1
|
Wang Y, Wang S, Zhuang D, Zan L, Zhu J. Quercetin-enriched animal-free scaffolds for promoted cell proliferation and differentiation in cultured meat production. Food Chem 2024; 464:141622. [PMID: 39423531 DOI: 10.1016/j.foodchem.2024.141622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
To solve the challenges posed by increasing meat consumption, it is imperative to develop polysaccharide composite edible scaffolds for cell-cultured meat production using novel food production technologies. This study developed some non-animal-origin polysaccharide composite scaffolds for cell-cultured meat production, based on chitin‑sodium alginate and crosslinked with quercetin. The results indicated that the chitin‑sodium alginate-quercetin (CH-SA-QR) scaffolds exhibited a porous and loose structure, and excellent mechanical support capability and cell adhesion sites. Meanwhile, QR1 and QR1.5 scaffolds were screened by immunofluorescence staining, RT-qPCR, and SEM imaging results to facilitate the proliferation and differentiation of cells and enhance the generation of myotube fusion and extracellular matrix protein. Importantly, the texture of the fried cultured meat was similar to traditional beef or even more tender, while the color appearance of the cultured meat was different from beef, but more similar to fried meat cutlets. These results suggest that cultured meat produced based on CH-SA-QR scaffolds could provide consumers with more choices.
Collapse
Affiliation(s)
- Yafang Wang
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shancan Wang
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Di Zhuang
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Linsen Zan
- Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Zhu
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
2
|
Fasciano S, Wheba A, Ddamulira C, Wang S. Recent advances in scaffolding biomaterials for cultivated meat. BIOMATERIALS ADVANCES 2024; 162:213897. [PMID: 38810509 DOI: 10.1016/j.bioadv.2024.213897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/07/2024] [Accepted: 05/15/2024] [Indexed: 05/31/2024]
Abstract
The emergence of cultivated meat provides a sustainable and ethical alternative to traditional animal agriculture, highlighting its increasing importance in the food industry. Biomaterial scaffolds are critical components in cultivated meat production for enabling cell adhesion, proliferation, differentiation, and orientation. While there's extensive research on scaffolding biomaterials, applying them to cultivated meat production poses distinct challenges, with each material offering its own set of advantages and disadvantages. This review summarizes the most recent scaffolding biomaterials used in the last five years for cell-cultured meat, detailing their respective advantages and disadvantages. We suggest future research directions and provide recommendations for scaffolds that support scalable, cost-effective, and safe high-quality meat production. Additionally, we highlight commercial challenges cultivated meat faces, encompassing bioreactor design, cell culture mediums, and regulatory and food safety issues. In summary, this review provides a comprehensive guide and valuable insights for researchers and companies in the field of cultivated meat production.
Collapse
Affiliation(s)
- Samantha Fasciano
- Department of Cellular and Molecular Biology, University of New Haven, West Haven, CT, 06516, USA
| | - Anas Wheba
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, CT, 06516, USA
| | - Christopher Ddamulira
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, CT, 06516, USA
| | - Shue Wang
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, CT, 06516, USA.
| |
Collapse
|
3
|
Park S, Hong Y, Park S, Kim W, Gwon Y, Sharma H, Jang KJ, Kim J. Engineering Considerations on Large-Scale Cultured Meat Production. TISSUE ENGINEERING. PART B, REVIEWS 2024; 30:423-435. [PMID: 38062728 DOI: 10.1089/ten.teb.2023.0184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
In recent decades, cultured meat has received considerable interest as a sustainable alternative to traditional meat products, showing promise for addressing the inherent problems associated with conventional meat production. However, current limitations on the scalability of production and extremely high production costs have prevented their widespread adoption. Therefore, it is important to develop novel engineering strategies to overcome the current limitations in large-scale cultured meat production. Such engineering considerations have the potential for advancements in cultured meat production by providing innovative and effective solutions to the prevailing challenges. In this review, we discuss how engineering strategies have been utilized to advance cultured meat technology by categorizing the production processes of cultured meat into three distinct steps: (1) cell preparation; (2) cultured meat fabrication; and (3) cultured meat maturation. For each step, we provide a comprehensive discussion of the recent progress and its implications. In particular, we focused on the engineering considerations involved in each step of cultured meat production, with specific emphasis on large-scale production.
Collapse
Affiliation(s)
- Sangbae Park
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, Republic of Korea
- Institute of Nano-Stem Cells Therapeutics, NANOBIOSYSTEM Co., Ltd, Gwangju, Republic of Korea
- Department of Biosystems Engineering, Seoul National University, Seoul, Republic of Korea
| | - Yeonggeol Hong
- Department of Bio-Systems Engineering, Institute of Smart Farm, Gyeongsang National University, Jinju, Republic of Korea
| | - Sunho Park
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, Republic of Korea
- Department of Bio-Industrial Machinery Engineering, Pusan National University, Miryang, Republic of Korea
| | - Woochan Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, Republic of Korea
| | - Yonghyun Gwon
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, Republic of Korea
| | - Harshita Sharma
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, Republic of Korea
| | - Kyoung-Je Jang
- Department of Bio-Systems Engineering, Institute of Smart Farm, Gyeongsang National University, Jinju, Republic of Korea
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, Republic of Korea
- Smart Farm Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Jangho Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, Republic of Korea
- Institute of Nano-Stem Cells Therapeutics, NANOBIOSYSTEM Co., Ltd, Gwangju, Republic of Korea
| |
Collapse
|
4
|
Lee M, Choi W, Lee JM, Lee ST, Koh WG, Hong J. Flavor-switchable scaffold for cultured meat with enhanced aromatic properties. Nat Commun 2024; 15:5450. [PMID: 38982039 PMCID: PMC11233498 DOI: 10.1038/s41467-024-49521-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/07/2024] [Indexed: 07/11/2024] Open
Abstract
Cultured meat is emerging as a new type of food that can provide animal protein in a sustainable way. Many previous studies employed various types of scaffolds to develop cultured meat with similar properties to slaughtered meat. However, important properties such as flavor were not discussed, even though they determine the quality of food. Flavor characteristics vary dramatically depending on the amount and types of amino acids and sugars that produce volatile compounds through the Maillard reaction upon cooking. In this study, a flavor-switchable scaffold is developed to release meaty flavor compounds only upon cooking temperature mimicking the Maillard reaction of slaughtered meat. By introducing a switchable flavor compound (SFC) into a gelatin-based hydrogel, we fabricate a functional scaffold that can enhance the aromatic properties of cultured meat. The temperature-responsive SFC stably remains in the scaffold during the cell culture period and can be released at the cooking temperature. Surprisingly, cultured meat fabricated with this flavor-switchable scaffold exhibits a flavor pattern similar to that of beef. This research suggests a strategy to develop cultured meat with enhanced sensorial characteristics by developing a functional scaffold which can mimic the natural cooking flavors of conventional meat.
