1
|
Wang L, He H, Li Y, Wang X, Yu J, Huang Y, Yu K, He J, Zhao M, Xie T, Li D. BCL11A expression worsens the prognosis of DLBCL and its co-expression with C-MYC predicts poor survival. Pathol Res Pract 2024; 264:155717. [PMID: 39546996 DOI: 10.1016/j.prp.2024.155717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 10/20/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
Non-Hodgkin's lymphoma (NHL) is a significant global malignancy, with diffuse large B cell lymphoma (DLBCL) being the most prevalent subtype, accounting for 25-50 % of newly diagnosed cases in China. Despite a 60 % survival rate achieved with R-CHOP regiment for DLBCL, approximately 40 % of patients experience relapse or develop resistance to treatment. While the oncogenic transcription factor B-cell chronic lymphocytic leukaemia/lymphoma 11 A (BCL11A) has been implicated in various tumors, its specific role in DLBCL remains unclear. In this study, we conducted retrospective histomorphological and immunophenotypic analyses on paraffin sample tissues and collected fresh tissue samples for protein and mRNA analyses to investigate the relationship between BCL11A and DLBCL. Additionally, we classified DLBCL into subtypes based on cells of origin (COO) and examined the expressions of BCL11A, C-MYC, P53 and other protein expressions to better understand the factors contributing to poor clinical outcomes in DLBCL. Our findings revealed elevated BCL11A expression in DLBCL, with increased expression associated with worse prognosis and higher C-MYC expression. Patients exhibiting co-expression of C-MYC and BCL11A had significantly lower survival rates compared to those with singular expression. Furthermore, BCL11A protein expression levels demonstrated significant associations with P53 and C-MYC protein expression levels in the Germinal Center B-cell-like (GCB) subtype. These findings suggest that BCL11A may serve as a potential prognostic marker and therapeutic target for DLBCL.
Collapse
Affiliation(s)
- Lixin Wang
- Department of Pathology, Faculty of Basic Medicine, Chongqing Medical University, Chongqing, China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China; Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hong He
- Department of Internal Medicine, the First Branch, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuanxin Li
- Department of Pathology, Faculty of Basic Medicine, Chongqing Medical University, Chongqing, China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China; Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xingyu Wang
- Department of Pathology, Faculty of Basic Medicine, Chongqing Medical University, Chongqing, China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China; Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jieyang Yu
- Laboratory of Neuropsycholinguistics, Chongqing Medical University, Chongqing, China
| | - Ying Huang
- Clinical Molecular Medical Detection Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kuai Yu
- Department of Pathology, Faculty of Basic Medicine, Chongqing Medical University, Chongqing, China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China; Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Pathology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Juan He
- Department of Pathology, Faculty of Basic Medicine, Chongqing Medical University, Chongqing, China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China; Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Min Zhao
- Department of Pathology, Faculty of Basic Medicine, Chongqing Medical University, Chongqing, China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China; Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tao Xie
- Department of Pathology, Faculty of Basic Medicine, Chongqing Medical University, Chongqing, China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China; Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Ultrasound, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Dan Li
- Department of Pathology, Faculty of Basic Medicine, Chongqing Medical University, Chongqing, China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China; Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
2
|
Qi L, Li Z, Liu J, Chen X. Omics-Enhanced Nanomedicine for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409102. [PMID: 39473316 DOI: 10.1002/adma.202409102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/10/2024] [Indexed: 12/13/2024]
Abstract
Cancer nanomedicine has emerged as a promising approach to overcome the limitations of conventional cancer therapies, offering enhanced efficacy and safety in cancer management. However, the inherent heterogeneity of tumors presents increasing challenges for the application of cancer nanomedicine in both diagnosis and treatment. This heterogeneity necessitates the integration of advanced and high-throughput analytical techniques to tailor nanomedicine strategies to individual tumor profiles. Omics technologies, encompassing genomics, epigenomics, transcriptomics, proteomics, metabolomics, and more, provide unparalleled insights into the molecular and cellular mechanisms underlying cancer. By dissecting tumor heterogeneity across multiple levels, these technologies offer robust support for the development of personalized and precise cancer nanomedicine strategies. In this review, the principles, techniques, and applications of key omics technologies are summarized. Especially, the synergistic integration of omics and nanomedicine in cancer therapy is explored, focusing on enhanced diagnostic accuracy, optimized therapeutic strategies and the assessment of nanomedicine-mediated biological responses. Moreover, this review addresses current challenges and outlines future directions in the field of omics-enhanced nanomedicine. By offering valuable insights and guidance, this review aims to advance the integration of omics with nanomedicine, ultimately driving improved diagnostic and therapeutic strategies for cancer.
