1
|
Castilla-Casadiego DA, Loh DH, Pineda-Hernandez A, Rosales AM. Stimuli-Responsive Substrates to Control the Immunomodulatory Potential of Stromal Cells. Biomacromolecules 2024; 25:6319-6337. [PMID: 39283807 PMCID: PMC11506505 DOI: 10.1021/acs.biomac.4c00835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
Mesenchymal stromal cells (MSCs) have broad immunomodulatory properties that range from regulation, proliferation, differentiation, and immune cell activation to secreting bioactive molecules that inhibit inflammation and regulate immune response. These properties provide MSCs with high therapeutic potency that has been shown to be relevant to tissue engineering and regenerative medicine. Hence, researchers have explored diverse strategies to control the immunomodulatory potential of stromal cells using polymeric substrates or scaffolds. These substrates alter the immunomodulatory response of MSCs, especially through biophysical cues such as matrix mechanical properties. To leverage these cell-matrix interactions as a strategy for priming MSCs, emerging studies have explored the use of stimuli-responsive substrates to enhance the therapeutic value of stromal cells. This review highlights how stimuli-responsive materials, including chemo-responsive, microenvironment-responsive, magneto-responsive, mechano-responsive, and photo-responsive substrates, have specifically been used to promote the immunomodulatory potential of stromal cells by controlling their secretory activity.
Collapse
Affiliation(s)
- David A Castilla-Casadiego
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Darren H Loh
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Aldaly Pineda-Hernandez
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Adrianne M Rosales
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
2
|
Song SS, Druschel LN, Conard JH, Wang JJ, Kasthuri NM, Ricky Chan E, Capadona JR. Depletion of complement factor 3 delays the neuroinflammatory response to intracortical microelectrodes. Brain Behav Immun 2024; 118:221-235. [PMID: 38458498 DOI: 10.1016/j.bbi.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/26/2024] [Accepted: 03/02/2024] [Indexed: 03/10/2024] Open
Abstract
The neuroinflammatory response to intracortical microelectrodes (IMEs) used with brain-machine interfacing (BMI) applications is regarded as the primary contributor to poor chronic performance. Recent developments in high-plex gene expression technologies have allowed for an evolution in the investigation of individual proteins or genes to be able to identify specific pathways of upregulated genes that may contribute to the neuroinflammatory response. Several key pathways that are upregulated following IME implantation are involved with the complement system. The complement system is part of the innate immune system involved in recognizing and eliminating pathogens - a significant contributor to the foreign body response against biomaterials. Specifically, we have identified Complement 3 (C3) as a gene of interest because it is the intersection of several key complement pathways. In this study, we investigated the role of C3 in the IME inflammatory response by comparing the neuroinflammatory gene expression at the microelectrode implant site between C3 knockout (C3-/-) and wild-type (WT) mice. We have found that, like in WT mice, implantation of intracortical microelectrodes in C3-/- mice yields a dramatic increase in the neuroinflammatory gene expression at all post-surgery time points investigated. However, compared to WT mice, C3 depletion showed reduced expression of many neuroinflammatory genes pre-surgery and 4 weeks post-surgery. Conversely, depletion of C3 increased the expression of many neuroinflammatory genes at 8 weeks and 16 weeks post-surgery, compared to WT mice. Our results suggest that C3 depletion may be a promising therapeutic target for acute, but not chronic, relief of the neuroinflammatory response to IME implantation. Additional compensatory targets may also be required for comprehensive long-term reduction of the neuroinflammatory response for improved intracortical microelectrode performance.
Collapse
Affiliation(s)
- Sydney S Song
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States; Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, United States.
| | - Lindsey N Druschel
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States; Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, United States.
| | - Jacob H Conard
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States.
| | - Jaime J Wang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States; Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, United States.
| | - Niveda M Kasthuri
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States; Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, United States.
| | - E Ricky Chan
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH 44106, United States.
| | - Jeffrey R Capadona
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States; Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, United States.