Collapse
Affiliation(s)
- Milae Lee
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, Seodaemun-gu, Seoul, Republic of Korea
| | - Woojin Choi
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, Seodaemun-gu, Seoul, Republic of Korea
| | - Jeong Min Lee
- Department of Applied Animal Science, Kangwon National University, Chuncheon-si, Gangwon-do, Republic of Korea
| | - Seung Tae Lee
- Department of Applied Animal Science, Kangwon National University, Chuncheon-si, Gangwon-do, Republic of Korea
| | - Won-Gun Koh
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, Seodaemun-gu, Seoul, Republic of Korea
| | - Jinkee Hong
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, Seodaemun-gu, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Minić S, Gligorijević N, Veličković L, Nikolić M. Narrative Review of the Current and Future Perspectives of Phycobiliproteins' Applications in the Food Industry: From Natural Colors to Alternative Proteins. Int J Mol Sci 2024; 25:7187. [PMID: 39000294 PMCID: PMC11241428 DOI: 10.3390/ijms25137187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Vivid-colored phycobiliproteins (PBPs) have emerging potential as food colors and alternative proteins in the food industry. However, enhancing their application potential requires increasing stability, cost-effective purification processes, and consumer acceptance. This narrative review aimed to highlight information regarding the critical aspects of PBP research that is needed to improve their food industry potential, such as stability, food fortification, development of new PBP-based food products, and cost-effective production. The main results of the literature review show that polysaccharide and protein-based encapsulations significantly improve PBPs' stability. Additionally, while many studies have investigated the ability of PBPs to enhance the techno-functional properties, like viscosity, emulsifying and stabilizing activity, texture, rheology, etc., of widely used food products, highly concentrated PBP food products are still rare. Therefore, much effort should be invested in improving the stability, yield, and sensory characteristics of the PBP-fortified food due to the resulting unpleasant sensory characteristics. Considering that most studies focus on the C-phycocyanin from Spirulina, future studies should concentrate on less explored PBPs from red macroalgae due to their much higher production potential, a critical factor for positioning PBPs as alternative proteins.
Collapse
Affiliation(s)
- Simeon Minić
- Department of Biochemistry and Center of Excellence for Molecular Food Sciences, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Nikola Gligorijević
- Department of Chemistry, Institute of Chemistry, Technology, and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Luka Veličković
- Department of Biochemistry and Center of Excellence for Molecular Food Sciences, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Milan Nikolić
- Department of Biochemistry and Center of Excellence for Molecular Food Sciences, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| |
Collapse
|
6
|
Wang X, Wang M, Xu Y, Yin J, Hu J. A 3D-printable gelatin/alginate/ε-poly-l-lysine hydrogel scaffold to enable porcine muscle stem cells expansion and differentiation for cultured meat development. Int J Biol Macromol 2024; 271:131980. [PMID: 38821790 DOI: 10.1016/j.ijbiomac.2024.131980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 06/02/2024]
Abstract
The mass proliferation of seed cells and imitation of meat structures remain challenging for cell-cultured meat production. With excellent biocompatibility, high water content and porosity, hydrogels are frequently-studied materials for anchorage-dependent cell scaffolds in biotechnology applications. Herein, a scaffold based on gelatin/alginate/ε-Poly-l-lysine (GAL) hydrogel is developed for skeletal muscle cells, which has a great prospect in cell-cultured meat production. In this work, the hydrogel GAL-4:1, composed of gelatin (5 %, w/v), alginate (5 %, w/v) and ε-Poly-l-lysine (molar ratio vs. alginate: 4:1) is selected as cell scaffold based on Young's modulus of 11.29 ± 1.94 kPa, satisfactory shear-thinning property and suitable porous organized structure. The commercially available C2C12 mouse skeletal myoblasts and porcine muscle stem cells (PMuSCs), are cultured in the 3D-printed scaffold. The cells show strong ability of attachment, proliferation and differentiation after induction, showing high biocompatibility. Furthermore, the cellular bioprinting is performed with GAL-4:1 hydrogel and freshly extracted PMuSCs. The extracted PMuSCs exhibit high viability and display early myogenesis (desmin) on the 3D scaffold, suggesting the great potential of GAL hydrogel as 3D cellular constructs scaffolds. Overall, we develop a novel GAL hydrogel as a 3D-printed bioactive platform for cultured meat research.
