1
|
Romani P, Benedetti G, Cusan M, Arboit M, Cirillo C, Wu X, Rouni G, Kostourou V, Aragona M, Giampietro C, Grumati P, Martello G, Dupont S. Mitochondrial mechanotransduction through MIEF1 coordinates the nuclear response to forces. Nat Cell Biol 2024; 26:2046-2060. [PMID: 39433949 PMCID: PMC11628398 DOI: 10.1038/s41556-024-01527-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/12/2024] [Indexed: 10/23/2024]
Abstract
Tissue-scale architecture and mechanical properties instruct cell behaviour under physiological and diseased conditions, but our understanding of the underlying mechanisms remains fragmentary. Here we show that extracellular matrix stiffness, spatial confinements and applied forces, including stretching of mouse skin, regulate mitochondrial dynamics. Actomyosin tension promotes the phosphorylation of mitochondrial elongation factor 1 (MIEF1), limiting the recruitment of dynamin-related protein 1 (DRP1) at mitochondria, as well as peri-mitochondrial F-actin formation and mitochondrial fission. Strikingly, mitochondrial fission is also a general mechanotransduction mechanism. Indeed, we found that DRP1- and MIEF1/2-dependent fission is required and sufficient to regulate three transcription factors of broad relevance-YAP/TAZ, SREBP1/2 and NRF2-to control cell proliferation, lipogenesis, antioxidant metabolism, chemotherapy resistance and adipocyte differentiation in response to mechanical cues. This extends to the mouse liver, where DRP1 regulates hepatocyte proliferation and identity-hallmark YAP-dependent phenotypes. We propose that mitochondria fulfil a unifying signalling function by which the mechanical tissue microenvironment coordinates complementary cell functions.
Collapse
Affiliation(s)
- Patrizia Romani
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Giada Benedetti
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Martina Cusan
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Mattia Arboit
- Department of Biology, University of Padova, Padova, Italy
| | - Carmine Cirillo
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Xi Wu
- Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Georgia Rouni
- Institute for Bioinnovation, Biomedical Sciences Research Centre "Alexander Fleming", Athens, Greece
| | - Vassiliki Kostourou
- Institute for Bioinnovation, Biomedical Sciences Research Centre "Alexander Fleming", Athens, Greece
| | - Mariaceleste Aragona
- Novo Nordisk Foundation Center for Stem Cell Medicine (ReNEW), University of Copenhagen, Copenhagen, Denmark
| | - Costanza Giampietro
- Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
- Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Paolo Grumati
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | | | - Sirio Dupont
- Department of Molecular Medicine, University of Padova, Padova, Italy.
| |
Collapse
|
2
|
Wang H, Cui L, Luo Y, Chen H, Liu X, Shi Q. Inflammation-responsive PCL/gelatin microfiber scaffold with sustained nitric oxide generation and heparin release for blood-contacting implants. Int J Biol Macromol 2024; 281:136544. [PMID: 39414218 DOI: 10.1016/j.ijbiomac.2024.136544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/30/2024] [Accepted: 10/10/2024] [Indexed: 10/18/2024]
Abstract
Delayed endothelialization, the excessive proliferation of smooth muscle cells (SMCs), and persistent inflammation are the main reasons for the implantation failure of blood-contacting materials. To overcome this problem, an inflammation-responsive, core-shell structured microfiber scaffold is developed using polycaprolactone (PCL), selenocystamine-modified gelatin (Gel-Se), L-ascorbyl 6-palmitate (AP), and dexamethasone as the fiber shell, with poly (l-lysine) (PLL) and heparin incorporated in the fiber core. Superhydrophilic microfiber scaffolds exhibit antifouling properties that inhibit protein adsorption and blood cell adhesion, thereby effectively mitigating the risk of acute thrombosis. The continuous release of heparin and sustained generation of nitric oxide (NO) through the catalytic decomposition of S-nitrosothiols by selenocystamine lead to a biomimetic endothelial function for the enhancement of blood compatibility. The inflammation-responsive compound AP can detoxify excess reactive oxygen species (ROS) while controlling the release of dexamethasone to reduce chronic inflammation. We demonstrate the ability of microfiber scaffolds to reduce thrombotic and inflammatory complications, inhibit SMC proliferation, and promote rapid endothelialization both in vitro and ex vivo. Hence, microfiber scaffolds are robust and promising for blood-contacting implants with enhanced antithrombogenicity and anti-inflammatory capabilities.
