1
|
Hosseini SA, Elahian F, Mirzaei SA. Innovative genetic scissor strategies and their applications in cancer treatment and prevention: CRISPR modules and challenges. Int J Biol Macromol 2024; 279:135239. [PMID: 39218175 DOI: 10.1016/j.ijbiomac.2024.135239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
There are lots of gene editing tools for targeting genome sequences. Some are almost known, and most are a complete mystery and undiscovered. CRISPR/Cas editing tools have brought about a major revolution in medicine. Researchers have shown that CRISPR can modify DNA much more accurately, economically and easily than previous methods. CRISPR has proven itself effective for the deletion, replacement and insertion of DNA fragments into cell types, tissues and organisms. Recently, combining CRISPR/Cas with factors (transcription factors/repressors, exonucleases, endonucleases, transposons, caspase, fluorescent proteins, oxidoreductive enzymes, DNA/RNA polymerases), and elements (aptamers, barcodes, fluorescent probes, Trigger) have provided genome, transcriptome, proteome and epigenome modification. These modules are being investigated for cancer prevention and therapy and this review focuses on such innovative combinations that hopefully will become a clinical reality in the near future.
Collapse
Affiliation(s)
- Sayedeh Azimeh Hosseini
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Elahian
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX, USA
| | - Seyed Abbas Mirzaei
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran; Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
2
|
Wang J, Xing J, Chen L, Diao Z, He L, Wang S, Lin F, Zhang N. The clinical application of affected-embryo-based SNP haplotype analysis for patients with de novo pathogenic mutations in PGT-M cycles. Arch Gynecol Obstet 2024:10.1007/s00404-024-07773-y. [PMID: 39470770 DOI: 10.1007/s00404-024-07773-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 10/05/2024] [Indexed: 11/01/2024]
Abstract
PURPOSE In preimplantation genetic testing for monogenic/single gene disorders (PGT-M) cycles, direct detection of the pathogenic mutation combined with indirect haplotype analysis are recommended to achieve accurate diagnosis. However, it poses a challenge to conduct haplotype analysis for patients carried de novo pathogenetic mutations or without no identified haplotype in families. Herein, the strategy of affected-embryo-based haplotype analysis was implemented in clinical practice to provide a convenient, economical and effective way for such patients. MATERIALS AND METHODS Eight cases with de novo mutations were recruited. Six cases found the embryo-proband from biopsied blastocysts, and two case (case5 and 6) found them from developmental arrested embryos. A total of thirty-seven biopsied blastocysts from eight PGT-M cycles were performed direct detection and affected-embryo-based single nucleotide polymorphism (SNP) haplotype analyses. RESULTS Till now, five cases (case 1, 2, 3, 7, 8) had delivered healthy babies and one case (case6) achieved successful ongoing pregnancy. We reported for the first time to find proband from developmental arrested embryos to complete haplotype analyses when no carriers were found in biopsied ones in clinical practice. CONCLUSION Our study further proves and expands the application of the double-checking strategy based on affected-embryo proband and allows patients with de novo mutations or lack positive family members to benefit from the strategy.
Collapse
Affiliation(s)
- Jie Wang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210008, People's Republic of China
| | - Jun Xing
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210008, People's Republic of China
| | - Linjun Chen
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210008, People's Republic of China
| | - Zhenyu Diao
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210008, People's Republic of China
| | - Linlin He
- Affiliated Hospital of Medical School, Prenatal Diagnosis Center, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, 210008, China
| | - Shanshan Wang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210008, People's Republic of China
| | - Fei Lin
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210008, People's Republic of China.
| | - Ningyuan Zhang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210008, People's Republic of China.