Collapse
Affiliation(s)
- Xiang Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Meiling Wang
- Wuxi School of Medicine, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, PR China
| | - Yiqiang Xu
- Wuxi School of Medicine, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, PR China
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China.
| | - Jing Hu
- Wuxi School of Medicine, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, PR China.
| |
Collapse
|
7
|
Chen R, Ren S, Li S, Zhou H, Jia X, Han D, Gao Z. Synthetic biology for the food industry: advances and challenges. Crit Rev Biotechnol 2024:1-25. [PMID: 38797660 DOI: 10.1080/07388551.2024.2340530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 03/13/2024] [Indexed: 05/29/2024]
Abstract
As global environmental pollution increases, climate change worsens, and population growth continues, the challenges of securing a safe, nutritious, and sustainable food supply have become enormous. This has led to new requirements for future food supply methods and functions. The use of synthetic biology technology to create cell factories suitable for food industry production and renewable raw material conversion into: important food components, functional food additives, and nutritional chemicals, represents an important method of solving the problems faced by the food industry. Here, we review the recent progress and applications of synthetic biology in the food industry, including alternatives to: traditional (artificial pigments, meat, starch, and milk), functional (sweeteners, sugar substitutes, nutrients, flavoring agents), and green (green fiber, degradable packing materials, green packaging materials and food traceability) foods. Furthermore, we discuss the future prospects of synthetic biology-based applications in the food industry. Thus, this review may serve as a reference for research on synthetic biology in the: food safety, food nutrition, public health, and health-related fields.
Collapse
Affiliation(s)
- Ruipeng Chen
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Shuyue Ren
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Shuang Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Huanying Zhou
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xuexia Jia
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Dianpeng Han
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| |
Collapse
|
8
|
Lee DY, Park J, Han D, Choi Y, Kim JS, Mariano E, Lee J, Yun SH, Lee SY, Park S, Bhang SH, Hur SJ. Analysis of current technology status for the industrialization of cultured meat. Crit Rev Food Sci Nutr 2024:1-32. [PMID: 38764334 DOI: 10.1080/10408398.2024.2345817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Cultured meat is expected to become an important material for future food production; however, contrary to initial expectations, the full-scale industrialization of cultured meat is slow and the actual level and opened technology amount is very limited. This study reviews the publicly available technologies of cultured meat and suggests future developmental directions and research agenda. As a result of analyzing papers, patents, and press releases published over the past 10 years, it was found that cultured meat production technology is still at the prototype production level. This is because most papers published are about culture medium and scaffold development, culture conditions, and there is almost no research on finished cultured meat products. Worldwide, most of the filed patents are for producing cultured meat principles; most of them do not use food-grade materials and are not economically feasible for industrialization. Therefore, future research on the industrialization of cultured meat should focus on effective acquisition technologies for satellite cells; cell lineage and undifferentiated state maintenance technologies; the development of serum-free media and culture devices; the prevention of genetic modification, safety verification, and mass production. Furthermore, basic research on mechanisms and influencing factors related to cultured meat production is warranted.
Collapse
Affiliation(s)
- Da Young Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Korea
| | - Jinmo Park
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Korea
| | - Dahee Han
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Korea
| | - Yeongwoo Choi
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Korea
| | - Jin Soo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Korea
| | - Ermie Mariano
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Korea
| | - Juhyun Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Korea
| | - Seung Hyeon Yun
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Korea
| | - Seung Yun Lee
- Division of Animal Science, Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Sungkwon Park
- Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul, South Korea
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sun Jin Hur
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Korea
| |
Collapse
|
9
|
Albrecht FB, Ahlfeld T, Klatt A, Heine S, Gelinsky M, Kluger PJ. Biofabrication's Contribution to the Evolution of Cultured Meat. Adv Healthc Mater 2024; 13:e2304058. [PMID: 38339837 PMCID: PMC11468272 DOI: 10.1002/adhm.202304058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Indexed: 02/12/2024]
Abstract
Cultured Meat (CM) is a growing field in cellular agriculture, driven by the environmental impact of conventional meat production, which contributes to climate change and occupies ≈70% of arable land. As demand for meat alternatives rises, research in this area expands. CM production relies on tissue engineering techniques, where a limited number of animal cells are cultured in vitro and processed to create meat-like tissue comprising muscle and adipose components. Currently, CM is primarily produced on a small scale in pilot facilities. Producing a large cell mass based on suitable cell sources and bioreactors remains challenging. Advanced manufacturing methods and innovative materials are required to subsequently process this cell mass into CM products on a large scale. Consequently, CM is closely linked with biofabrication, a suite of technologies for precisely arranging cellular aggregates and cell-material composites to construct specific structures, often using robotics. This review provides insights into contemporary biomedical biofabrication technologies, focusing on significant advancements in muscle and adipose tissue biofabrication for CM production. Novel materials for biofabricating CM are also discussed, emphasizing their edibility and incorporation of healthful components. Finally, initial studies on biofabricated CM are examined, addressing current limitations and future challenges for large-scale production.