Collapse
Affiliation(s)
- Haozheng Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, China.
| | - Lei Cui
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China; Li Ka Shing Institute of Health Science, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Ying Luo
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Institute of Hepatobiliary Disease, Nankai University Affiliated the Third Center Hospital, Tianjin, China
| | - Honghong Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiaoju Liu
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Qiang Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
3
|
Wu X, Cesarovic N, Falk V, Mazza E, Giampietro C. Mechanical factors influence β-catenin localization and barrier properties. Integr Biol (Camb) 2024; 16:zyae013. [PMID: 38952079 DOI: 10.1093/intbio/zyae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/03/2024] [Accepted: 06/25/2024] [Indexed: 07/03/2024]
Abstract
Mechanical forces are of major importance in regulating vascular homeostasis by influencing endothelial cell behavior and functions. Adherens junctions are critical sites for mechanotransduction in endothelial cells. β-catenin, a component of adherens junctions and the canonical Wnt signaling pathway, plays a role in mechanoactivation. Evidence suggests that β-catenin is involved in flow sensing and responds to tensional forces, impacting junction dynamics. The mechanoregulation of β-catenin signaling is context-dependent, influenced by the type and duration of mechanical loads. In endothelial cells, β-catenin's nuclear translocation and signaling are influenced by shear stress and strain, affecting endothelial permeability. The study investigates how shear stress, strain, and surface topography impact adherens junction dynamics, regulate β-catenin localization, and influence endothelial barrier properties. Insight box Mechanical loads are potent regulators of endothelial functions through not completely elucidated mechanisms. Surface topography, wall shear stress and cyclic wall deformation contribute overlapping mechanical stimuli to which endothelial monolayer respond to adapt and maintain barrier functions. The use of custom developed flow chamber and bioreactor allows quantifying the response of mature human endothelial to well-defined wall shear stress and gradients of strain. Here, the mechanoregulation of β-catenin by substrate topography, wall shear stress, and cyclic stretch is analyzed and linked to the monolayer control of endothelial permeability.
Collapse
Affiliation(s)
- Xi Wu
- ETH Zürich, DMAVT, Experimental Continuum Mechanics, Leonhardstrasse 21, Zurich 8092, Switzerland
| | - Nikola Cesarovic
- Department of Health Sciences and Technology, ETH Zürich, Leopold-Ruzicka-Weg 4, 8093 Zürich, Switzerland
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Augustenburger Platz 1, 13353 Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Volkmar Falk
- Department of Health Sciences and Technology, ETH Zürich, Leopold-Ruzicka-Weg 4, 8093 Zürich, Switzerland
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Augustenburger Platz 1, 13353 Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Edoardo Mazza
- ETH Zürich, DMAVT, Experimental Continuum Mechanics, Leonhardstrasse 21, Zurich 8092, Switzerland
- EMPA, Swiss Federal Laboratories for Materials Science and Technology, Experimental Continuum Mechanics, Überlandstrasse 129, Dübendorf 8600, Switzerland
| | - Costanza Giampietro
- ETH Zürich, DMAVT, Experimental Continuum Mechanics, Leonhardstrasse 21, Zurich 8092, Switzerland
- EMPA, Swiss Federal Laboratories for Materials Science and Technology, Experimental Continuum Mechanics, Überlandstrasse 129, Dübendorf 8600, Switzerland
| |
Collapse
|
4
|
Kourouklis AP, Kaemmel J, Wu X, Baños M, Chanfon A, de Brot S, Ferrari A, Cesarovic N, Falk V, Mazza E. Transdermal wires for improved integration in vivo. BIOMATERIALS ADVANCES 2023; 153:213568. [PMID: 37591177 DOI: 10.1016/j.bioadv.2023.213568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/13/2023] [Accepted: 07/23/2023] [Indexed: 08/19/2023]
Abstract