| |
Collapse
|
3
|
Capadona J, Hoeferlin G, Grabinski S, Druschel L, Duncan J, Burkhart G, Weagraff G, Lee A, Hong C, Bambroo M, Olivares H, Bajwa T, Memberg W, Sweet J, Hamedani HA, Acharya A, Hernandez-Reynoso A, Donskey C, Jaskiw G, Chan R, Ajiboye A, von Recum H, Zhang L. Bacteria Invade the Brain Following Sterile Intracortical Microelectrode Implantation. RESEARCH SQUARE 2024:rs.3.rs-3980065. [PMID: 38496527 PMCID: PMC10942555 DOI: 10.21203/rs.3.rs-3980065/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Brain-machine interface performance is largely affected by the neuroinflammatory responses resulting in large part from blood-brain barrier (BBB) damage following intracortical microelectrode implantation. Recent findings strongly suggest that certain gut bacterial constituents penetrate the BBB and are resident in various brain regions of rodents and humans, both in health and disease. Therefore, we hypothesized that damage to the BBB caused by microelectrode implantation could amplify dysregulation of the microbiome-gut-brain axis. Here, we report that bacteria, including those commonly found in the gut, enter the brain following intracortical microelectrode implantation in mice implanted with single-shank silicon microelectrodes. Systemic antibiotic treatment of mice implanted with microelectrodes to suppress bacteria resulted in differential expression of bacteria in the brain tissue and a reduced acute inflammatory response compared to untreated controls, correlating with temporary improvements in microelectrode recording performance. Long-term antibiotic treatment resulted in worsening microelectrode recording performance and dysregulation of neurodegenerative pathways. Fecal microbiome composition was similar between implanted mice and an implanted human, suggesting translational findings. However, a significant portion of invading bacteria was not resident in the brain or gut. Together, the current study established a paradigm-shifting mechanism that may contribute to chronic intracortical microelectrode recording performance and affect overall brain health following intracortical microelectrode implantation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Ricky Chan
- Institute for Computational Biology, Case Western Reserve University
| | | | | | | |
Collapse
|
4
|
Sturgill B, Hernandez-Reynoso AG, Druschel LN, Smith TJ, Boucher PE, Hoeferlin GF, Thai TTD, Jiang MS, Hess JL, Alam NN, Menendez DM, Duncan JL, Cogan SF, Pancrazio JJ, Capadona JR. Reactive Amine Functionalized Microelectrode Arrays Provide Short-Term Benefit but Long-Term Detriment to In Vivo Recording Performance. ACS APPLIED BIO MATERIALS 2024; 7:1052-1063. [PMID: 38290529 PMCID: PMC10880090 DOI: 10.1021/acsabm.3c01014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/01/2024]
Abstract
Intracortical microelectrode arrays (MEAs) are used for recording neural signals. However, indwelling devices result in chronic neuroinflammation, which leads to decreased recording performance through degradation of the device and surrounding tissue. Coating the MEAs with bioactive molecules is being explored to mitigate neuroinflammation. Such approaches often require an intermediate functionalization step such as (3-aminopropyl)triethoxysilane (APTES), which serves as a linker. However, the standalone effect of this intermediate step has not been previously characterized. Here, we investigated the effect of coating MEAs with APTES by comparing APTES-coated to uncoated controls in vivo and ex vivo. First, we measured water contact angles between silicon uncoated and APTES-coated substrates to verify the hydrophilic characteristics of the APTES coating. Next, we implanted MEAs in the motor cortex (M1) of Sprague-Dawley rats with uncoated or APTES-coated devices. We assessed changes in the electrochemical impedance and neural recording performance over a chronic implantation period of 16 weeks. Additionally, histology and bulk gene expression were analyzed to understand further the reactive tissue changes arising from the coating. Results showed that APTES increased the hydrophilicity of the devices and decreased electrochemical impedance at 1 kHz. APTES coatings proved detrimental to the recording performance, as shown by a constant decay up to 16 weeks postimplantation. Bulk gene analysis showed differential changes in gene expression between groups that were inconclusive with regard to the long-term effect on neuronal tissue. Together, these results suggest that APTES coatings are ultimately detrimental to chronic neural recordings. Furthermore, interpretations of studies using APTES as a functionalization step should consider the potential consequences if the final functionalization step is incomplete.