Collapse
Affiliation(s)
| | - Tilman Ahlfeld
- Technische Universität DresdenCentre for Translational BoneJoint and Soft Tissue Research01307DresdenGermany
| | - Annemarie Klatt
- Reutlingen UniversityReutlingen Research Institute72762ReutlingenGermany
| | - Simon Heine
- Reutlingen UniversityReutlingen Research Institute72762ReutlingenGermany
| | - Michael Gelinsky
- Technische Universität DresdenCentre for Translational BoneJoint and Soft Tissue Research01307DresdenGermany
| | | |
Collapse
|
10
|
Tian X, Zhang K, Zhang Y, Wang N, Wang H, Xu H, Guang S. Preparation and mechanism study of hydrogen bond induced enhanced composited gelatin microsphere probe. Int J Biol Macromol 2024; 266:130752. [PMID: 38467229 DOI: 10.1016/j.ijbiomac.2024.130752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/25/2024] [Accepted: 03/07/2024] [Indexed: 03/13/2024]
Abstract
Fluorescent probes offer rapid and efficient detection of metal ions. However, their properties, including high biotoxicity and low detection limits, often limit their utility in biological systems. In this study, we used a microfluidic approach to fabricate photocrosslinked gelatin microspheres with a micropore, providing a straightforward method for loading fluorescent probes into these microspheres based on the adsorption effect and hydrogen bonding interaction. The gelatin microsphere loaded probes, GelMA/TPA-DAP and GelMA/TPA-ISO-HNO were designed and obtained. The results show that these probes exhibit obviously low biotoxicity compared to the original molecular probes TPA-DAP and TPA-ISO-HNO. Simultaneously, it is found that GelMA/TPA-DAP and GelMA/TPA-ISO-HNO have better detection sensitivity, the detection limits are 35.4 nM for Cu2+, 16.5 nM for Co2+ and 20.5 nM for Ni2+ for GelMA/TPA-DAP probe. Compared to the original TPA-DAP they are improved by 37.2 %, 26.3 % and 22.6 % respectively. The corresponding coordination constants were 10.8 × 105, 4.11×105 and 6.04×105, which is larger than homologous TPA-DAP. Similar results were also verified in the GelMA/TPA-ISO-HNO probe. The mechanism was investigated in detail by theoretical simulations and advanced spectral analysis. The density functional theory (DFT) simulations show that the probes are anchored inside the microspheres and the molecular structure is modified due to the hydrogen bonding interaction between the microsphere and the molecular probe, which makes GelMA/TPA-DAP exhibit stronger coordination capacity with metal ions than homologous TPA-DAP. In addition, the adsorption effect also provided some synergistic enhancement contribution. Meanwhile, cellular experiments have also shown that the composite microspheres can improve the biocompatibility of the probe and will provide a wider range of applications towards bioassay. This simple and effective method will provide a convenient way to improve the performance of fluorescent probes and their biological applications.
Collapse
Affiliation(s)
- Xiaoyong Tian
- State Key Laboratory for Modification of Chemical Fibers and Polymers Materials, College of Materials Sciences and Engineering, Donghua University, Shanghai 201620, China
| | - Kezhen Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymers Materials, College of Materials Sciences and Engineering, Donghua University, Shanghai 201620, China
| | - Yu Zhang
- College of Chemistry, and Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Nan Wang
- College of Chemistry, and Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Huaping Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymers Materials, College of Materials Sciences and Engineering, Donghua University, Shanghai 201620, China.
| | - Hongyao Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymers Materials, College of Materials Sciences and Engineering, Donghua University, Shanghai 201620, China.
| | - Shanyi Guang
- College of Chemistry, and Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| |
Collapse
|
11
|
Lee M, Park S, Choi B, Choi W, Lee H, Lee JM, Lee ST, Yoo KH, Han D, Bang G, Hwang H, Koh WG, Lee S, Hong J. Cultured meat with enriched organoleptic properties by regulating cell differentiation. Nat Commun 2024; 15:77. [PMID: 38167486 PMCID: PMC10762223 DOI: 10.1038/s41467-023-44359-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
Research on cultured meat has primarily focused on the mass proliferation or differentiation of muscle cells; thus, the food characteristics of cultured meat remain relatively underexplored. As the quality of meat is determined by its organoleptic properties, cultured meat with similar sensory characteristics to animal-derived meat is highly desirable. In this study, we control the organoleptic and nutritional properties of cultured meat by tailoring the 2D differentiation of primary bovine myoblasts and primary bovine adipose-derived mesenchymal stem cells on gelatin/alginate scaffolds with varying stiffness. We assess the effect of muscle and adipose differentiation quality on the sensory properties of cultured meat. Thereafter, we fabricate cultured meat with similar sensory profiles to that of conventional beef by assembling the muscle and adipose constructs composed of highly differentiated cells. We introduce a strategy to produce cultured meat with enriched food characteristics by regulating cell differentiation with scaffold engineering.
Collapse
Affiliation(s)
- Milae Lee
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Sohyeon Park
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Bumgyu Choi
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Woojin Choi
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyun Lee
- Department of Animal Life Science, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Jeong Min Lee
- Department of Applied Animal Life Science, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Seung Tae Lee
- Department of Animal Life Science, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
- Department of Applied Animal Life Science, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Ki Hyun Yoo
- Simple Planet, 805, 34, sangwan 12-gil, Seongdong-gu, Seoul, 04790, Republic of Korea
| | - Dongoh Han
- Simple Planet, 805, 34, sangwan 12-gil, Seongdong-gu, Seoul, 04790, Republic of Korea
| | - Geul Bang
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
| | - Heeyoun Hwang
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Won-Gun Koh
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Sangmin Lee
- School of Mechanical Engineering, Chung-ang University, 84, Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea.
| | - Jinkee Hong
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
12
|
Chen Y, Zhang W, Ding X, Ding S, Tang C, Zeng X, Wang J, Zhou G. Programmable scaffolds with aligned porous structures for cell cultured meat. Food Chem 2024; 430:137098. [PMID: 37562260 DOI: 10.1016/j.foodchem.2023.137098] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/26/2023] [Accepted: 08/02/2023] [Indexed: 08/12/2023]
Abstract
Porous scaffolds for cell cultured meat are currently limited in the food-grade material requirements, the cell adhesion, proliferation, and differentiation capacities, and the ignored appearance design. We proposed programmable scaffolds specially tailored for cell cultured meat. The scaffold with aligned porous structures was fabricated with the ice-templated directional freeze-drying of the food-grade collagen hydrogel. Due to the abundant tripeptide presence and well-aligned porous structures, the scaffold could not only provide sites for cell adhesion and proliferation, but also promote the oriented growth and differentiation of cells. The up-regulation of myogenic related genes, synthesis of myogenic related proteins and formation of matured myotubes furtherly proved the differentiation of cells on aligned scaffold. These characteristics would facilitate the traditional meat characteristics simulation of cell cultured meat in term of texture and microstructure. Meanwhile, patterned scaffolds were achievable as well with the help of mold-assisted ice templating, which would improve the people's interest, recognition, and acceptance of the tailored cell cultured meat. These characteristics indicate great application prospects of the proposed programmable scaffolds in cell cultured meat.