Collapse
Affiliation(s)
- Lin Qi
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, Hunan, 410011, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Zhihong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, Hunan, 410011, China
| | - Jianping Liu
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Xiaoyuan Chen
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, Hunan, 410011, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore, 138667, Singapore
| |
Collapse
|
3
|
Bian W, Li H, Chen Y, Yu Y, Lei G, Yang X, Li S, Chen X, Li H, Yang J, Yang C, Li Y, Zhou Y. Ferroptosis mechanisms and its novel potential therapeutic targets for DLBCL. Biomed Pharmacother 2024; 173:116386. [PMID: 38492438 DOI: 10.1016/j.biopha.2024.116386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL), a heterogeneous lymphoid malignancy, poses a significant threat to human health. The standard therapeutic regimen for patients with DLBCL is rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP), with a typical cure rate of 50-70%. However, some patients either relapse after complete remission (CR) or exhibit resistance to R-CHOP treatment. Therefore, novel therapeutic approaches are imperative for managing high-risk or refractory DLBCL. Ferroptosis is driven by iron-dependent phospholipid peroxidation, a process that relies on the transition metal iron, reactive oxygen species (ROS), and phospholipids containing polyunsaturated fatty acids-containing phospholipids (PUFA-PLs). Research indicates that ferroptosis is implicated in various carcinogenic and anticancer pathways. Several hematological disorders exhibit heightened sensitivity to cell death induced by ferroptosis. DLBCL cells, in particular, demonstrate an increased demand for iron and an upregulation in the expression of fatty acid synthase. Additionally, there exists a correlation between ferroptosis-associated genes and the prognosis of DLBCL. Therefore, ferroptosis may be a promising novel target for DLBCL therapy. In this review, we elucidate ferroptosis mechanisms, its role in DLBCL, and the potential therapeutic targets in DLBCL. This review offers novel insights into the application of ferroptosis in treatment strategies for DLBCL.
Collapse
Affiliation(s)
- Wenxia Bian
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Haoran Li
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuhan Chen
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yanhua Yu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Guojie Lei
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xinyi Yang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Sainan Li
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xi Chen
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Huanjuan Li
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jing Yang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Chen Yang
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Yanchun Li
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China.
| | - Yi Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Zhang B, Ding Z, Wen X, Song G, Luo Q. Salinomycin and IR780-loaded upconversion nanoparticles influence biological behavior of liver cancer stem cells by persistently activating the MAPK signaling pathway. Exp Cell Res 2024; 434:113865. [PMID: 38052337 DOI: 10.1016/j.yexcr.2023.113865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/23/2023] [Accepted: 11/25/2023] [Indexed: 12/07/2023]
Abstract
The combination of chemotherapy and phototherapy has emerged as a promising therapeutic approach for enhancing the efficacy of cancer treatment and mitigating drug resistance. Salinomycin (SAL), a polyether antibiotic, exhibits potent cytotoxicity against chemotherapy-resistant cancer cells. IR780 iodide, a novel photosensitive reagent with excellent near-infrared (NIR) light absorption and photothermal conversion abilities, is suitable for use in photothermal therapy for cancers. However, both SAL and IR780 exhibit hydrophobic properties that limit their clinical applicability. Upconversion nanoparticles (UCNPs) are an emerging class of fluorescent probe materials capable of emitting high-energy photons upon excitation by low-energy NIR light. The UCNPs not only function as nanocarriers for drug delivery but also serve as light transducers to activate photosensitizers for deep-tissue photodynamic therapy. Here, to enhance the targeting and bioavailability of hydrophobic drugs in liver cancer stem cells (LCSCs), we employ distearoyl phosphorethanolamine-polyethylene glycol (DSPE-PEG) to encapsulate SAL and IR780 on the surface of UCNPs. Cell viability was evaluated using the CCK-8 assay. Cell migration was assessed by the Transwell Boyden Chamber. The activation of the mitogen-activated protein kinase (MAPK) signaling pathway was measured via western blot. The results demonstrated successful loading of both IR780 and SAL onto the UCNPs, and the SAL and IR780-loaded UCNPs (UISP) exhibited a robust photothermal effect under NIR light irradiation. The UISP effectively inhibited the viability of HCCLM3 and LCSCs. Under NIR light irradiation, the UISP further suppressed HCCLM3 viability but had no impact on LCSC viability; however, it could further inhibit LCSC migration. Meanwhile, under NIR light irradiation, the UISP persistently activated the MAPK pathway more significantly in LCSCs. These findings suggest that exposure to NIR light results in persistent activation of the MAPK pathway by UISP, thereby influencing the biological behavior of LCSCs and enhancing their therapeutic efficacy against liver cancer.
