1
|
Nakajima M, Kapate N, Clegg JR, Ikeda-Imafuku M, Park KS, Kumbhojkar N, Suja VC, Prakash S, Wang LLW, Tabeta K, Mitragotri S. Backpack-carrying macrophage immunotherapy for periodontitis. J Control Release 2025; 377:315-323. [PMID: 39561948 DOI: 10.1016/j.jconrel.2024.11.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/31/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024]
Abstract
Cell immunotherapy is a promising therapeutic modality to combat unmet medical needs. Macrophages offer a prominent cell therapy modality since their phenotypic plasticity allows them to perform a variety of roles including defending against pathogens, inducing/suppressing adaptive immunity, and aiding in wound healing. At the same time, this plasticity is a major hurdle in implementation of macrophage therapy. This hurdle can be overcome by cellular backpacks (BPs), discoidal particles that adhere on the macrophage surface and regulate M1/M2 phenotypic shift in an environment-independent manner. In this study, we engineered IL-4 BPs for maintaining macrophages in the M2 phenotype to regulate excess inflammation in periodontitis, a major oral infectious disease. IL-4 BPs induced and maintained M2 phenotype in macrophages in vitro for several days. After injection of macrophages carrying IL-4 BPs into the gingiva, the cells stayed in the tissue for over 5 days and maintained the M2 phenotype in the disease sites. Furthermore, treatment with IL-4 BP-macrophages significantly suppressed the disease progression. Altogether, a treatment with BP-carrying macrophages offers a promising local therapy against periodontitis.
Collapse
Affiliation(s)
- Mayuka Nakajima
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02134, USA; Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02215, USA; Division of Periodontology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Neha Kapate
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02134, USA; Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02215, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - John R Clegg
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02134, USA; Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02215, USA
| | - Mayumi Ikeda-Imafuku
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02134, USA; Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02215, USA
| | - Kyung Soo Park
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02134, USA; Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02215, USA
| | - Ninad Kumbhojkar
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02134, USA; Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02215, USA
| | - Vinny Chandran Suja
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02134, USA; Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02215, USA
| | - Supriya Prakash
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02134, USA; Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02215, USA
| | - Lily Li-Wen Wang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02134, USA; Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02215, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Koichi Tabeta
- Division of Periodontology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02134, USA; Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02215, USA.
| |
Collapse
|
2
|
Mitragotri S. Choline geranate (CAGE): A multifaceted ionic liquid for drug delivery. J Control Release 2024; 376:593-600. [PMID: 39427776 DOI: 10.1016/j.jconrel.2024.10.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Ionic liquids, organic salts in a liquid state below 100 °C, have traditionally been associated with industrial applications. Recent research has introduced a new generation of ionic liquids, designed from biocompatible ions, to enable applications in drug delivery. Here, I provide a historical perspective, development status and applications of a leading example of biocompatible ionic liquids, a salt of Choline And Geranic acid (CAGE). Since its first report in 2014, CAGE has opened multiple drug delivery applications including transdermal, oral, buccal, sustained release, tissue ablation, periodontitis and hand hygiene, among others. CAGE-based products have been tested in more than 200 patients through multiple Phase 1 and Phase 2 clinical studies, including successful use in a Phase 2 clinical study in Atopic Dermatitis patients. CAGE became the first 'drug delivery ionic liquid' to enter into clinical trials. This article summarizes the key fundamental and translational aspects of CAGE as pertained to its use in drug delivery.