Collapse
Affiliation(s)
- Yichun Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenhui Zhang
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing 210031, China
| | - Xi Ding
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shijie Ding
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Changbo Tang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xianming Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; College of Artificial Intelligence, Nanjing Agricultural University, Nanjing 210031, China.
| | - Guanghong Zhou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
13
|
Zhu G, Gao D, Li L, Yao Y, Wang Y, Zhi M, Zhang J, Chen X, Zhu Q, Gao J, Chen T, Zhang X, Wang T, Cao S, Ma A, Feng X, Han J. Generation of three-dimensional meat-like tissue from stable pig epiblast stem cells. Nat Commun 2023; 14:8163. [PMID: 38071210 PMCID: PMC10710416 DOI: 10.1038/s41467-023-44001-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Cultured meat production has emerged as a breakthrough technology for the global food industry with the potential to reduce challenges associated with environmental sustainability, global public health, animal welfare, and competition for food between humans and animals. The muscle stem cell lines currently used for cultured meat cannot be passaged in vitro for extended periods of time. Here, we develop a directional differentiation system of porcine pre-gastrulation epiblast stem cells (pgEpiSCs) with stable cellular features and achieve serum-free myogenic differentiation of the pgEpiSCs. We show that the pgEpiSCs-derived skeletal muscle progenitor cells and skeletal muscle fibers have typical muscle cell characteristics and display skeletal muscle transcriptional features during myogenic differentiation. Importantly, we establish a three-dimensional differentiation system for shaping cultured tissue by screening plant-based edible scaffolds of non-animal origin, followed by the generation of pgEpiSCs-derived cultured meat. These advances provide a technical approach for the development of cultured meat.
Collapse
Affiliation(s)
- Gaoxiang Zhu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Dengfeng Gao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Linzi Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Yixuan Yao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yingjie Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Minglei Zhi
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jinying Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xinze Chen
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qianqian Zhu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jie Gao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Tianzhi Chen
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaowei Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Tong Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Suying Cao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Aijin Ma
- School of Food and Health, Beijing Technology and Business University, Beijing, China.
| | - Xianchao Feng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.
| | - Jianyong Han
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China.
| |
Collapse
|
14
|
Seo JW, Jung WK, Park YH, Bae H. Development of cultivable alginate fibers for an ideal cell-cultivated meat scaffold and production of hybrid cultured meat. Carbohydr Polym 2023; 321:121287. [PMID: 37739499 DOI: 10.1016/j.carbpol.2023.121287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/25/2023] [Accepted: 08/09/2023] [Indexed: 09/24/2023]
Abstract
Slaughtering animals for meat pose several challenges, including environmental pollution and ethical concerns. Scaffold-based cell-cultivated meat has been proposed as a solution to these problems, however, the utilization of animal-derived materials for scaffolding or the high cost of production remains a significant challenge. Alginate is an ideal material for cell-cultivated meat scaffolds but has poor cell adhesion properties. To address this issue, we achieved 82 % cell adhesion coverage by controlling the specific structure generated during the ionic crosslinking process of alginate. Post 11 days of culture; we evaluated cell adhesion, differentiation, and aligned cell networks. The cell growth increased by 12.7 % compared to the initial seeding concentration. Finally, we created hybrid cell-cultivated meat by combining single-cell protein from mycelium and cell-cultivated meat. This is non-animal based, edible, cost-effective, and has a desirable texture by blending cell-cultivated meat with a meat analogue. In summary, the creation of improved alginate fibers can effectively tackle various obstacles encountered in the manufacturing of cell-cultivated meat. This includes enhancing cell adhesion, reducing costs, and streamlining the production procedure.
Collapse
Affiliation(s)
- Jeong Wook Seo
- Department of Stem Cell and Regenerative Biotechnology, KU Convergence Science and Technology Institute, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; NoAH Biotech Co., Ltd., Suwon-si, Gyeonggi-do 16614, Republic of Korea
| | - Woo Kyung Jung
- NoAH Biotech Co., Ltd., Suwon-si, Gyeonggi-do 16614, Republic of Korea
| | - Yong Ho Park
- NoAH Biotech Co., Ltd., Suwon-si, Gyeonggi-do 16614, Republic of Korea; Department of Microbiology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hojae Bae
- Department of Stem Cell and Regenerative Biotechnology, KU Convergence Science and Technology Institute, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
15
|
Chen Y, Li L, Chen L, Shao W, Chen X, Fan X, Liu Y, Ding S, Xu X, Zhou G, Feng X. Gellan gum-gelatin scaffolds with Ca 2+ crosslinking for constructing a structured cell cultured meat model. Biomaterials 2023; 299:122176. [PMID: 37253307 DOI: 10.1016/j.biomaterials.2023.122176] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 05/03/2023] [Accepted: 05/20/2023] [Indexed: 06/01/2023]
Abstract
As an emerging technology to obtain protein by culturing animal-derived cells in vitro, it is crucial to construct 3D edible scaffolds to prepare structured cell cultured meat products. In this study, a scaffold based on gellan gum (GG)-gelatin (Gel) was prepared and further cross-linked with Ca2+. FTIR confirmed the electrostatic interaction between GG and Gel and the ionic cross-linking of Ca2+ and carboxyl groups, and SEM images showed the porous structure of the scaffolds. The staining results showed that scaffolds with high concentrations of Ca2+ had higher biocompatibility than scaffolds with low concentrations of Ca2+ and non-crosslinked scaffolds, and scaffolds Ca2+-GG2-Gel3-0.5 adhered to more cells and were more conducive to cell spreading. The immunofluorescence staining, SEM images, Western blot, and RT-qPCR showed that the scaffolds supported the proliferation and myogenic differentiation of chicken skeletal muscle satellite cells (CSMSCs) and myotubes were formed on the scaffolds. Finally, the scaffolds were stained and fried after culturing. The results of the textural and chromatic analysis showed that the texture and color of the scaffolds were similar to fresh meat and meat products. These results showed that ionically crosslinked GG-Gel scaffolds are biocompatible and stable for structured cell cultured meat models.