Alternative engineering approaches have led the design of implants with controlled physical features to minimize adverse effects in biological tissues. Similar efforts have focused on optimizing the design features of percutaneous VAD drivelines with the aim to prevent infection, omitting however a thorough look on the implant-skin interactions that govern local tissue reactions. Here, we utilized an integrated approach for the biophysical modification of transdermal implants and their evaluation by chronic sheep implantation in comparison to the standard of care VAD drivelines. We developed a novel method for the transfer of breath topographical features on thin wires with modular size. We examined the impact of implant's diameter, surface topography, and chemistry on macroscopic, histological, and physical markers of inflammation, fibrosis, and mechanical adhesion. All implants demonstrated infection-free performance. The fibrotic response was enhanced by the increasing diameter of implants but not influenced by their surface properties. The implants of small diameter promoted mild inflammatory responses with improved mechanical adhesion and restricted epidermal downgrowth, in both silicone and polyurethane coated transdermal wires. On the contrary, the VAD drivelines with larger diameter triggered severe inflammatory reactions with frequent epidermal downgrowth. We validated these effects by quantifying the infiltration of macrophages and the level of vascularization in the fibrotic zone, highlighting the critical role of size reduction for the benign integration of transdermal implants with skin. This insight on how the biophysical properties of implants impact local tissue reactions could enable new solutions on the transdermal transmission of power, signal, and mass in a broad range of medical devices.
Collapse
Affiliation(s)
- Andreas P Kourouklis
- Department of Mechanical and Process Engineering, Institute for Mechanical Systems, ETH Zurich, 8092 Zurich, Switzerland
| | - Julius Kaemmel
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, 13353 Berlin, Germany
| | - Xi Wu
- Department of Mechanical and Process Engineering, Institute for Mechanical Systems, ETH Zurich, 8092 Zurich, Switzerland
| | - Miguel Baños
- Department of Mechanical and Process Engineering, Institute for Mechanical Systems, ETH Zurich, 8092 Zurich, Switzerland
| | - Astrid Chanfon
- COMPATH, Institute of Animal Pathology, University of Bern, 3012 Bern, Switzerland
| | - Simone de Brot
- COMPATH, Institute of Animal Pathology, University of Bern, 3012 Bern, Switzerland
| | - Aldo Ferrari
- EMPA, Swiss Federal Laboratories for Material Science and Technology, 8600 Dübendorf, Switzerland
| | - Nikola Cesarovic
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, 13353 Berlin, Germany; Department of Health Sciences and Technology, ETH Zürich, 8093 Zürich, Switzerland
| | - Volkmar Falk
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, 13353 Berlin, Germany; Department of Health Sciences and Technology, ETH Zürich, 8093 Zürich, Switzerland
| | - Edoardo Mazza
- Department of Mechanical and Process Engineering, Institute for Mechanical Systems, ETH Zurich, 8092 Zurich, Switzerland; EMPA, Swiss Federal Laboratories for Material Science and Technology, 8600 Dübendorf, Switzerland.
| |
Collapse
|
5
|
Ibrahim DM, Fomina A, Bouten CVC, Smits AIPM. Functional regeneration at the blood-biomaterial interface. Adv Drug Deliv Rev 2023; 201:115085. [PMID: 37690484 DOI: 10.1016/j.addr.2023.115085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 06/01/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
The use of cardiovascular implants is commonplace in clinical practice. However, reproducing the key bioactive and adaptive properties of native cardiovascular tissues with an artificial replacement is highly challenging. Exciting new treatment strategies are under development to regenerate (parts of) cardiovascular tissues directly in situ using immunomodulatory biomaterials. Direct exposure to the bloodstream and hemodynamic loads is a particular challenge, given the risk of thrombosis and adverse remodeling that it brings. However, the blood is also a source of (immune) cells and proteins that dominantly contribute to functional tissue regeneration. This review explores the potential of the blood as a source for the complete or partial in situ regeneration of cardiovascular tissues, with a particular focus on the endothelium, being the natural blood-tissue barrier. We pinpoint the current scientific challenges to enable rational engineering and testing of blood-contacting implants to leverage the regenerative potential of the blood.