Collapse
Affiliation(s)
- Samir Mitragotri
- School of Engineering & Applied Sciences, Harvard University, 150 Western Ave, Allston 02134, USA; Wyss Institute of Biologically Inspired Engineering, 201 Brookline Ave, Boston 02215, USA.
| |
Collapse
|
3
|
Mi L, Li J, Hii ARK, Zuo Z, Tang Y, Zhou W, Wu Z, Qi X. Dental cementum anchored microspheres embedded in a self-healing hydrogel for the antibacterial, anti-inflammation, osteogenic, and anti-osteoclastic management of periodontitis disease. J Mater Chem B 2024; 12:9947-9962. [PMID: 39072701 DOI: 10.1039/d4tb00579a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Periodontitis, a prevalent chronic oral disease, poses a significant threat to periodontal tissues, often resulting in substantial attachment loss and tooth shedding. Leveraging the principles of bone affinity and the mechanism underlying tetracycline pigmentation of teeth, this study strategically employed tetracycline (TC) as a bone-affinity group. We modified TC on the surface of polylactic-co-glycolic acid copolymer (PLGA) microspheres (MSs) through covalent binding, and then loaded berberine (BBR) MSs into a thermosensitive self-healing hydrogel delivery system (BBR/TC-MS). It was verified that the BBR/TC-MS gel rapidly formed an in situ reservoir in the periodontal pocket upon injection, and the chelation between TC and cementum in the periodontal pocket enhanced the anchoring effect of the TC-modified microspheres on cementum, preventing their loss through gingival crevicular fluid. Subsequently, we proved in vitro and in vivo that the BBR/TC-MS gel has excellent bacteriostatic effects against the periodontal pathogenic bacteria Fusobacterium necrophorum (Fn), anti-inflammation property in periodontal and gingival tissues, and osteogenic effect by regulating the RANKL-RANK-OPG pathway to diminish osteoclast activity, thus continuously exerting antibacterial, anti-inflammatory, osteogenic, and anti-osteoclastic effects. This innovative approach holds promise as a targeted and effective strategy for combating multifaceted challenges posed by periodontitis.
Collapse
Affiliation(s)
- Li Mi
- China Pharmaceutical University, 210009, Nanjing, China.
| | - Jiachen Li
- China Pharmaceutical University, 210009, Nanjing, China.
| | | | - Zhenhao Zuo
- China Pharmaceutical University, 210009, Nanjing, China.
| | - Ya Tang
- The Second Outpatient Department, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Wei Zhou
- Department of Periodontology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Zhenghong Wu
- China Pharmaceutical University, 210009, Nanjing, China.
| | - Xiaole Qi
- China Pharmaceutical University, 210009, Nanjing, China.
- Hangzhou Innovative Institute of Pharmaceutics, China Pharmaceutical University, 310018, Hangzhou, China
| |
Collapse
|
4
|
Maslii Y, Herbina N, Dene L, Ivanauskas L, Bernatoniene J. Development and Evaluation of Oromucosal Spray Formulation Containing Plant-Derived Compounds for the Treatment of Infectious and Inflammatory Diseases of the Oral Cavity. Polymers (Basel) 2024; 16:2649. [PMID: 39339113 PMCID: PMC11435575 DOI: 10.3390/polym16182649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
According to data in the literature, natural products and essential oils are often used in dental practice. To develop a new oromucosal spray for the treatment of infectious and inflammatory diseases of the oral cavity, clove CO2 extract and essential oils of lavender and grapefruit were used as active pharmaceutical ingredients. Clove extract was obtained by the method of subcritical extraction from various raw materials, the choice of which was based on the yield of the CO2 extract and the study of its phytochemical and microbiological properties. Based on the results of microscopic and diffraction analyses, the rational time of ultrasonic exposure for the emulsion of active pharmaceutical ingredients was established. Mucoadhesive polymers were used as stabilizers of the two-phase system and prolongators. This article discusses the impact of the type and concentration of mucoadhesive polymers on the stability of the emulsion system; the viscous, textural, adhesive, and film characteristics of oromucosal spray; and the parameters determining sprayability.
Collapse
Affiliation(s)
- Yuliia Maslii
- Department of Drug Technology and Social Pharmacy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (Y.M.); (N.H.)
- Department of Industrial Technology of Drugs, National University of Pharmacy, 61002 Kharkiv, Ukraine
| | - Nataliia Herbina
- Department of Drug Technology and Social Pharmacy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (Y.M.); (N.H.)