Collapse
Affiliation(s)
- Bingyu Zhang
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Zhongjie Ding
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Xianxin Wen
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Guanbin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| |
Collapse
|
5
|
Fu H, Lu Q, Zhang Y, Wan P, Xu H, Liao C, Sun Y, Deng Y, Yan W, Mei Q. Multi-target responsive nanoprobe with cellular-level accuracy for spatiotemporally selective photodynamic therapy. Mikrochim Acta 2023; 190:448. [PMID: 37872299 DOI: 10.1007/s00604-023-06022-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/29/2023] [Indexed: 10/25/2023]
Abstract
Photodynamic therapy is known for its non-invasiveness to significantly reduce undesired side effects on patients. However, the infiltration and invasiveness of tumor growth are still beyond the specificity of traditional light-controlled photodynamic therapy (PDT), which lacks cellular-level accuracy to tumor cells, possibly leading to "off-target" damage to healthy tissues such as the skin or immune cells infiltrated. Here, upconversion nanoparticles (UCNPs) were co-encapsulated with manganese dioxide (MnO2) by amphiphilic polymers poly(styrene-co-methyl acrylate) (PSMA) and further coated with photosensitizer (riboflavin)-loaded mesoporous silica (C@S/V). The C@S/V nanoprobes exhibited shielded upconversion luminescence in normal conditions (pH 7.4, no hydroperoxide (H2O2)) under 980-nm irradiation and thus minimal reactive oxygen production from riboflavin. However, the excess H2O2 (1 mM) and acidic environment (pH 5.5) could decompose the MnO2 within the C@S/V, resulting in remarkable enhancement of upconversion luminescence and a favorable hypoxia-relieving condition for PDT, providing a spatiotemporal signal for therapy initiation. The C@S/V nanoprobes were applied to the co-culture of normal cells (HEK293) and pancreatic cancer cells (Panc02) and performed a selective killing on Panc02 under the 980-nm irradiation. By using the "double-safety" strategy, a responsive C@S/V nanoprobe was designed by the selective activation of acidic and H2O2-rich conditions and 980-nm irradiation for spatiotemporally selective photodynamic therapy with cellular-level accuracy.
Collapse
Affiliation(s)
- Huimin Fu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong, 510632, People's Republic of China
| | - Qi Lu
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong, 510632, People's Republic of China
| | - Yi Zhang
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong, 510632, People's Republic of China.
| | - Pingping Wan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| | - Huajian Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China.
| | - Cheng Liao
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong, 510632, People's Republic of China
| | - Yaru Sun
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong, 510632, People's Republic of China
| | - Yun Deng
- Department of Stomatology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Wangxiang Yan
- Department of Stomatology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China.
| | - Qingsong Mei
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong, 510632, People's Republic of China.
| |
Collapse
|
6
|
Ahmad A, Rashid S, Chaudhary AA, Alawam AS, Alghonaim MI, Raza SS, Khan R. Nanomedicine as potential cancer therapy via targeting dysregulated transcription factors. Semin Cancer Biol 2023; 89:38-60. [PMID: 36669712 DOI: 10.1016/j.semcancer.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/02/2023] [Accepted: 01/15/2023] [Indexed: 01/19/2023]
Abstract
Cancer as a disease possess quite complicated pathophysiological implications and is among the prominent causes of morbidity and mortality on global scales. Anti-cancer chemotherapy, surgery, and radiation therapy are some of the present-day conventional treatment options. However, these therapeutic paradigms own several retreats, including lack of specificity, non-targeted toxicological implications, inefficient drug delivery to targeted cells, and emergence of cancer resistance, ultimately causing ineffective cancer management. Owing to the advanced and better biophysical characteristic features and potentiality for the tailoring and customizations and in several fashions, nanotechnology can entirely transubstantiate the cancer identification and its managements. Additionally, nanotechnology also renders several answers to present-day mainstream limitations springing-up in anti-cancer therapeutics. Nanocarriers, owing to their outstanding physicochemical features including but not limited to their particle size, surface morphological features viz. shape etc., have been employed in nanomedicinal platforms for targeting various transcription factors leading to worthy pharmacological outcomes. This transcription targeting activates the wide array of cellular and molecular events like antioxidant enzyme-induction, apoptotic cell death, cell-cycle arrest etc. These outcomes are obtained after the activation or inactivation of several transcription factors and cellular pathways. Further, nanoformulations have been precisely calibrated and functionalized with peculiar targeting groups for improving their efficiency to deliver the drug-payload to specified and targeted cancerous cells and tissues. This review undertakes an extensive, across-the-board and all-inclusive approach consisting of various studies encompassing different types of tailored and customized nanoformulations and nanomaterials designed for targeting the transcription factors implicated in the process of carcinogenesis, tumor-maturation, growth and metastasis. Various transcription factors viz. nuclear factor kappa (NF-κB), signal transducer and activators of transcription (STAT), Cmyc and Twist-related protein 1 (TWIST1) along with several types of nanoparticles targeting these transcription factors have been summarized here. A section has also been dedicated to the different types of nanoparticles targeting the hypoxia inducing factors. Efforts have been made to summarize several other transcription factors implicated in various stages of cancer development, growth, progression and invasion, and their targeting with different kinds of nanomedicinal agents.
Collapse
Affiliation(s)
- Anas Ahmad
- Julia McFarlane Diabetes Research Centre (JMDRC), Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Abdullah S Alawam
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Mohammad Ibrahim Alghonaim
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Syed Shadab Raza
- Laboratory for Stem Cell and Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College Hospital, Sarfarazganj, Lucknow 226003, India
| | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Knowledge City, Sector 81, Mohali, Punjab 140306, India.
| |
Collapse
|