Collapse
Affiliation(s)
- Dina M Ibrahim
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.
| | - Aleksandra Fomina
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Graduate School of Life Sciences, Utrecht University, Utrecht, the Netherlands.
| | - Carlijn V C Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.
| | - Anthal I P M Smits
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.
| |
Collapse
|
6
|
Pramotton FM, Abukar A, Hudson C, Dunbar J, Potterton A, Tonnicchia S, Taddei A, Mazza E, Giampietro C. DYRK1B inhibition exerts senolytic effects on endothelial cells and rescues endothelial dysfunctions. Mech Ageing Dev 2023; 213:111836. [PMID: 37301518 DOI: 10.1016/j.mad.2023.111836] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/15/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
Aging is the major risk factor for chronic disease development. Cellular senescence is a key mechanism that triggers or contributes to age-related phenotypes and pathologies. The endothelium, a single layer of cells lining the inner surface of a blood vessel, is a critical interface between blood and all tissues. Many studies report a link between endothelial cell senescence, inflammation, and diabetic vascular diseases. Here we identify, using combined advanced AI and machine learning, the Dual Specificity Tyrosine Phosphorylation Regulated Kinase 1B (DYRK1B) protein as a possible senolytic target for senescent endothelial cells. We demonstrate that upon induction of senescence in vitro DYRK1B expression is increased in endothelial cells and localized at adherens junctions where it impairs their proper organization and functions. DYRK1B knock-down or inhibition restores endothelial barrier properties and collective behavior. DYRK1B is therefore a possible target to counteract diabetes-associated vascular diseases linked to endothelial cell senescence.
Collapse
Affiliation(s)
- Francesca M Pramotton
- Swiss Federal Laboratories for Materials Science and Technology (EMPA), Dübendorf 8600, Switzerland; Department of Mechanical and Process Engineering, ETH Zurich, Zurich 8092, Switzerland
| | - Asra Abukar
- Department of Mechanical and Process Engineering, ETH Zurich, Zurich 8092, Switzerland; Senecell AG, Zurich 8057, Switzerland
| | | | | | | | - Simone Tonnicchia
- Swiss Federal Laboratories for Materials Science and Technology (EMPA), Dübendorf 8600, Switzerland; Department of Mechanical and Process Engineering, ETH Zurich, Zurich 8092, Switzerland
| | | | - Edoardo Mazza
- Swiss Federal Laboratories for Materials Science and Technology (EMPA), Dübendorf 8600, Switzerland; Department of Mechanical and Process Engineering, ETH Zurich, Zurich 8092, Switzerland
| | - Costanza Giampietro
- Swiss Federal Laboratories for Materials Science and Technology (EMPA), Dübendorf 8600, Switzerland; Department of Mechanical and Process Engineering, ETH Zurich, Zurich 8092, Switzerland; Senecell AG, Zurich 8057, Switzerland.
| |
Collapse
|
7
|
Magkoutas K, Chala N, Wu X, Poulikakos D, Mazza E, Meboldt M, Falk V, Ferrari A, Giampietro C, Schmid Daners M. In-vitro investigation of endothelial monolayer retention on an inflow VAD cannula inside a beating heart phantom. BIOMATERIALS ADVANCES 2023; 152:213485. [PMID: 37302211 DOI: 10.1016/j.bioadv.2023.213485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/13/2023]
Abstract
Ventricular assist devices (VADs) provide an alternative solution to heart transplantation for patients with end-stage heart failure. Insufficient hemocompatibility of VAD components can result in severe adverse events, such as thromboembolic stroke, and readmissions. To enhance VAD hemocompatibility, and avoid thrombus formation, surface modification techniques and endothelialization strategies are employed. In this work, a free form patterning topography is selected to facilitate the endothelialization of the outer surface of the inflow cannula (IC) of a commercial VAD. An endothelialization protocol for convoluted surfaces such as the IC is produced, and the retainment of the endothelial cell (EC) monolayer is evaluated. To allow this evaluation, a dedicated experimental setup is developed to simulate realistic flow phenomena inside an artificial, beating heart phantom with a VAD implanted on its apex. The procedural steps of mounting the system result to the impairment of the EC monolayer, which is further compromised by the developed flow and pressure conditions, as well as by the contact with the moving inner structures of the heart phantom. Importantly, the EC monolayer is better maintained in the lower part of the IC, which is more susceptible to thrombus formation and may therefore aid in minimizing the hemocompatibility related adverse events after the VAD implantation.