- Department of Industrial Technology of Drugs, National University of Pharmacy, 61002 Kharkiv, Ukraine
| | - Lina Dene
- Laboratory of Biochemistry and Technology, Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, LT-54333 Babtai, Lithuania;
- PetalNord MB, Kruosto g. 31, LT-47214 Kaunas, Lithuania
| | - Liudas Ivanauskas
- Department of Analytical and Toxicological Chemistry, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania;
| | - Jurga Bernatoniene
- Department of Drug Technology and Social Pharmacy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (Y.M.); (N.H.)
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| |
Collapse
|
5
|
Yan C, Nakajima M, Ikeda-Imafuku M, Yanagawa M, Hayatsu M, Fukuta T, Shibata S, Mitragotri S, Tabeta K. Choline and geranate ionic liquid for subgingival biofilm control. Int J Pharm 2024; 662:124544. [PMID: 39094920 DOI: 10.1016/j.ijpharm.2024.124544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/18/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
Periodontitis is a chronic inflammatory disease that causes destruction of the periodontium and eventual tooth loss. The priority in the periodontal treatment is to remove the subgingival biofilm. Chemical removal of biofilms using antimicrobial agents has been applied in clinical practice. However, their clinical effect is still limited because the agents must overcome biofilm's significant drug tolerance, which is primarily caused by the extracellular matrix, a physical barrier that attenuates drug diffusion. This study aimed to study the use of ionic liquids (ILs), a new class of biocompatible materials, for controlling subgingival biofilms because of their excellent permeability. Choline and geranate (CAGE) IL was tested for its highly potent antiseptic behavior and permeability. Antibacterial tests revealed that the significant efficacy of CAGE against periodontopathic microorganisms was derived from their ability to destroy cell membrane, as demonstrated by membrane permeability assay and transmission electron microscopy imaging. Antibiofilm tests using two pathogenic biofilm models revealed that CAGE exerted efficacy against the biofilm-embedded bacteria, conspicuously neutralized the biofilms, and eventually destroyed the biofilm structure. Furthermore, the penetration of CAGE into the biofilm was visually confirmed using confocal laser scanning microscopy. This study highlighted the potential of CAGE as a powerful antibiofilm therapeutic.
Collapse
Affiliation(s)
- Chunyang Yan
- Division of Periodontology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Mayuka Nakajima
- Division of Periodontology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan.
| | - Mayumi Ikeda-Imafuku
- Department of Physical Pharmaceutics, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama 640-8156, Japan
| | - Mayuko Yanagawa
- Division of Periodontology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Manabu Hayatsu
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Tatsuya Fukuta
- Department of Physical Pharmaceutics, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama 640-8156, Japan
| | - Shinsuke Shibata
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, MA 02134, USA
| | - Koichi Tabeta
- Division of Periodontology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan.
| |
Collapse
|
6
|
Chen X, Huang N, Wang D, Zhang M, Deng X, Guo F, Yi B, Yuan C, Zhou Q. Sulfated Chitosan-Modified CuS Nanocluster: A Versatile Nanoformulation for Simultaneous Antibacterial and Bone Regenerative Therapy in Periodontitis. ACS NANO 2024; 18:14312-14326. [PMID: 38767151 DOI: 10.1021/acsnano.4c00137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Periodontitis, a prevalent chronic inflammatory disease worldwide, is triggered by periodontopathogenic bacteria, resulting in the progressive destruction of periodontal tissue, particularly the alveolar bone. To effectively address periodontitis, this study proposed a nanoformulation known as CuS@MSN-SCS. This formulation involves coating citrate-grafted copper sulfide (CuS) nanoparticles with mesoporous silica (MSNs), followed by surface modification using amino groups and sulfated chitosan (SCS) through electrostatic interactions. The objective of this formulation is to achieve efficient bacteria removal by inducing ROS signaling pathways mediated by Cu2+ ions. Additionally, it aims to promote alveolar bone regeneration through Cu2+-induced pro-angiogenesis and SCS-mediated bone regeneration. As anticipated, by regulating the surface charges, the negatively charged CuS nanoparticles capped with sodium citrate were successfully coated with MSNs, and the subsequent introduction of amine groups using (3-aminopropyl)triethoxysilane was followed by the incorporation of SCS through electrostatic interactions, resulting in the formation of CuS@MSN-SCS. The developed nanoformulation was verified to not only significantly exacerbate the oxidative stress of Fusobacterium nucleatum, thereby suppressing bacteria growth and biofilm formation in vitro, but also effectively alleviate the inflammatory response and promote alveolar bone regeneration without evident biotoxicity in an in vivo rat periodontitis model. These findings contribute to the therapeutic effect on periodontitis. Overall, this study successfully developed a nanoformulation for combating bacteria and facilitating alveolar bone regeneration, demonstrating the promising potential for clinical treatment of periodontitis.
