1
|
Yılmaz E, Kacaroglu D, Ozden AK, Aydogan N. Gold nanoparticles decorated FOLFIRINOX loaded liposomes for synergistic therapy of pancreatic cancer. Int J Pharm 2025; 669:125067. [PMID: 39672312 DOI: 10.1016/j.ijpharm.2024.125067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 12/15/2024]
Abstract
Pancreatic cancer is predicted to be the second highest cause of cancer deaths by 2030, with a mortality rate of 98 % and a 5-year survival rate of only 4-8 %. FOLFIRINOX which consists of four main ingredients has shown superior efficacy in treating patients with pancreatic cancer compared to other agents and combinations. However, toxicities have prevented full-dose use of FOLFIRINOX. In this study, we present the design of a liposome nanosystem that enables the sequential release of a drug combination that is called FOLFIRINOX using lipid-based nanosystem synergistic chemo/photothermal therapy approaches. The co-eccentric liposome allowed us to locate the drug molecules in different locations giving us the flexibility to release them in a selected order. Core liposome (L2) has a melting temperature of 53.63 °C, it was decorated by gold nanoparticle (L2@AuNP) to bring photothermal responsiveness. The outer liposome structure had a lower melting temperature, which facilitated the sequential release process. The efficacy of photothermal therapy for nanosystem was calculated. The results indicate that coating L2@AuNP nanostructure with L1 liposomes improves efficacy by stabilizing gold nanoparticles. FOLFIRINOX components are encapsulated in a concentric liposome structure according to the order of administration into the body. The concentric liposome structure enables the sequential release of multiple drugs due to the varying phase transition temperatures of the liposomes. The cytotoxic effect of these formulations was evaluated on Panc-1 pancreatic cancer cells; the lowest cell viability was obtained in 4 Liposome(L) under 5 min NIR irradiation. Combination therapy has a higher therapeutic efficacy (70.45 %) when compared to chemotherapy and photothermal therapy used separately. The study's results show the potential of combination therapies to improve therapeutic outcomes, providing a promising path for future research and clinical application.
Collapse
Affiliation(s)
- Emine Yılmaz
- Department of Bioengineering, Graduate School of Science and Engineering, Hacettepe University, 06800 Beytepe, Ankara, Turkey
| | - Demet Kacaroglu
- Department of Medical Biology, Faculty of Medicine, Lokman Hekim University, Ankara, Turkey
| | - Ayse Kevser Ozden
- Department of Medical Biology, Faculty of Medicine, Lokman Hekim University, Ankara, Turkey
| | - Nihal Aydogan
- Department of Bioengineering, Graduate School of Science and Engineering, Hacettepe University, 06800 Beytepe, Ankara, Turkey; Department of Chemical Engineering, Faculty of Engineering, Hacettepe University, Ankara, 06800, Turkey.
| |
Collapse
|
2
|
Cao X, Feng N, Huang Q, Liu Y. Nanoscale Metal-Organic Frameworks and Nanoscale Coordination Polymers: From Synthesis to Cancer Therapy and Biomedical Imaging. ACS APPLIED BIO MATERIALS 2024; 7:7965-7986. [PMID: 38382060 DOI: 10.1021/acsabm.3c01300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Recently, there has been significant interest in nanoscale metal-organic frameworks (NMOFs) characterized by ordered crystal structures and nanoscale coordination polymers (NCPs) featuring amorphous structures. These structures arise from the coordination interactions between inorganic metal ions or clusters and organic ligands. Their advantages, such as the ability to tailor composition and structure, efficiently encapsulate diverse therapeutic or imaging agents within porous frameworks, inherent biodegradability, and surface functionalization capability, position them as promising carriers in the biomedical fields. This review provides an overview of the synthesis and surface modification strategies employed for NMOFs and NCPs, along with their applications in cancer treatment and biological imaging. Finally, future directions and challenges associated with the utilization of NMOFs and NCPs in cancer treatment and diagnosis are also discussed.