Collapse
Affiliation(s)
- Yan Chen
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China
| | - Linzi Li
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China
| | - Lin Chen
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China
| | - Wei Shao
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China
| | - Xiaohong Chen
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China
| | - Xiaojing Fan
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China
| | - Yaping Liu
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China
| | - Shijie Ding
- Lab of Meat Processing and Quality Control of EDU, College of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xinglian Xu
- Lab of Meat Processing and Quality Control of EDU, College of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Guanghong Zhou
- Lab of Meat Processing and Quality Control of EDU, College of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xianchao Feng
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
16
|
Samandari M, Saeedinejad F, Quint J, Chuah SXY, Farzad R, Tamayol A. Repurposing biomedical muscle tissue engineering for cellular agriculture: challenges and opportunities. Trends Biotechnol 2023; 41:887-906. [PMID: 36914431 PMCID: PMC11412388 DOI: 10.1016/j.tibtech.2023.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 03/13/2023]
Abstract
Cellular agriculture is an emerging field rooted in engineering meat-mimicking cell-laden structures using tissue engineering practices that have been developed for biomedical applications, including regenerative medicine. Research and industrial efforts are focused on reducing the cost and improving the throughput of cultivated meat (CM) production using these conventional practices. Due to key differences in the goals of muscle tissue engineering for biomedical versus food applications, conventional strategies may not be economically and technologically viable or socially acceptable. In this review, these two fields are critically compared, and the limitations of biomedical tissue engineering practices in achieving the important requirements of food production are discussed. Additionally, the possible solutions and the most promising biomanufacturing strategies for cellular agriculture are highlighted.
Collapse
Affiliation(s)
| | - Farnoosh Saeedinejad
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT, USA
| | - Jacob Quint
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT, USA
| | - Sharon Xin Ying Chuah
- Food Science and Human Nutrition Department, Florida Sea Grant and Global Food Systems Institute, University of Florida, Gainesville, FL, USA
| | - Razieh Farzad
- Food Science and Human Nutrition Department, Florida Sea Grant and Global Food Systems Institute, University of Florida, Gainesville, FL, USA.
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT, USA.
| |
Collapse
|
17
|
Choi B, Park S, Lee M, Jung S, Lee H, Bang G, Kim J, Hwang H, Yoo KH, Han D, Lee ST, Koh WG, Hong J. High protein-containing new food by cell powder meat. NPJ Sci Food 2023; 7:13. [PMID: 37041157 PMCID: PMC10090064 DOI: 10.1038/s41538-023-00191-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/20/2023] [Indexed: 04/13/2023] Open
Abstract
Demand for a new protein source to replace meat is increasing to solve various issues such as limited resources and food shortages. Diverse protein sources are being developed, but alternative proteins such as plants or insects need to improve people's perceptions and organoleptic properties. Therefore, cell-based meat research is intensively conducted, and most studies are aimed at scale-up and cost-down via the research of scaffolds and culture media. Here, we proposed a new food by cell powder meat (CPM), which has a high protein content and a meaty flavor. The powder was manufactured 76% more cost-effectively with less serum than the conventional culture medium and without 3D scaffold. Due to its comprehensive characteristics, the potential applicability of CPM in the cell-based meat industry could be expected.
Collapse
Affiliation(s)
- Bumgyu Choi
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Sohyeon Park
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Milae Lee
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Sungwon Jung
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyun Lee
- Department of Animal Life Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Geul Bang
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Daejeon, 28119, Republic of Korea
| | - Jiyu Kim
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Heeyoun Hwang
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Daejeon, 28119, Republic of Korea
| | - Ki Hyun Yoo
- SIMPLE Planet Inc., 48 Achasan-ro 17-gil, Seongdong-gu, Seoul, 04799, Republic of Korea
| | - Dongoh Han
- SIMPLE Planet Inc., 48 Achasan-ro 17-gil, Seongdong-gu, Seoul, 04799, Republic of Korea
| | - Seung Tae Lee
- Department of Animal Life Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Department of Applied Animal Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Won-Gun Koh
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jinkee Hong
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
18
|
Santos ACA, Camarena DEM, Roncoli Reigado G, Chambergo FS, Nunes VA, Trindade MA, Stuchi Maria-Engler S. Tissue Engineering Challenges for Cultivated Meat to Meet the Real Demand of a Global Market. Int J Mol Sci 2023; 24:6033. [PMID: 37047028 PMCID: PMC10094385 DOI: 10.3390/ijms24076033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 04/14/2023] Open
Abstract
Cultivated meat (CM) technology has the potential to disrupt the food industry-indeed, it is already an inevitable reality. This new technology is an alternative to solve the environmental, health and ethical issues associated with the demand for meat products. The global market longs for biotechnological improvements for the CM production chain. CM, also known as cultured, cell-based, lab-grown, in vitro or clean meat, is obtained through cellular agriculture, which is based on applying tissue engineering principles. In practice, it is first necessary to choose the best cell source and type, and then to furnish the necessary nutrients, growth factors and signalling molecules via cultivation media. This procedure occurs in a controlled environment that provides the surfaces necessary for anchor-dependent cells and offers microcarriers and scaffolds that favour the three-dimensional (3D) organisation of multiple cell types. In this review, we discuss relevant information to CM production, including the cultivation process, cell sources, medium requirements, the main obstacles to CM production (consumer acceptance, scalability, safety and reproducibility), the technological aspects of 3D models (biomaterials, microcarriers and scaffolds) and assembly methods (cell layering, spinning and 3D bioprinting). We also provide an outlook on the global CM market. Our review brings a broad overview of the CM field, providing an update for everyone interested in the topic, which is especially important because CM is a multidisciplinary technology.