Collapse
Affiliation(s)
- Xiaoyu Chen
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
- School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Ning Huang
- Institute of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Danyang Wang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
- School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Miao Zhang
- Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Xuyang Deng
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
- School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Fangze Guo
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
- School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Bingcheng Yi
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266113, China
| | - Changqing Yuan
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
- School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Qihui Zhou
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266113, China
| |
Collapse
|
7
|
Garg U, Dua T, Kaul S, Jain N, Pandey M, Nagaich U. Enhancing periodontal defences with nanofiber treatment: recent advances and future prospects. J Drug Target 2024; 32:470-484. [PMID: 38404239 DOI: 10.1080/1061186x.2024.2321372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/14/2024] [Indexed: 02/27/2024]
Abstract
The term periodontal disease is used to define diseases characterised by inflammation and regeneration of the gums, cementum, supporting bone, and periodontal ligament. The conventional treatment involves the combination of scaling, root planning, and surgical approaches which are invasive and can pose certain challenges. Intrapocket administration of nanofibers can be used for overcoming challenges which can help in speeding up the wound repair process and can also be used to promote osteogenesis. To help make drug delivery more effective, nanofibers are an interesting solution. Nanofibers are nanosized 3D structures that can fill the pockets and have excellent mucoadhesion which prolongs their retention time on the target site. Moreover, their structure mimics the natural extracellular matrix which enables nanomaterials to sense local biological conditions and start cellular-level reprogramming to produce the necessary therapeutic efficacy. In this review, the significance of intrapocket administration of nanofibers using recent research for the management of periodontitis has been discussed in detail. Furthermore, we have discussed polymers used for the preparation of nanofibers, nanofiber production methods, and the patents associated with these developments. This comprehensive compilation of data serves as a valuable resource, consolidating recent developments in nanofiber applications for periodontitis management into one accessible platform.