Collapse
Affiliation(s)
- Xianghui Cao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Nana Feng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Qingqing Huang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Yang Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| |
Collapse
|
3
|
Nakka NMR, Rachamala HK, Angom RS, Indla NR, Dutta SK, Wang E, Bhattacharya S, Sesha Sainath AV, Babiker H, Pal K, Mukhopadhyay D. Dual drug-loaded tumor-targeted polymeric nanoparticles for enhancing therapeutic response in pancreatic ductal adenocarcinoma. Mater Today Bio 2024; 28:101199. [PMID: 39205875 PMCID: PMC11357805 DOI: 10.1016/j.mtbio.2024.101199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease where standard-of-care chemotherapeutic drugs have limited efficacy due to the development of drug resistance and poor drug delivery caused by a highly desmoplastic tumor microenvironment. Combining multiple drugs in a tumor-targeting carrier would be a favorable approach to overcome these limitations. Hence, a tumor-targeted peptide (TTP) conjugated amphiphilic tri-block copolymer was developed to make targeted polymer nanoparticles (TTP-PNPs) serving as a vehicle for carrying gemcitabine (Gem), paclitaxel (PTX), and their combination (Gem + PTX). The TTP-PNPs in the form of empty polymer (P), single drug-loaded [P(Gem) and P(PTX)], and dual drug-loaded [P(Gem + PTX)] polymer nanoformulations exhibited stable and homogenous spherical shapes with 110-160 nm size. These nanoformulations demonstrated excellent stability under in vitro physiological conditions and led to an efficient release of the drugs in the presence of reduced glutathione (GSH). The efficacy of these nanoparticles was thoroughly evaluated in vitro and in vivo, demonstrating a notable capacity to selectively target and restrict PDAC cells (PANC-1 and KPC) growth. The cellular uptake and biodistribution study showed a significantly higher tumor-targeting ability of TTP-PNPs than PNPs without TTP. Notably, P(Gem + PTX) exhibited the lowest IC50 compared to all other controls and showed heightened synergistic effects in both cell lines. Furthermore, P(Gem + PTX) showed a significantly better tumor reduction and median overall survival in mouse models than single drug-loaded TTP-PNPs or a combination of free drugs (Gem + PTX). In summary, our TTP-PNP system shows great promise as a novel platform for delivering Gem + PTX specifically to pancreatic cancer (PC), maximizing the therapeutic benefits with lower concentrations of the drugs and potentially reducing toxic side effects.
Collapse
Affiliation(s)
- Naga Malleswara Rao Nakka
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Sciences, Jacksonville, FL, 32224, USA
| | - Hari Krishnareddy Rachamala
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Sciences, Jacksonville, FL, 32224, USA
| | - Ramcharan Singh Angom
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Sciences, Jacksonville, FL, 32224, USA
| | - Nagamalleswara Rao Indla
- Polymers and Functional Materials and Fluoro-Agrochemicals Department, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shamit Kumar Dutta
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Sciences, Jacksonville, FL, 32224, USA
| | - Enfeng Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Sciences, Jacksonville, FL, 32224, USA
| | - Santanu Bhattacharya
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Sciences, Jacksonville, FL, 32224, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Sciences, Jacksonville, FL, 32224, USA
| | - Annadanam V. Sesha Sainath
- Polymers and Functional Materials and Fluoro-Agrochemicals Department, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Hani Babiker
- Department of Medicine, Division of Hematology-Oncology, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | - Krishnendu Pal
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Sciences, Jacksonville, FL, 32224, USA
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Sciences, Jacksonville, FL, 32224, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Sciences, Jacksonville, FL, 32224, USA
| |
Collapse
|
4
|