Collapse
Affiliation(s)
- Andressa Cristina Antunes Santos
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.C.A.S.)
| | - Denisse Esther Mallaupoma Camarena
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.C.A.S.)
| | - Gustavo Roncoli Reigado
- Department of Biotechnology, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo 03828-000, Brazil
| | - Felipe S. Chambergo
- Department of Biotechnology, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo 03828-000, Brazil
| | - Viviane Abreu Nunes
- Department of Biotechnology, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo 03828-000, Brazil
| | - Marco Antonio Trindade
- Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, Pirassununga 13635-900, Brazil
| | - Silvya Stuchi Maria-Engler
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.C.A.S.)
| |
Collapse
|
19
|
Guan S, Wu S, Li G, Xiao J, Gao B. Macromolecular crowding facilitates rapid fabrication of intact, robust cell sheets. Biotechnol Lett 2023; 45:57-67. [PMID: 36550337 DOI: 10.1007/s10529-022-03336-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/13/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVES To develop a rapid and simple method to fabricate intact, robust cell sheets from common cell culture dishes by combination of a macromolecular crowding (MMC) reagent and vitamin C. RESULTS It was found that 3T3 fibroblasts or human bone marrow mesenchymal stem cells (hBMSCs) and their secreted cell derived extracellular matrices could be easily detached as intact cell sheets under gently pipetting after treated by MMC and vitamin C for 4 days. This method also allowed fabrication of functional multi-layered hepatic cell sheets by culturing 10 × 104 cells/cm2 HepG2 cells on top of confluent 3T3 fibroblast layers. What's more, MMC induced hBMSC cell sheets demonstrated 1.9 times larger area and 1.6 times greater cell number than that of cell sheets harvested from temperature-responsive cell culture dishes. CONCLUSION MMC based method make it possible to fabricate various types of cell sheets more conveniently, economically, and thus may facilitate wide application of cell sheet technology.
Collapse
Affiliation(s)
- Shuwen Guan
- National Engineering Research Center for Healthcare Devices, Guangdong Key Lab of Medical Electronic Instruments and Polymer Materials Products, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, No. 1307, Middle Section of Guangzhou Avenue, Tianhe District, Guangzhou, 510550, Guangdong, China
| | - Shipeng Wu
- Department of Stomatology, Shanghai Eighth People's Hospital, Shanghai, China
| | - Gang Li
- Department of Dental Implantation, Guangdong Delun Medical Group, Guangzhou, China
| | - Jiangwei Xiao
- National Engineering Research Center for Healthcare Devices, Guangdong Key Lab of Medical Electronic Instruments and Polymer Materials Products, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, No. 1307, Middle Section of Guangzhou Avenue, Tianhe District, Guangzhou, 510550, Guangdong, China
| | - Botao Gao
- National Engineering Research Center for Healthcare Devices, Guangdong Key Lab of Medical Electronic Instruments and Polymer Materials Products, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, No. 1307, Middle Section of Guangzhou Avenue, Tianhe District, Guangzhou, 510550, Guangdong, China.
| |
Collapse
|
20
|
Yan Q, Fei Z, Li M, Zhou J, Du G, Guan X. Naringenin Promotes Myotube Formation and Maturation for Cultured Meat Production. Foods 2022; 11:3755. [PMID: 36496566 PMCID: PMC9738036 DOI: 10.3390/foods11233755] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/23/2022] Open
Abstract
Cultured meat is an emerging technology for manufacturing meat through cell culture rather than animal rearing. Under most existing culture systems, the content and maturity of in vitro generated myotubes are insufficient, limiting the application and public acceptance of cultured meat. Here we demonstrated that a natural compound, naringenin (NAR), promoted myogenic differentiation of porcine satellite cells (PSCs) in vitro and increased the content and maturity of generated myotubes, especially for PSCs that had undergone extensive expansion. Mechanistically, NAR upregulated the IGF-1/AKT/mTOR anabolic pathway during the myogenesis of PSCs by activating the estrogen receptor β. Moreover, PSCs were mixed with hydrogels and cultured in a mold with parallel micro-channels to manufacture cultured pork samples. More mature myosin was detected, and obvious sarcomere was observed when the differentiation medium was supplemented with NAR. Taken together, these findings suggested that NAR induced the differentiation of PSCs and generation of mature myotubes through upregulation of the IGF-1 signaling, contributing to the development of efficient and innovative cultured meat production systems.