Collapse
Affiliation(s)
- Unnati Garg
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, UP, India
| | - Tanya Dua
- Department of Periodontology, Inderprastha Dental College and Hospital, Atal Bihari Vajpayee Medical University, Lucknow, UP, India
| | - Shreya Kaul
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, UP, India
| | - Neha Jain
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, UP, India
| | - Manisha Pandey
- Department of Pharmaceutical Sciences, Central University of Haryana, India
| | - Upendra Nagaich
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, UP, India
| |
Collapse
|
8
|
Ming L, Qu Y, Wang Z, Dong L, Li Y, Liu F, Wang Q, Zhang D, Li Z, Zhou Z, Shang F, Xie X. Small Extracellular Vesicles Laden Oxygen-Releasing Thermosensitive Hydrogel for Enhanced Antibacterial Therapy against Anaerobe-Induced Periodontitis Alveolar Bone Defect. ACS Biomater Sci Eng 2024; 10:932-945. [PMID: 38275448 DOI: 10.1021/acsbiomaterials.3c00493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Periodontitis is a bacterially induced chronic destructive inflammatory disease that leads to irreversible destruction of the tooth supporting structure, including connective tissue destruction, bone resorption, and even tooth loss. Until now, there has been no effective treatment to repair inflammatory bone loss in periodontitis. Recently, small extracellular vesicles (sEVs) emerged as the essential paracrine factors of mesenchymal stem cells (MSCs) that mediated tissue regeneration. However, limitations of antimicrobial activity associated with the use of sEVs have led to the urgency of new alternative strategies. Currently, we investigated the potential of a biocompatible oxygen-releasing thermosensitive hydrogel laded with sEVs secreted by bone marrow MSCs (BMMSCs) for the alveolar bone defect in periodontitis. The hydrogel composed of different polymers such as chitosan (CS), poloxamer 407 (P407), and cross-linked hyaluronic acid (c-HA) conglomerating is a kind of nanoporous structure material. Then, the gel matrix further encapsulated sEVs and calcium peroxide nanoparticles to realize the control of sEVs and oxygen release. Furthermore, ascorbic acid was added to achieve the REDOX equilibrium and acid-base equilibrium. The experiments in vivo and in vitro proved its good biocompatibility and effectively inhibited the growth of the periodontal main anaerobe, relieved periodontal pocket anaerobic infections, and promoted the periodontal defect regeneration. Therefore, this finding demonstrated that it was a promising approach for combating anaerobic pathogens with enhanced and selective properties in periodontal diseases, even in other bacteria-induced infections, for future clinical application.
Collapse
Affiliation(s)
- Leiguo Ming
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Shaanxi Zhonghong Institute of Regenerative Medicine, Xi'an 710003, Shaanxi Province, China
| | - Yanling Qu
- Shaanxi Zhonghong Institute of Regenerative Medicine, Xi'an 710003, Shaanxi Province, China
| | - Zhe Wang
- Shaanxi Zhonghong Institute of Regenerative Medicine, Xi'an 710003, Shaanxi Province, China
| | - Lingjuan Dong
- Shaanxi Zhonghong Institute of Regenerative Medicine, Xi'an 710003, Shaanxi Province, China
| | - Yinghui Li
- Department of Orthodontics, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Fen Liu
- Department of Pediatric Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi Province, China
| | - Qingxia Wang
- Shaanxi Zhonghong Institute of Regenerative Medicine, Xi'an 710003, Shaanxi Province, China
| | - Dan Zhang
- Shaanxi Zhonghong Institute of Regenerative Medicine, Xi'an 710003, Shaanxi Province, China
| | - Zhifeng Li
- Shaanxi Zhonghong Institute of Regenerative Medicine, Xi'an 710003, Shaanxi Province, China
| | - Zhifei Zhou
- Department of Stomatology, General Hospital of Tibetan Military Command, Lhasa 850007, Tibet, China
| | - Fengqing Shang
- Shaanxi Zhonghong Institute of Regenerative Medicine, Xi'an 710003, Shaanxi Province, China
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xiaodong Xie
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China
| |
Collapse
|
9
|
Yin Z, Liu Y, Anniwaer A, You Y, Guo J, Tang Y, Fu L, Yi L, Huang C. Rational Designs of Biomaterials for Combating Oral Biofilm Infections. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2305633. [PMID: 37566788 DOI: 10.1002/adma.202305633] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/24/2023] [Indexed: 08/13/2023]
Abstract
Oral biofilms, which are also known as dental plaque, are the culprit of a wide range of oral diseases and systemic diseases, thus contributing to serious health risks. The manner of how to achieve good control of oral biofilms has been an increasing public concern. Novel antimicrobial biomaterials with highly controllable fabrication and functionalization have been proven to be promising candidates. However, previous reviews have generally emphasized the physicochemical properties, action mode, and application effectiveness of those biomaterials, whereas insufficient attention has been given to the design rationales tailored to different infection types and application scenarios. To offer guidance for better diversification and functionalization of anti-oral-biofilm biomaterials, this review details the up-to-date design rationales in three aspects: the core strategies in combating oral biofilm, as well as the biomaterials with advanced antibiofilm capacity and multiple functions based on the improvement or combination of the abovementioned antimicrobial strategies. Thereafter, insights on the existing challenges and future improvement of biomaterial-assisted oral biofilm treatments are proposed, hoping to provide a theoretical basis and reference for the subsequent design and application of antibiofilm biomaterials.