| |
Collapse
|
3
|
Wang Y, Li Y, Zhu X, Yang M, Liu Y, Wang N, Long C, Kuo Y, Lian Y, Huang J, Jia J, Wong CCL, Yan Z, Yan L, Qiao J. Concurrent Preimplantation Genetic Testing and Competence Assessment of Human Embryos by Transcriptome Sequencing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309817. [PMID: 38900059 PMCID: PMC11348190 DOI: 10.1002/advs.202309817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/14/2024] [Indexed: 06/21/2024]
Abstract
Preimplantation genetic testing (PGT) can minimize the risk of birth defects. However, the accuracy and applicability of routine PGT is confounded by uneven genome coverage and high allele drop-out rate from existing single-cell whole genome amplification methods. Here, a method to diagnose genetic mutations and concurrently evaluate embryo competence by leveraging the abundant mRNA transcript copies present in trophectoderm cells is developed. The feasibility of the method is confirmed with 19 donated blastocysts. Next, the method is applied to 82 embryos from 26 families with monogenic defects for simultaneous mutation detection and competence assessment. The accuracy rate of direct mutation detection is up to 95%, which is significantly higher than DNA-based method. Meanwhile, this approach correctly predicted seven out of eight (87.5%) embryos that failed to implant. Of six embryos that are predicted to implant successfully, four met such expectations (66.7%). Notably, this method is superior at conditions for mutation detection that are challenging when using DNA-based PGT, such as when detecting pathogenic genes with a high de novo rate, multiple pseudogenes, or an abnormal expansion of CAG trinucleotide repeats. Taken together, this study establishes the feasibility of an RNA-based PGT that is also informative for assessing implantation competence.
Collapse
|
4
|
Wang Y, Yang JS, Zhao M, Chen JQ, Xie HX, Yu HY, Liu NH, Yi ZJ, Liang HL, Xing L, Jiang HL. Mitochondrial endogenous substance transport-inspired nanomaterials for mitochondria-targeted gene delivery. Adv Drug Deliv Rev 2024; 211:115355. [PMID: 38849004 DOI: 10.1016/j.addr.2024.115355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/16/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Mitochondrial genome (mtDNA) independent of nuclear gene is a set of double-stranded circular DNA that encodes 13 proteins, 2 ribosomal RNAs and 22 mitochondrial transfer RNAs, all of which play vital roles in functions as well as behaviors of mitochondria. Mutations in mtDNA result in various mitochondrial disorders without available cures. However, the manipulation of mtDNA via the mitochondria-targeted gene delivery faces formidable barriers, particularly owing to the mitochondrial double membrane. Given the fact that there are various transport channels on the mitochondrial membrane used to transfer a variety of endogenous substances to maintain the normal functions of mitochondria, mitochondrial endogenous substance transport-inspired nanomaterials have been proposed for mitochondria-targeted gene delivery. In this review, we summarize mitochondria-targeted gene delivery systems based on different mitochondrial endogenous substance transport pathways. These are categorized into mitochondrial steroid hormones import pathways-inspired nanomaterials, protein import pathways-inspired nanomaterials and other mitochondria-targeted gene delivery nanomaterials. We also review the applications and challenges involved in current mitochondrial gene editing systems. This review delves into the approaches of mitochondria-targeted gene delivery, providing details on the design of mitochondria-targeted delivery systems and the limitations regarding the various technologies. Despite the progress in this field is currently slow, the ongoing exploration of mitochondrial endogenous substance transport and mitochondrial biological phenomena may act as a crucial breakthrough in the targeted delivery of gene into mitochondria and even the manipulation of mtDNA.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Jing-Song Yang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Min Zhao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Jia-Qi Chen
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Hai-Xin Xie
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Hao-Yuan Yu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Na-Hui Liu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Zi-Juan Yi
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Hui-Lin Liang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Xing
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; College of Pharmacy, Yanbian University, Yanji 133002, China.