Santos JAV, Silva D, Marques MPM, Batista de Carvalho LAE. Platinum-based chemotherapy: trends in organic nanodelivery systems. NANOSCALE 2024; 16:14640-14686. [PMID: 39037425 DOI: 10.1039/d4nr01483a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Despite the investment in platinum drugs research, cisplatin, carboplatin and oxaliplatin are still the only Pt-based compounds used as first line treatments for several cancers, with a few other compounds being approved for administration in some Asian countries. However, due to the severe and worldwide impact of oncological diseases, there is an urge for improved chemotherapeutic approaches. Furthermore, the pharmaceutical application of platinum complexes is hindered by their inherent toxicity and acquired resistance. Nanodelivery systems rose as a key strategy to overcome these challenges, with recognized versatility and ability towards improving the safety, bioavailability and efficacy of the available drugs. Among the known nanocarriers, organic systems have been widely applied, taking advantage of their potential as drug vehicles. Researchers have mainly focused on the development of lipidic and polymeric carriers, including supramolecular structures, with an overall improvement of encapsulated platinum complexes. Herein, an overview of recent trends and strategies is presented, with the main focus on the encapsulation of platinum compounds into organic nanocarriers, showcasing the evolution in the design and development of these promising systems. This comprehensive review highlights formulation methods as well as characterization procedures, providing insights that may be helpful for the development of novel platinum nanocarriers aiming at future pharmaceutical applications.
Collapse
Affiliation(s)
- João A V Santos
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - Daniela Silva
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - Maria Paula M Marques
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Luís A E Batista de Carvalho
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| |
Collapse
|
5
|
Chintamaneni PK, Pindiprolu SKSS, Swain SS, Karri VVSR, Nesamony J, Chelliah S, Bhaskaran M. Conquering chemoresistance in pancreatic cancer: Exploring novel drug therapies and delivery approaches amidst desmoplasia and hypoxia. Cancer Lett 2024; 588:216782. [PMID: 38453046 DOI: 10.1016/j.canlet.2024.216782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/20/2024] [Accepted: 03/03/2024] [Indexed: 03/09/2024]
Abstract
Pancreatic cancer poses a significant challenge within the field of oncology due to its aggressive behaviour, limited treatment choices, and unfavourable outlook. With a mere 10% survival rate at the 5-year mark, finding effective interventions becomes even more pressing. The intricate relationship between desmoplasia and hypoxia in the tumor microenvironment further complicates matters by promoting resistance to chemotherapy and impeding treatment efficacy. The dense extracellular matrix and cancer-associated fibroblasts characteristic of desmoplasia create a physical and biochemical barrier that impedes drug penetration and fosters an immunosuppressive milieu. Concurrently, hypoxia nurtures aggressive tumor behaviour and resistance to conventional therapies. a comprehensive exploration of emerging medications and innovative drug delivery approaches. Notably, advancements in nanoparticle-based delivery systems, local drug delivery implants, and oxygen-carrying strategies are highlighted for their potential to enhance drug accessibility and therapeutic outcomes. The integration of these strategies with traditional chemotherapies and targeted agents reveals the potential for synergistic effects that amplify treatment responses. These emerging interventions can mitigate desmoplasia and hypoxia-induced barriers, leading to improved drug delivery, treatment efficacy, and patient outcomes in pancreatic cancer. This review article delves into the dynamic landscape of emerging anticancer medications and innovative drug delivery strategies poised to overcome the challenges imposed by desmoplasia and hypoxia in the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Pavan Kumar Chintamaneni
- Department of Pharmaceutics, GITAM School of Pharmacy, GITAM (Deemed to be University), Rudraram, 502329 Telangana, India.
| | | | - Swati Swagatika Swain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | | | - Jerry Nesamony
- College of Pharmacy and Pharmaceutical Sciences, The University of Toledo HSC, 3000 Arlington Avenue, Toledo, OH, 43614, USA
| | - Selvam Chelliah
- College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX-77004, USA
| | - Mahendran Bhaskaran
- College of Pharmacy and Pharmaceutical Sciences, The University of Toledo HSC, 3000 Arlington Avenue, Toledo, OH, 43614, USA.