Collapse
Affiliation(s)
- Zhengrong Yin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yaxi Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Annikaer Anniwaer
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yuan You
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Jingmei Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Ying Tang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Lei Fu
- College of Chemistry and Molecular Sciences, Renmin Hospital of Wuhan University, Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430072, China
| | - Luyao Yi
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Cui Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| |
Collapse
|
10
|
Chen Y, Dai F, Deng T, Wang L, Yang Y, He C, Liu Q, Wu J, Ai F, Song L. An injectable MB/BG@LG sustained release lipid gel with antibacterial and osteogenic properties for efficient treatment of chronic periodontitis in rats. Mater Today Bio 2023; 21:100699. [PMID: 37408697 PMCID: PMC10319327 DOI: 10.1016/j.mtbio.2023.100699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/29/2023] [Accepted: 05/29/2023] [Indexed: 07/07/2023] Open
Abstract
Periodontitis is a chronic inflammatory disease characterized by the colonization of pathogenic microorganisms and the loss of periodontal supporting tissue. However, the existing local drug delivery system for periodontitis has some problems including subpar antibacterial impact, easy loss, and unsatisfactory periodontal regeneration. In this study, a multi-functional and sustained release drug delivery system (MB/BG@LG) was developed by encapsulating methylene blue (MB) and bioactive glass (BG) into the lipid gel (LG) precursor by Macrosol technology. The properties of MB/BG@LG were characterized using a scanning electron microscope, a dynamic shear rotation rheometer, and a release curve. The results showed that MB/BG@LG could not only sustained release for 16 days, but also quickly fill the irregular bone defect caused by periodontitis through in situ hydration. Under 660 nm light irradiation, methylene blue-produced reactive oxygen species (ROS) can reduce local inflammatory response by inhibiting bacterial growth. In addition, in vitro and vivo experiments have shown that MB/BG@LG can effectively promote periodontal tissue regeneration by reducing inflammatory response, promoting cell proliferation and osteogenic differentiation. In summary, MB/BG@LG exhibited excellent adhesion properties, self-assembly properties, and superior drug release control capabilities, which improved the clinical feasibility of its application in complex oral environments.
Collapse
Affiliation(s)
- Yeke Chen
- Center of Stomatology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 33006, China
- The Institute of Periodontal Disease, Nanchang University, Nanchang, Jiangxi, 33006, China
- JXHC Key Laboratory of Periodontology (The Second Affiliated Hospital of Nanchang University), Nanchang, Jiangxi, 33006, China
- The Second Clinical Medical School, Nanchang University, Nanchang, Jiangxi, 33006, China
| | - Fang Dai
- Center of Stomatology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 33006, China
- The Institute of Periodontal Disease, Nanchang University, Nanchang, Jiangxi, 33006, China
- JXHC Key Laboratory of Periodontology (The Second Affiliated Hospital of Nanchang University), Nanchang, Jiangxi, 33006, China
| | - Tian Deng
- Center of Stomatology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 33006, China
- The Institute of Periodontal Disease, Nanchang University, Nanchang, Jiangxi, 33006, China
- JXHC Key Laboratory of Periodontology (The Second Affiliated Hospital of Nanchang University), Nanchang, Jiangxi, 33006, China
| | - Lijie Wang
- Center of Stomatology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 33006, China
- The Institute of Periodontal Disease, Nanchang University, Nanchang, Jiangxi, 33006, China
- JXHC Key Laboratory of Periodontology (The Second Affiliated Hospital of Nanchang University), Nanchang, Jiangxi, 33006, China