| |
Collapse
|
5
|
Zhao X, Xu Q, Wang Q, Liang X, Wang J, Jin H, Man Y, Guo D, Gao F, Tang X. Induced Self-Assembly of Vitamin E-Spermine/siRNA Nanocomplexes via Spermine/Helix Groove-Specific Interaction for Efficient siRNA Delivery and Antitumor Therapy. Adv Healthc Mater 2024; 13:e2303186. [PMID: 38234201 DOI: 10.1002/adhm.202303186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/27/2023] [Indexed: 01/19/2024]
Abstract
Gene therapy has been one of potential strategies for the treatment of different diseases, where efficient and safe gene delivery systems are also extremely in need. Current lipid nanoparticles (LNP) technology highly depends on the packing and condensation of nucleic acids with amine moieties. Here, an attempt to covalently link two natural compounds, spermine and vitamin E, is made to develop self-assembled nucleic acid delivery systems. Among them, the spermine moieties specifically interact with the major groove of siRNA helix through salt bridge interaction, while vitamin E moieties are located around siRNA duplex. Such amphiphilic vitamin E-spermine/siRNA complexes can further self-assemble into nanocomplexes like multiblade wheels. Further studies indicate that these siRNA nanocomplexes with the neutrally charged surface of vitamin E can enter cells via caveolin/lipid raft mediated endocytosis pathway and bypass lysosome trapping. With these self-assembled delivery systems, efficient siRNA delivery is successfully achieved for Eg5 and Survivin gene silencing as well as DNA plasmid delivery. Further in vivo study indicates that VE-Su-Sper/DSPE-PEG2000/siSurvivin self-assembled nanocomplexes can accumulate in cancer cells and gradually release siRNA in tumor tissues and show significant antitumor effect in vivo. The self-assembled delivery system provides a novel strategy for highly efficient siRNA delivery.
Collapse
Affiliation(s)
- Xiaoran Zhao
- State Key Laboratory of Natural and Biomimetic Drugs and Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, NO. 38, Xueyuan Rd., Beijing, 100191, China
| | - Qi Xu
- State Key Laboratory of Natural and Biomimetic Drugs and Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, NO. 38, Xueyuan Rd., Beijing, 100191, China
| | - Qian Wang
- State Key Laboratory of Natural and Biomimetic Drugs and Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, NO. 38, Xueyuan Rd., Beijing, 100191, China
| | - Xingxing Liang
- State Key Laboratory of Natural and Biomimetic Drugs and Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, NO. 38, Xueyuan Rd., Beijing, 100191, China
| | - Jing Wang
- State Key Laboratory of Natural and Biomimetic Drugs and Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, NO. 38, Xueyuan Rd., Beijing, 100191, China
| | - Hongwei Jin
- State Key Laboratory of Natural and Biomimetic Drugs and Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, NO. 38, Xueyuan Rd., Beijing, 100191, China
| | - Yizhi Man
- School of Chemistry and Materials Science, Anhui Normal University, NO. 189 Jiuhua South Rd., Anhui, Wuhu, 241002, China
| | - Dongyang Guo
- State Key Laboratory of Natural and Biomimetic Drugs and Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, NO. 38, Xueyuan Rd., Beijing, 100191, China
| | - Feng Gao
- School of Chemistry and Materials Science, Anhui Normal University, NO. 189 Jiuhua South Rd., Anhui, Wuhu, 241002, China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs and Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, NO. 38, Xueyuan Rd., Beijing, 100191, China
| |
Collapse
|
6
|
Piletska E, Veron P, Bertin B, Mingozzi F, Jones D, Norman RL, Earley J, Karim K, Garcia-Cruz A, Piletsky S. Analysis of Adeno-Associated Virus Serotype 8 (AAV8)-antibody complexes using epitope mapping by molecular imprinting leads to the identification of Fab peptides that potentially evade AAV8 neutralisation. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 52:102691. [PMID: 37329939 DOI: 10.1016/j.nano.2023.102691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/19/2023]
Abstract
Gene therapy is a promising approach for treating genetic disorders by delivering therapeutic genes to replace or correct malfunctioning genes. However, the introduced gene therapy vector can trigger an immune response, leading to reduced efficacy and potential harm to the patient. To improve the efficiency and safety of gene therapy, preventing the immune response to the vector is crucial. This can be achieved through the use of immunosuppressive drugs, vector engineering to evade the immune system, or delivery methods that bypass the immune system altogether. By reducing the immune response, gene therapy can deliver therapeutic genes more effectively and potentially cure genetic diseases. In this study, a novel molecular imprinting technique, combined with mass-spectrometry and bioinformatics, was used to identify four antigen-binding fragments (Fab) sequences of Adeno-Associated Virus (AAV) - neutralising antibodies capable of binding to AAV. The identified Fab peptides were shown to prevent AAV8's binding to antibodies, demonstrating their potential to improve gene therapy efficiency by preventing the immune response.