Collapse
Affiliation(s)
- Konstantinos Magkoutas
- Product Development Group Zurich, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Nafsika Chala
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Xi Wu
- Experimental Continuum Mechanics, Department of Mechanical and Process Engineering, Institute for Mechanical Systems, ETH Zurich, Zurich, Switzerland
| | - Dimos Poulikakos
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Edoardo Mazza
- Experimental Continuum Mechanics, Department of Mechanical and Process Engineering, Institute for Mechanical Systems, ETH Zurich, Zurich, Switzerland; Experimental Continuum Mechanics, EMPA, Dubendorf, Switzerland
| | - Mirko Meboldt
- Product Development Group Zurich, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Volkmar Falk
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, 13353 Berlin, Germany; Clinic for Cardiovascular Surgery, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Department of Health Sciences and Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - Aldo Ferrari
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Costanza Giampietro
- Experimental Continuum Mechanics, Department of Mechanical and Process Engineering, Institute for Mechanical Systems, ETH Zurich, Zurich, Switzerland; Experimental Continuum Mechanics, EMPA, Dubendorf, Switzerland.
| | - Marianne Schmid Daners
- Product Development Group Zurich, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
8
|
Kourouklis AP, Wahlsten A, Stracuzzi A, Martyts A, Paganella LG, Labouesse C, Al-Nuaimi D, Giampietro C, Ehret AE, Tibbitt MW, Mazza E. Control of hydrostatic pressure and osmotic stress in 3D cell culture for mechanobiological studies. BIOMATERIALS ADVANCES 2023; 145:213241. [PMID: 36529095 DOI: 10.1016/j.bioadv.2022.213241] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/25/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Hydrostatic pressure (HP) and osmotic stress (OS) play an important role in various biological processes, such as cell proliferation and differentiation. In contrast to canonical mechanical signals transmitted through the anchoring points of the cells with the extracellular matrix, the physical and molecular mechanisms that transduce HP and OS into cellular functions remain elusive. Three-dimensional cell cultures show great promise to replicate physiologically relevant signals in well-defined host bioreactors with the goal of shedding light on hidden aspects of the mechanobiology of HP and OS. This review starts by introducing prevalent mechanisms for the generation of HP and OS signals in biological tissues that are subject to pathophysiological mechanical loading. We then revisit various mechanisms in the mechanotransduction of HP and OS, and describe the current state of the art in bioreactors and biomaterials for the control of the corresponding physical signals.
Collapse
Affiliation(s)
- Andreas P Kourouklis
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland.
| | - Adam Wahlsten
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland
| | - Alberto Stracuzzi
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland; Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Anastasiya Martyts
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland
| | - Lorenza Garau Paganella
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland; Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Celine Labouesse
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Dunja Al-Nuaimi
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland
| | - Costanza Giampietro
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland; Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Alexander E Ehret
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland; Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Mark W Tibbitt
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Edoardo Mazza
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland; Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| |
Collapse
|
9
|
Wang H, Wang J, Feng J, Rao Y, Xu Z, Zu J, Wang H, Zhang Z, Chen H. Artificial Extracellular Matrix Composed of Heparin-Mimicking Polymers for Efficient Anticoagulation and Promotion of Endothelial Cell Proliferation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50142-50151. [PMID: 36302722 DOI: 10.1021/acsami.2c13892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Heparin-mimicking polymers have emerged as an alternative to heparin to construct effective and safe anticoagulant surfaces. However, the present heparin-mimicking polymers are usually limited to the combinations of glucose and sulfonic acid units, and the structure origin of their anticoagulant properties remains vague. Inspired by the structure of natural heparin, we synthesized a series of novel heparin-mimicking polymers (named GSAs) composed of three units, glucose, sulfonic acid, and carboxylic acid. Then, we constructed artificial extracellular matrices composed of GSAs and two typical cationic polymers, polyethyleneimine and chitosan, to investigate the anticoagulation and endothelialization of GSAs. By changing the ratio of the three units, their functions in the matrices were studied systematically. We found that an increase in the sulfonic acid content enhanced surface anticoagulant activity, an increase in glucose and sulfonic acid content promoted the proliferation of human umbilical vein vascular endothelial cells, and an increase in the carboxylic acid content inhibited the adherence of human umbilical vein vascular smooth muscle cells. This work uncovers the important role of the GSAs structure to the anticoagulation properties, which sheds new light on the design and preparation of heparin-mimicking polymers for practical engineering applications.