- The Second Clinical Medical School, Nanchang University, Nanchang, Jiangxi, 33006, China
| | - Yuting Yang
- Center of Stomatology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 33006, China
- The Institute of Periodontal Disease, Nanchang University, Nanchang, Jiangxi, 33006, China
- JXHC Key Laboratory of Periodontology (The Second Affiliated Hospital of Nanchang University), Nanchang, Jiangxi, 33006, China
- The Second Clinical Medical School, Nanchang University, Nanchang, Jiangxi, 33006, China
| | - Chenjiang He
- Center of Stomatology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 33006, China
- The Institute of Periodontal Disease, Nanchang University, Nanchang, Jiangxi, 33006, China
- JXHC Key Laboratory of Periodontology (The Second Affiliated Hospital of Nanchang University), Nanchang, Jiangxi, 33006, China
- The Second Clinical Medical School, Nanchang University, Nanchang, Jiangxi, 33006, China
| | - Qiangdong Liu
- Center of Stomatology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 33006, China
- The Institute of Periodontal Disease, Nanchang University, Nanchang, Jiangxi, 33006, China
- JXHC Key Laboratory of Periodontology (The Second Affiliated Hospital of Nanchang University), Nanchang, Jiangxi, 33006, China
- The Second Clinical Medical School, Nanchang University, Nanchang, Jiangxi, 33006, China
| | - Jianxin Wu
- Center of Stomatology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 33006, China
- The Institute of Periodontal Disease, Nanchang University, Nanchang, Jiangxi, 33006, China
- JXHC Key Laboratory of Periodontology (The Second Affiliated Hospital of Nanchang University), Nanchang, Jiangxi, 33006, China
| | - Fanrong Ai
- School of Advanced Manufacturing, Nanchang University, Nanchang, Jiangxi, 33006, China
| | - Li Song
- Center of Stomatology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 33006, China
- The Institute of Periodontal Disease, Nanchang University, Nanchang, Jiangxi, 33006, China
- JXHC Key Laboratory of Periodontology (The Second Affiliated Hospital of Nanchang University), Nanchang, Jiangxi, 33006, China
| |
Collapse
|
11
|
Zhang L, Li Y, Yuan L, Zhang Q, Yan Y, Dong F, Tang J, Wang Y. Advanced and Readily-Available Wireless-Powered Blue-Light-Implant for Non-Invasive Peri-Implant Disinfection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203472. [PMID: 36935373 DOI: 10.1002/advs.202203472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 02/12/2023] [Indexed: 05/18/2023]
Abstract
Non-invasive light-based antibacterial therapy has a good prospect in non-surgical treatment of peri-implant infections. However, its applications are severely limited by poor penetration of light into human tissues, leading to unsatisfying outcomes. Moreover, as an essential prerequisite for traditional light therapy, lasers can no longer meet the patients' needs for convenient treatment at any time. To break through the spatial and temporal limitations of traditional light therapy, a wireless-powered blue-light zirconia implant for readily available treatment of peri-implant infection is proposed. In space, complete irradiation to complex peri-implant structure is realized by the built-in wireless-powered light source, thus improving the efficacy. In time, wireless-powering allows timely and controllable anti-infection treatment. Blue micro-light emitting diodes are used as therapeutic light sources, which effectively kill peri-implant infection-related bacteria without exogenous photosensitive agents. Porphyromonas gingivalis biofilm on implant surface can be completely killed after 20 min irradiation in vitro. The bactericidal rate of peri-implant methicillin-resistant Staphylococcus aureus infection reaches 99.96 ± 0.03% under 30 min per day blue light exposure in vivo. Within the scope of this study, the treatment of peri-implant infection with blue-light implant has preliminary feasibility, giving a new approach to non-invasive treatment of deep oral infections, including peri-implant infections.