Collapse
Affiliation(s)
- Elena Piletska
- School of Chemistry, University of Leicester, LE1 7RH, UK.
| | - Philippe Veron
- Laboratory of Immunology, Genethon, 91002 Evry Cedex, France
| | | | | | - Donald Jones
- Department of Cardiovascular Sciences and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester LE3 9QP, UK; Department of Cancer Studies, University of Leicester, Leicester LE2 7LX, UK
| | - Rachel L Norman
- Cancer Research Centre, RKCSB, University of Leicester, Leicester LE1 7RH, UK; Van Geest MS Omics Facility, University of Leicester, Leicester LE1 9HN, UK
| | - Joseph Earley
- School of Chemistry, University of Leicester, LE1 7RH, UK
| | - Kal Karim
- School of Chemistry, University of Leicester, LE1 7RH, UK
| | | | | |
Collapse
|
7
|
He N, Zhang X, Xie P, He J, Lv Z. Inhibition of posterior capsule opacification by adenovirus-mediated delivery of short hairpin RNAs targeting TERT in a rabbit model. Curr Eye Res 2023:1-9. [PMID: 36946600 DOI: 10.1080/02713683.2023.2194587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
PURPOSE Posterior capsule opacification (PCO) is the most common postoperative complication after cataract surgery and cannot yet be eliminated. Here, we investigated the inhibitory effects of telomerase reverse transcriptase (TERT) gene silencing on PCO in a rabbit model. METHODS After rabbit lens epithelial cells (LECs) were treated with adenovirus containing short hairpin RNAs (shRNA) targeting TERT (shTERT group), adenovirus containing scramble nonsense control shRNA (shNC group) or PBS (control group), quantitative real-time polymerase chain reaction and Western blotting were used to measure the expression levels of TERT, and a scratch assay was performed to assess the LEC migration. New Zealand white rabbits underwent sham cataract surgery followed by an injection of adenovirus carrying shTERT into their capsule bag. The intraocular pressure and anterior segment inflammation were evaluated on certain days, and EMT markers (α-SMA and E-cadherin) were evaluated by Western blotting and immunofluorescence. The telomerase activity of the capsule bag was detected by ELISA. At 28 days postoperatively, haematoxylin and eosin staining of the cornea and iris and electron microscopy of the posterior capsule were performed. RESULTS Application of shTERT to LECs downregulated the expression levels of TERT mRNA and protein. The scratch assay results showed a decrease in the migration of LECs in the shTERT group. In vivo, shTERT decreased PCO formation after cataract surgery in rabbits and downregulated the expression of EMT markers, as determined by Western blotting and immunofluorescence. In addition, telomerase activity was suppressed in the capsule bag. Despite slight inflammation in the iris, histologic results revealed no toxic effects in the cornea and iris. CONCLUSION TERT silencing effectively reduces the migration and proliferation of LECs and the formation of PCO. Our findings suggest that TERT silencing may be a potential preventive strategy for PCO.
Collapse
Affiliation(s)
- Na He
- Department of Ophthalmology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China
| | - Xiangxiang Zhang
- Department of Ophthalmology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China
| | - Peiling Xie
- Department of Ophthalmology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China
| | - Jialing He
- Department of Ophthalmology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China
| | - Zhigang Lv
- Department of Ophthalmology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China
| |
Collapse
|
8
|
Newman NJ, Yu-Wai-Man P, Biousse V, Carelli V. Understanding the molecular basis and pathogenesis of hereditary optic neuropathies: towards improved diagnosis and management. Lancet Neurol 2023; 22:172-188. [PMID: 36155660 DOI: 10.1016/s1474-4422(22)00174-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/30/2022] [Accepted: 04/13/2022] [Indexed: 01/25/2023]
Abstract
Hereditary optic neuropathies result from defects in the human genome, both nuclear and mitochondrial. The two main and most recognised phenotypes are dominant optic atrophy and Leber hereditary optic neuropathy. Advances in modern molecular diagnosis have expanded our knowledge of genotypes and phenotypes of inherited disorders that affect the optic nerve, either alone or in combination, with various forms of neurological and systemic degeneration. A unifying feature in the pathophysiology of these disorders appears to involve mitochondrial dysfunction, suggesting that the retinal ganglion cells and their axons are especially susceptible to perturbations in mitochondrial homoeostasis. As we better understand the pathogenesis behind these genetic diseases, aetiologically targeted therapies are emerging and entering into clinical trials, including treatments aimed at halting the cascade of neurodegeneration, replacing or editing the defective genes or their protein products, and potentially regenerating damaged optic nerves, as well as preventing generational disease transmission.