| |
Collapse
|
6
|
Zhang W, Shen J, Liang J, Ge C, Zhou Y, Yin L, Ji Y. Pulmonary RNA interference against acute lung injury mediated by mucus- and cell-penetrating nanocomplexes. Acta Biomater 2024; 177:332-346. [PMID: 38290689 DOI: 10.1016/j.actbio.2024.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/03/2024] [Accepted: 01/22/2024] [Indexed: 02/01/2024]
Abstract
Trans-mucosal delivery of anti-inflammatory siRNA into alveolar macrophages represents a promising modality for the treatment of acute lung injury (ALI). However, its therapeutic efficacy is often hurdled by the lack of effective carriers that can simultaneously overcome the mucosal barrier and cell membrane barrier. Herein, we developed mucus/cell membrane dual-penetrating, macrophage-targeting polyplexes which enabled efficient intratracheal delivery of TNF-α siRNA (siTNF-α) to attenuate pulmonary inflammation against lipopolysaccharide (LPS)-induced ALI. P-G@Zn, a cationic helical polypeptide bearing both guanidine and zinc dipicolylamine (Zn-DPA) side charged groups, was designed to condense siTNF-α and promote macrophage internalization due to its helicity-dependent membrane activity. Coating of the polyplexes with charge-neutralizing carboxylated mannan (Man-COOH) greatly enhanced the mucus penetration potency due to shielding of the electrostatic adhesive interactions with the mucus, and it cooperatively enabled active targeting to alveolar macrophages to potentiate the intracellular delivery efficiency of siTNF-α. As such, intratracheally administered Man-COOH/P-G@Zn/siTNF-α polyplexes provoked notable TNF-α silencing by ∼75 % in inflamed lung tissues at 500 μg siRNA/kg, and demonstrated potent anti-inflammatory performance to treat ALI. This study provides an effective tool for the synchronized trans-mucosal delivery of siRNA into macrophages, and the unique properties of the polyplexes render remarkable potentials for anti-inflammatory therapy against ALI. STATEMENT OF SIGNIFICANCE: siRNA-mediated anti-inflammatory management of acute lung injury (ALI) is greatly challenged by the insufficient delivery across the mucus layer and cell membrane. To address such critical issue, mucus/cell membrane dual-penetrating, macrophage-targeting polyplexes are herein developed, which are comprised of an outer shell of carboxylated mannan (Man-COOH) and an inner nanocore formed by TNF-α siRNA (siTNF-α) and a cationic helical polypeptide P-G@Zn. Man-COOH coating endowed the polyplexes with high mucus-penetrating capability and macrophage-targeting ability, while P-G@Zn bearing both guanidine and zinc dipicolylamine afforded potent siTNF-α condensation capacity and high intracellular delivery efficiency with reduced cytotoxicity. Intratracheally administered polyplexes solicit pronounced TNF-α silencing and anti-inflammatory efficiencies in ALI mice. This study renders an effective example for overcoming the multiple barriers against trans-mucosal delivery of siRNA into macrophages, and holds profound potentials for gene therapy against ALI.
Collapse
Affiliation(s)
- Wenxin Zhang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Jingrui Shen
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Jialong Liang
- Department of Cardiothoracic Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi 214023, China
| | - Chenglong Ge
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Yang Zhou
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China.
| | - Lichen Yin
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China.
| | - Yong Ji
- Department of Cardiothoracic Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi 214023, China.