Collapse
Affiliation(s)
- Ludan Zhang
- Center of Digital Dentistry/ Department of Prosthodontics, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Yamin Li
- State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Integrated Circuits, University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Lintian Yuan
- Center of Digital Dentistry/ Department of Prosthodontics, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Qianyi Zhang
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Yuqing Yan
- Beijing Taia Technology Co. LTD, Beijing, 100089, P. R. China
| | - Fan Dong
- Center of Digital Dentistry/ Department of Prosthodontics, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Jun Tang
- State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Integrated Circuits, University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Yuguang Wang
- Center of Digital Dentistry/ Department of Prosthodontics, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| |
Collapse
|
12
|
Laird NZ, Phruttiwanichakun P, Zhu M, Banas JA, Elangovan S, Salem AK. Choline and geranic acid (CAGE) ionic liquids inhibit both elastase activity and growth of oral bacteria. J Biomed Mater Res A 2023; 111:682-687. [PMID: 36565165 DOI: 10.1002/jbm.a.37485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/07/2022] [Accepted: 12/10/2022] [Indexed: 12/25/2022]
Abstract
Choline and geranic acid (CAGE) ionic liquids have recently been shown to have applications in the delivery of macromolecules and poorly soluble drugs across epithelial barriers and in bacterial growth inhibition. Ionic liquids are known to denature proteins by the disruption of forces that guide natural protein folding, and the inflammatory enzyme elastase was recently shown to be inhibited by a variety of ionic liquids other than CAGE. Inhibition of collagenolytic enzymes, including elastase, has been shown to improve outcomes in cases of periodontitis via amelioration of periodontal inflammation and alveolar bone resorption. In this study, we investigated whether CAGE prepared with varying stoichiometries was able to inhibit elastase at varying concentrations and whether these CAGE formulations could inhibit the growth of key pathogenic bacterial species associated with oral health conditions. We found that CAGE was capable of inhibiting both porcine elastase and human neutrophil elastase at concentrations as low as 5 mM, and that CAGE formulations were effective at inhibiting the growth of all tested pathogenic oral bacteria. The inhibition of elastase by CAGE may be a mechanism by which CAGE can improve outcomes in periodontitis independent from CAGE's known antibacterial properties.
Collapse
Affiliation(s)
- Noah Z Laird
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa, USA
| | - Pornpoj Phruttiwanichakun
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa, USA
| | - Min Zhu
- Iowa Institute for Oral Health Research, University of Iowa College of Dentistry, Iowa City, Iowa, USA
| | - Jeffrey A Banas
- Iowa Institute for Oral Health Research, University of Iowa College of Dentistry, Iowa City, Iowa, USA
| | - Satheesh Elangovan
- Department of Periodontics, College of Dentistry and Dental Clinics, The University of Iowa, Iowa City, Iowa, USA
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa, USA
- Department of Periodontics, College of Dentistry and Dental Clinics, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
13
|
Functional biomaterials for comprehensive periodontitis therapy. Acta Pharm Sin B 2022. [DOI: 10.1016/j.apsb.2022.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
14
|
Highly stretchable, elastic, antimicrobial conductive hydrogels with environment-adaptive adhesive property for health monitoring. J Colloid Interface Sci 2022; 622:612-624. [DOI: 10.1016/j.jcis.2022.04.119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/13/2022] [Accepted: 04/21/2022] [Indexed: 12/15/2022]
|
15
|
Li H, Xu J, Hu J, Hu Q, Fang X, Sun ZJ, Xu Z, Zhang L. Sustained release of chlorogenic acid-loaded nanomicelles alleviates bone loss in mouse periodontitis. Biomater Sci 2022; 10:5583-5595. [DOI: 10.1039/d2bm01099b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract Periodontitis is a prevalent chronic inflammatory disease that destroys the periodontal supporting tissues, impinges on oral health, and is correlative with an increased risk of systemic disease. Currently, the...
Collapse
|