Collapse
Affiliation(s)
- Huanhuan Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou215123, P. R. China
| | - Jinghong Wang
- The SIP Biointerface Engineering Research Institute, Suzhou215123, P. R. China
| | - Jian Feng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou215123, P. R. China
| | - Yu Rao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou215123, P. R. China
| | - ZiYing Xu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou215123, P. R. China
| | - JunYi Zu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou215123, P. R. China
| | - Huaguang Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou215123, P. R. China
| | - Zexin Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou215123, P. R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou215123, P. R. China
- The SIP Biointerface Engineering Research Institute, Suzhou215123, P. R. China
| |
Collapse
|
10
|
Exarchos V, Zacharova E, Neuber S, Giampietro C, Motta SE, Hinkov H, Emmert MY, Nazari-Shafti TZ. The path to a hemocompatible cardiovascular implant: Advances and challenges of current endothelialization strategies. Front Cardiovasc Med 2022; 9:971028. [PMID: 36186971 PMCID: PMC9515323 DOI: 10.3389/fcvm.2022.971028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular (CV) implants are still associated with thrombogenicity due to insufficient hemocompatibility. Endothelialization of their luminal surface is a promising strategy to increase their hemocompatibility. In this review, we provide a collection of research studies and review articles aiming to summarize the recent efforts on surface modifications of CV implants, including stents, grafts, valves, and ventricular assist devises. We focus in particular on the implementation of micrometer or nanoscale surface modifications, physical characteristics of known biomaterials (such as wetness and stiffness), and surface morphological features (such as gratings, fibers, pores, and pits). We also review how biomechanical signals originating from the endothelial cell for surface interaction can be directed by topography engineering approaches toward the survival of the endothelium and its long-term adaptation. Finally, we summarize the regulatory and economic challenges that may prevent clinical implementation of endothelialized CV implants.
Collapse
Affiliation(s)
- Vasileios Exarchos
- Cardiosurgical Research Group, Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
- Translational Cardiovascular Regenerative Technologies Group, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, BIH Center for Regenerative Therapies, Berlin, Germany
| | - Ema Zacharova
- Cardiosurgical Research Group, Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
- Translational Cardiovascular Regenerative Technologies Group, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, BIH Center for Regenerative Therapies, Berlin, Germany
- Department of Life Sciences, IMC University of Applied Sciences Krems, Krems an der Donau, Austria
| | - Sebastian Neuber
- Cardiosurgical Research Group, Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
- Translational Cardiovascular Regenerative Technologies Group, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, BIH Center for Regenerative Therapies, Berlin, Germany
| | - Costanza Giampietro
- Experimental Continuum Mechanics, Empa Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
- Department of Mechanical and Process Engineering, Institute for Mechanical Systems, ETH Zürich, Zurich, Switzerland
| | - Sarah E. Motta
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Hristian Hinkov
- Cardiosurgical Research Group, Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
- Translational Cardiovascular Regenerative Technologies Group, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, BIH Center for Regenerative Therapies, Berlin, Germany
| | - Maximilian Y. Emmert
- Cardiosurgical Research Group, Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
- Translational Cardiovascular Regenerative Technologies Group, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, BIH Center for Regenerative Therapies, Berlin, Germany
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Clinic for Cardiovascular Surgery, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| | - Timo Z. Nazari-Shafti
- Cardiosurgical Research Group, Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
- Translational Cardiovascular Regenerative Technologies Group, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, BIH Center for Regenerative Therapies, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité (Junior) (Digital) Clinician Scientist Program, Berlin, Germany
- *Correspondence: Timo Z. Nazari-Shafti,
| |
Collapse
|
11
|
Zhang Y, Habibovic P. Delivering Mechanical Stimulation to Cells: State of the Art in Materials and Devices Design. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110267. [PMID: 35385176 DOI: 10.1002/adma.202110267] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Biochemical signals, such as growth factors, cytokines, and transcription factors are known to play a crucial role in regulating a variety of cellular activities as well as maintaining the normal function of different tissues and organs. If the biochemical signals are assumed to be one side of the coin, the other side comprises biophysical cues. There is growing evidence showing that biophysical signals, and in particular mechanical cues, also play an important role in different stages of human life ranging from morphogenesis during embryonic development to maturation and maintenance of tissue and organ function throughout life. In order to investigate how mechanical signals influence cell and tissue function, tremendous efforts have been devoted to fabricating various materials and devices for delivering mechanical stimuli to cells and tissues. Here, an overview of the current state of the art in the design and development of such materials and devices is provided, with a focus on their design principles, and challenges and perspectives for future research directions are highlighted.