| |
Collapse
|
7
|
Wu Y, Chen S, Zhu J. Deliver on a Promise: Hydrogen-Bonded Polymer Nanomedicine with a Precise Ratio of Chemodrug and Photosensitizer for Intelligent Cancer Therapy. ACS NANO 2024; 18:4104-4117. [PMID: 38190754 DOI: 10.1021/acsnano.3c08359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
The outcomes of combined cancer therapy are largely related to loading content and contribution of each therapeutic agent; however, fine-tuning the ratio of two coloaded components toward precise cancer therapy is a great challenge and still remains in its infancy. We herein develop a supramolecular polymer scaffold to optimize the coloading ratio of chemotherapeutic agent and photosensitizer through hydrogen-bonding (H-bonding) interaction, for maximizing the efficacy of intelligent cancer chemo/photodynamic therapies (CT/PDT). To do so, we first synthesize a thymine (THY)-functionalized tetraphenylporphyrin photosensitizer (i.e., TTPP), featuring the same molecular configuration of H-bonding array with chemotherapeutic carmofur (e.g., 1-hexylcarbamoyl-5-fluorouracil, HCFU). Meanwhile, a six-arm star-shaped amphiphilic polymer vehicle P(DAPA-co-DPMA-co-OEGMA)6 (poly(diaminopyridine acrylamide-co-2-(diisopropylamino)ethyl methacrylate-co-oligo(ethylene glycol) monomethyl ether methacrylate)6) is prepared, bearing hydrophilic and biocompatible POEGMA segment, along with hydrophobic PDAPA and PDPMA segments, characterizing the randomly dispersed dual functionalities, i.e., heterocomplementary H-bonding DAP motifs and pH-responsive protonation DPMA content. Thanks to the identical DAP/HCFU and DAP/TTPP H-bonding association capability, the incorporation of both HCFU and TTPP to six-arm star-shaped P(DAPA-co-DPMA-co-OEGMA)6 vehicle, with an optimized coloading ratio, can be straightforwardly realized by adjusting the feeding concentrations, thus yielding the hydrogen-bonded supramolecular nanoparticles (i.e., HCFU-TTPP-SPNs), demonstrating the codelivery of two components with the promise to optimize the combined CT/PDT efficacy.
Collapse
Affiliation(s)
- Yanggui Wu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Senbin Chen
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jintao Zhu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
8
|
Chen Z, Wang X, Zhao N, Chen H, Guo G. Advancements in pH-responsive nanocarriers: enhancing drug delivery for tumor therapy. Expert Opin Drug Deliv 2023; 20:1623-1642. [PMID: 38059646 DOI: 10.1080/17425247.2023.2292678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/05/2023] [Indexed: 12/08/2023]
Abstract
INTRODUCTION Tumors pose a significant global economic and health burden, with conventional cancer treatments lacking tumor specificity, leading to limited efficiency and undesirable side effects. Targeted tumor therapy is imminent. Tumor cells produce lactate and hydrogen ions (H+) by Warburg effect, forming an acidic tumor microenvironment (TME), which can be employed to design targeted tumor therapy. Recently, progress in nanotechnology has led to the development of pH-responsive nanocarriers, which have gathered significant attention. Under acidic tumor conditions, they exhibit targeted accumulation within tumor sites and controlled release profiles of therapeutic reagents, enabling precise tumor therapy. AREAS COVERED This review comprehensively summarize the principles underlying pH-responsive features, discussing various types of pH-responsive nanocarriers, their advantages, and limitations. Innovative therapeutic drugs are also examined, followed by an exploration of recent advancements in applying various pH-responsive nanocarriers as delivery systems for enhanced tumor therapy. EXPERT OPINIONS pH-responsive nanocarriers have garnered significant attention for their capability to achieve targeted accumulation of therapeutic agents at tumor sites and controlled drug delivery profiles, ultimately increasing the efficiency of tumor eradication. It is anticipated that the employment of pH-responsive nanocarriers will elevate the effectiveness and safety of tumor therapy, contributing to improved overall outcomes.
Collapse
Affiliation(s)
- Zhouyun Chen
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoxiao Wang
- West China School of Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Na Zhao
- School of Pharmacy, Shihezi University, Shihezi, China
| | - Haifeng Chen
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Gang Guo
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|