Collapse
Affiliation(s)
- Qiyang Yan
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Zhuocheng Fei
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Mei Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xin Guan
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
21
|
Kumar A, Sood A, Han SS. Technological and structural aspects of scaffold manufacturing for cultured meat: recent advances, challenges, and opportunities. Crit Rev Food Sci Nutr 2022; 63:585-612. [PMID: 36239416 DOI: 10.1080/10408398.2022.2132206] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In vitro cultured meat is an emerging area of research focus with an innovative approach through tissue engineering (i.e., cellular engineering) to meet the global food demand. The manufacturing of lab-cultivated meat is an innovative business that alleviates life-threatening environmental issues concerning public health and animal well-being on the global platform. There has been a noteworthy advancement in cultivating artificial meat, but still, there are numerous challenges that impede the swift headway of lab-grown meat production at a commercially large scale. In this review, we focus on the manufacturing of edible scaffolds for cultured meat production. In brief, first an introduction to cultivating artificial meat and its current scenario in the market is provided. Further, a discussion on the understanding of composition, cellular, and molecular communications in muscle tissue is presented, which are vital to scaling up the production of lab-grown meat. In continuation, the major components (e.g., cells, biomaterial scaffolds, and their manufacturing technologies, media, and potential bioreactors) for cultured meat production are conferred followed by a comprehensive discussion on the most recent advances in lab-cultured meat. Finally, existing challenges and opportunities including future research perspectives for scaling-up cultured meat production are discussed with conclusive interpretations.
Collapse
Affiliation(s)
- Anuj Kumar
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea.,Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
| | - Ankur Sood
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea.,Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
22
|
Lee M, Park S, Choi B, Kim J, Choi W, Jeong I, Han D, Koh WG, Hong J. Tailoring a Gelatin/Agar Matrix for the Synergistic Effect with Cells to Produce High-Quality Cultured Meat. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38235-38245. [PMID: 35968689 DOI: 10.1021/acsami.2c10988] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Edible scaffolds are needed in cultured meat to mimic meat's three-dimensional structure by organizing cells and replenishing the insufficient meat mass of cells alone. However, there is still a large gap between slaughtered meat and cells developed into tissues using scaffolds. This is mainly due to the difference in size, texture, flavor, and taste. In this study, we develop a coating matrix to modify the surface of textured vegetable protein (TVP), a vegetable cell support, to produce cultured meat having slaughtered meat's essential characteristics. We optimized the fish gelatin/agar matrix's microstructure by controlling the ratio of the two biopolymers, stably introducing a cell adhesive environment on the TVP. By coating the optimized gelatin/agar matrix on the TVP's surface using an easy and fast dipping method, hybrid cultured meat composed of animal cells and plant protein was produced. As the cells proliferated, their synergistic effect permitted the cultured meat's texture, flavor, and taste to reach a level comparable to that of slaughtered meat. The TVP-based cultured meat prepared with the present technology has been recreated as high-quality cultured meat by satisfying five challenging factors: cells, texture, cost, mass, and flavor.
Collapse
Affiliation(s)
- Milae Lee
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sohyeon Park
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Bumgyu Choi
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jiyu Kim
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Woojin Choi
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Ildoo Jeong
- SIMPLE Planet Inc., 48 Achasan-ro 17-gil, Seongdong-gu, Seoul 04799, Republic of Korea
| | - Dongoh Han
- SIMPLE Planet Inc., 48 Achasan-ro 17-gil, Seongdong-gu, Seoul 04799, Republic of Korea
| | - Won-Gun Koh
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jinkee Hong
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
23
|
Liu Y, Wang R, Ding S, Deng L, Zhang Y, Li J, Shi Z, Wu Z, Liang K, Yan X, Liu W, Du Y. Engineered meatballs via scalable skeletal muscle cell expansion and modular micro-tissue assembly using porous gelatin micro-carriers. Biomaterials 2022; 287:121615. [PMID: 35679644 DOI: 10.1016/j.biomaterials.2022.121615] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/04/2022] [Accepted: 05/30/2022] [Indexed: 11/02/2022]
Abstract
The emerging field of cultured meat faces several technical hurdles, including the scale-up production of quality muscle and adipose progenitor cells, and the differentiation and bioengineering of these cellular materials into large, meat-like tissue. Here, we present edible, 3D porous gelatin micro-carriers (PoGelat-MCs), as efficient cell expansion scaffolds, as well as modular tissue-engineering building blocks for lab-grown meat. PoGelat-MC culture in spinner flasks, not only facilitated the scalable expansion of porcine skeletal muscle satellite cells and murine myoblasts, but also triggered their spontaneous myogenesis, in the absence of myogenic reagents. Using 3D-printed mold and transglutaminase, we bio-assembled pork muscle micro-tissues into centimeter-scale meatballs, which exhibited similar mechanical property and higher protein content compared to conventional ground pork meatballs. PoGelat-MCs also supported the expansion and differentiation of 3T3L1 murine pre-adipocytes into mature adipose micro-tissues, which could be used as modular assembly unit for engineered fat-containing meat products. Together, our results highlight PoGelat-MCs, in combination with dynamic bioreactors, as a scalable culture system to produce large quantity of highly-viable muscle and fat micro-tissues, which could be further bio-assembled into ground meat analogues.
Collapse
Affiliation(s)
- Ye Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 10084, China
| | - Rui Wang
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 10084, China
| | - Shijie Ding
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Liping Deng
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 10084, China
| | - Yuanyuan Zhang
- Beijing CytoNiche Biotechnology Co. Ltd, Beijing, 100195, China
| | - Junyang Li
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 10084, China
| | - Ziao Shi
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 10084, China
| | - Zhongyuan Wu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Kaini Liang
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 10084, China
| | - Xiaojun Yan
- Beijing CytoNiche Biotechnology Co. Ltd, Beijing, 100195, China
| | - Wei Liu
- Beijing CytoNiche Biotechnology Co. Ltd, Beijing, 100195, China
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 10084, China.
| |
Collapse
|
24
|
Levi S, Yen FC, Baruch L, Machluf M. Scaffolding technologies for the engineering of cultured meat: Towards a safe, sustainable, and scalable production. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|