Collapse
Affiliation(s)
- Brandon
S. Sturgill
- Department
of Bioengineering, The University of Texas
at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| | - Ana G. Hernandez-Reynoso
- Department
of Bioengineering, The University of Texas
at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| | - Lindsey N. Druschel
- Department
of Biomedical Engineering, Case Western
Reserve University. 10900 Euclid Ave, Cleveland, Ohio 44106, United States
- Advanced
Platform Technology Center, Louis Stokes Cleveland Veterans Affairs
Medical Center, Cleveland, Ohio 44106, United States
| | - Thomas J. Smith
- School
of Behavioral and BrainSciences, The University
of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| | - Pierce E. Boucher
- Department
of Biomedical Engineering, Case Western
Reserve University. 10900 Euclid Ave, Cleveland, Ohio 44106, United States
- Advanced
Platform Technology Center, Louis Stokes Cleveland Veterans Affairs
Medical Center, Cleveland, Ohio 44106, United States
| | - George F. Hoeferlin
- Department
of Biomedical Engineering, Case Western
Reserve University. 10900 Euclid Ave, Cleveland, Ohio 44106, United States
- Advanced
Platform Technology Center, Louis Stokes Cleveland Veterans Affairs
Medical Center, Cleveland, Ohio 44106, United States
| | - Teresa Thuc Doan Thai
- Department
of Bioengineering, The University of Texas
at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| | - Madison S. Jiang
- School
of Behavioral and BrainSciences, The University
of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| | - Jordan L. Hess
- School
of Behavioral and BrainSciences, The University
of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| | - Neeha N. Alam
- Department
of Bioengineering, The University of Texas
at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| | - Dhariyat M. Menendez
- Department
of Biomedical Engineering, Case Western
Reserve University. 10900 Euclid Ave, Cleveland, Ohio 44106, United States
- Advanced
Platform Technology Center, Louis Stokes Cleveland Veterans Affairs
Medical Center, Cleveland, Ohio 44106, United States
| | - Jonathan L. Duncan
- Department
of Biomedical Engineering, Case Western
Reserve University. 10900 Euclid Ave, Cleveland, Ohio 44106, United States
- Advanced
Platform Technology Center, Louis Stokes Cleveland Veterans Affairs
Medical Center, Cleveland, Ohio 44106, United States
| | - Stuart F. Cogan
- Department
of Bioengineering, The University of Texas
at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| | - Joseph J. Pancrazio
- Department
of Bioengineering, The University of Texas
at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| | - Jeffrey R. Capadona
- Department
of Biomedical Engineering, Case Western
Reserve University. 10900 Euclid Ave, Cleveland, Ohio 44106, United States
- Advanced
Platform Technology Center, Louis Stokes Cleveland Veterans Affairs
Medical Center, Cleveland, Ohio 44106, United States
| |
Collapse
|
5
|
Duncan JL, Wang JJ, Glusauskas G, Weagraff GR, Gao Y, Hoeferlin GF, Hunter AH, Hess-Dunning A, Ereifej ES, Capadona JR. In Vivo Characterization of Intracortical Probes with Focused Ion Beam-Etched Nanopatterned Topographies. MICROMACHINES 2024; 15:286. [PMID: 38399014 PMCID: PMC10893395 DOI: 10.3390/mi15020286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024]
Abstract
(1) Background: Intracortical microelectrodes (IMEs) are an important part of interfacing with the central nervous system (CNS) and recording neural signals. However, recording electrodes have shown a characteristic steady decline in recording performance owing to chronic neuroinflammation. The topography of implanted devices has been explored to mimic the nanoscale three-dimensional architecture of the extracellular matrix. Our previous work used histology to study the implant sites of non-recording probes and showed that a nanoscale topography at the probe surface mitigated the neuroinflammatory response compared to probes with smooth surfaces. Here, we hypothesized that the improvement in the neuroinflammatory response for probes with nanoscale surface topography would extend to improved recording performance. (2) Methods: A novel design modification was implemented on planar silicon-based neural probes by etching nanopatterned grooves (with a 500 nm pitch) into the probe shank. To assess the hypothesis, two groups of rats were implanted with either nanopatterned (n = 6) or smooth control (n = 6) probes, and their recording performance was evaluated over 4 weeks. Postmortem gene expression analysis was performed to compare the neuroinflammatory response from the two groups. (3) Results: Nanopatterned probes demonstrated an increased impedance and noise floor compared to controls. However, the recording performances of the nanopatterned and smooth probes were similar, with active electrode yields for control probes and nanopatterned probes being approximately 50% and 45%, respectively, by 4 weeks post-implantation. Gene expression analysis showed one gene, Sirt1, differentially expressed out of 152 in the panel. (4) Conclusions: this study provides a foundation for investigating novel nanoscale topographies on neural probes.
Collapse
Affiliation(s)
- Jonathan L. Duncan
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH 44106, USA
| | - Jaime J. Wang
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH 44106, USA
| | - Gabriele Glusauskas
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH 44106, USA
| | - Gwendolyn R. Weagraff
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH 44106, USA
| | - Yue Gao
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA
| | - George F. Hoeferlin
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH 44106, USA
| | - Allen H. Hunter
- Michigan Center for Materials Characterization, University of Michigan, 500 S. State St, Ann Arbor, MI 48109, USA
| | - Allison Hess-Dunning
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH 44106, USA
| | - Evon S. Ereifej
- Department of Biomedical Engineering, University of Michigan, 500 S. State St, Ann Arbor, MI 48109, USA
- Veterans Affairs Hospital, 2215 Fuller Rd, Ann Arbor, MI 48105, USA
| | - Jeffrey R. Capadona
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH 44106, USA
| |
Collapse
|