Collapse
MESH Headings
- Humans
- Optic Nerve Diseases/diagnosis
- Optic Nerve Diseases/genetics
- Optic Nerve Diseases/therapy
- Optic Atrophy, Hereditary, Leber/diagnosis
- Optic Atrophy, Hereditary, Leber/genetics
- Optic Atrophy, Hereditary, Leber/therapy
- Optic Atrophy, Autosomal Dominant/diagnosis
- Optic Atrophy, Autosomal Dominant/genetics
- Optic Atrophy, Autosomal Dominant/therapy
- Optic Nerve
- Mitochondria/genetics
- Mitochondria/metabolism
- Mitochondria/pathology
- DNA, Mitochondrial/genetics
Collapse
Affiliation(s)
- Nancy J Newman
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA; Department of Neurological Surgery, Emory University School of Medicine, Atlanta, GA, USA.
| | - Patrick Yu-Wai-Man
- Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK; Moorfields Eye Hospital, London, UK; UCL Institute of Ophthalmology, University College London, London, UK
| | - Valérie Biousse
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Valerio Carelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
9
|
Smeitink J, van Maanen R, de Boer L, Ruiterkamp G, Renkema H. A randomised placebo-controlled, double-blind phase II study to explore the safety, efficacy, and pharmacokinetics of sonlicromanol in children with genetically confirmed mitochondrial disease and motor symptoms ("KHENERGYC"). BMC Neurol 2022; 22:158. [PMID: 35477351 PMCID: PMC9044835 DOI: 10.1186/s12883-022-02685-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/18/2022] [Indexed: 11/21/2022] Open
Abstract
Background Methods The KHENERGYC trial will be a phase II, randomised, double-blinded, placebo-controlled (DBPC), parallel-group study in the paediatric population (birth up to and including 17 years). The study will be recruiting 24 patients suffering from motor symptoms due to genetically confirmed PMD. The trial will be divided into two phases. The first phase of the study will be an adaptive pharmacokinetic (PK) study with four days of treatment, while the second phase will include randomisation of the participants and evaluating the efficacy and safety of sonlicromanol over 6 months. Discussion Effective novel therapies for treating PMDs in children are an unmet need. This study will assess the pharmacokinetics, efficacy, and safety of sonlicromanol in children with genetically confirmed PMDs, suffering from motor symptoms. Trial registration clinicaltrials.gov: NCT04846036, registered April 15, 2021. European Union Clinical Trial Register (EUDRACT number: 2020–003124-16), registered October 20, 2020. CCMO registration: NL75221.091.20, registered on October 7, 2020.
Collapse
Affiliation(s)
- Jan Smeitink
- Khondrion BV, Transistorweg 5C, M Building, 6534, AT, Nijmegen, The Netherlands.
| | - Rob van Maanen
- Khondrion BV, Transistorweg 5C, M Building, 6534, AT, Nijmegen, The Netherlands
| | - Lonneke de Boer
- Radboud Center for Mitochondrial Medicine, Department of Pediatrics, Radboud University Medical Center Nijmegen, Geert Grooteplein Zuid 10, 6500 HB, Nijmegen, The Netherlands
| | - Gerrit Ruiterkamp
- Khondrion BV, Transistorweg 5C, M Building, 6534, AT, Nijmegen, The Netherlands
| | - Herma Renkema
- Khondrion BV, Transistorweg 5C, M Building, 6534, AT, Nijmegen, The Netherlands
| |
Collapse
|