Collapse
Affiliation(s)
- Yonggang Zhang
- Department of Instructive Biomaterials Engineering, Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| | - Pamela Habibovic
- Department of Instructive Biomaterials Engineering, Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| |
Collapse
|
12
|
Bian Q, Chen J, Weng Y, Li S. Endothelialization strategy of implant materials surface: The newest research in recent 5 years. J Appl Biomater Funct Mater 2022; 20:22808000221105332. [PMID: 35666145 DOI: 10.1177/22808000221105332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In recent years, more and more metal or non-metal materials have been used in the treatment of cardiovascular diseases, but the vascular complications after transplantation are still the main factors restricting the clinical application of most grafts, such as acute thrombosis and graft restenosis. Implant materials have been extensively designed and surface optimized by researchers, but it is still too difficult to avoid complications. Natural vascular endodermis has excellent function, anti-coagulant and anti-intimal hyperplasia, and it is also the key to maintaining the homeostasis of normal vascular microenvironment. Therefore, how to promote the adhesion of endothelial cells (ECs) on the surface of cardiovascular materials to achieve endothelialization of the surface is the key to overcoming the complications after implant materialization. At present, the surface endothelialization design of materials based on materials surface science, bioactive molecules, and biological function intervention and feedback has attracted much attention. In this review, we summarize the related research on the surface modification of materials by endothelialization in recent years, and analyze the advantages and challenges of current endothelialization design ideas, explain the relationship between materials, cells, and vascular remodeling in order to find a more ideal endothelialization surface modification strategy for future researchers to meet the requirements of clinical biocompatibility of cardiovascular materials.
Collapse
Affiliation(s)
- Qihao Bian
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, China.,School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Junying Chen
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, China.,School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Yajun Weng
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, China.,School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Suiyan Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
13
|
Systems of conductive skin for power transfer in clinical applications. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2021; 51:171-184. [PMID: 34477935 PMCID: PMC8964546 DOI: 10.1007/s00249-021-01568-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/29/2021] [Accepted: 08/12/2021] [Indexed: 11/03/2022]
Abstract
The primary aim of this article is to review the clinical challenges related to the supply of power in implanted left ventricular assist devices (LVADs) by means of transcutaneous drivelines. In effect of that, we present the preventive measures and post-operative protocols that are regularly employed to address the leading problem of driveline infections. Due to the lack of reliable wireless solutions for power transfer in LVADs, the development of new driveline configurations remains at the forefront of different strategies that aim to power LVADs in a less destructive manner. To this end, skin damage and breach formation around transcutaneous LVAD drivelines represent key challenges before improving the current standard of care. For this reason, we assess recent strategies on the surface functionalization of LVAD drivelines, which aim to limit the incidence of driveline infection by directing the responses of the skin tissue. Moreover, we propose a class of power transfer systems that could leverage the ability of skin tissue to effectively heal short diameter wounds. In this direction, we employed a novel method to generate thin conductive wires of controllable surface topography with the potential to minimize skin disruption and eliminate the problem of driveline infections. Our initial results suggest the viability of the small diameter wires for the investigation of new power transfer systems for LVADs. Overall, this review uniquely compiles a diverse number of topics with the aim to instigate new research ventures on the design of power transfer systems for IMDs, and specifically LVADs.
Collapse
|