAT3 inflammatory pathways and the occurrence, development, and metastasis of lung cancer by promoting immune escape, tumor angiogenesis, epithelial-mesenchymal transition, apoptosis, and other mechanisms. Clinical and epidemiological studies have also shown a strong relationship among chronic infection, inflammation, inflammatory microenvironment, and lung cancer. The relationship between inflammation and lung cancer can be better understood through the gradual understanding of the tumor inflammatory microenvironment, which is advantageous to find more therapeutic targets for lung cancer.
Collapse
Affiliation(s)
- Zhaofeng Tan
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
- Departments of Oncology Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haibin Xue
- Eighth Medical Center of the General Hospital of the Chinese People’s Liberation Army, Beijing, China
| | - Yuli Sun
- Departments of Oncology Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chuanlong Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yonglei Song
- Departments of Oncology Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuanfu Qi
- Departments of Oncology Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
32
|
Wang P, Zhu Z. Prognostic and Clinicopathological Significance of E-Cadherin in Pancreatic Cancer Patients: A Meta-Analysis. Front Oncol 2021; 11:627116. [PMID: 33912451 PMCID: PMC8074677 DOI: 10.3389/fonc.2021.627116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 03/08/2021] [Indexed: 12/15/2022] Open
Abstract
Background Several recent studies have investigated the prognostic and clinicopathological significance of epithelial cadherin (E-cadherin) in pancreatic cancer; however, conclusions from these studies remain inconsistent. Therefore, we performed a meta-analysis to evaluate the effects of E-cadherin expression on the prognosis and clinicopathological characteristics of pancreatic cancer. Methods Embase, PubMed, and Web of Science were searched to identify articles associated with E-cadherin and pancreatic cancer. Hazard ratios (HRs) and odds ratios (ORs) with corresponding confidence intervals (CIs) were calculated and summarized. All eligible studies were searched until May 20, 2020. Heterogeneity among studies was assessed using the Chi-square test and I2 statistic. Results Overall, 25 studies were identified, of which 12 reports with 1,032 cases concerned the prognosis of pancreatic cancer, and 22 involved the risk and clinical characteristics of pancreatic cancer. The overall results revealed that E-cadherin expression was significantly related to overall survival, gender, tumor grade, lymph node metastasis, tumor differentiation, and risk of pancreatic cancer. In the subgroup analysis, no significant heterogeneity or publication bias was observed. Conclusions E-cadherin expression is strongly associated with the risk, clinical features, and prognosis of pancreatic cancer, suggesting that E-cadherin may be an effective biomarker for the clinical assessments and predicting prognosis of pancreatic cancer.
Collapse
Affiliation(s)
- Pengbo Wang
- Radiotherapy Department I, Yantaishan Hospital, Yantai, China
| | - Zengkuan Zhu
- Department of Oncology, Shengli Oilfield Central Hospital, Dongying, China
| |
Collapse
|