1
|
López-Tena M, Winssinger N. Impact of charges on the hybridization kinetics and thermal stability of PNA duplexes. Org Biomol Chem 2024; 22:5759-5767. [PMID: 38920402 PMCID: PMC11253249 DOI: 10.1039/d4ob00887a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024]
Abstract
Peptide nucleic acid (PNA) is a prominent artificial nucleic acid mimetic and modifications at the γ-position of the peptidic backbone are known to further enhance the desirable properties of PNA in terms of duplex stability. Here, we leveraged a propargyl ether modification at this position for late stage functionalization of PNA to obtain positively charged (cationic amino and guanidinium groups), negatively charged (anionic carboxylate and alkyl phosphonate groups) and neutral (PEG) PNAs to assess the impact of these charges on DNA : PNA and PNA : PNA duplex formation. Thermal stability analysis findings concurred with prior studies showing PNA : DNA duplexes are moderately more stable with cationic PNAs than anionic PNAs at physiological salt concentrations. We show that this effect is derived predominantly from differences in the association kinetics. For PNA : PNA duplexes, anionic PNAs were found to form the most stable duplexes, more stable than neutral PNA : PNA duplexes.
Collapse
Affiliation(s)
- Miguel López-Tena
- Department of Organic Chemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva, 1211 Geneva, Switzerland.
| | - Nicolas Winssinger
- Department of Organic Chemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
2
|
Oyaghire SN, Quijano E, Perera JDR, Mandl HK, Saltzman WM, Bahal R, Glazer PM. DNA recognition and induced genome modification by a hydroxymethyl-γ tail-clamp peptide nucleic acid. CELL REPORTS. PHYSICAL SCIENCE 2023; 4:101635. [PMID: 37920723 PMCID: PMC10621889 DOI: 10.1016/j.xcrp.2023.101635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Peptide nucleic acids (PNAs) can target and stimulate recombination reactions in genomic DNA. We have reported that γPNA oligomers possessing the diethylene glycol γ-substituent show improved efficacy over unmodified PNAs in stimulating recombination-induced gene modification. However, this structural modification poses a challenge because of the inherent racemization risk in O-alkylation of the precursory serine side chain. To circumvent this risk and improve γPNA accessibility, we explore the utility of γPNA oligomers possessing the hydroxymethyl-γ moiety for gene-editing applications. We demonstrate that a γPNA oligomer possessing the hydroxymethyl modification, despite weaker preorganization, retains the ability to form a hybrid with the double-stranded DNA target of comparable stability and with higher affinity than that of the diethylene glycol-γPNA. When formulated into poly(lactic-co-glycolic acid) nanoparticles, the hydroxymethyl-γPNA stimulates higher frequencies (≥ 1.5-fold) of gene modification than the diethylene glycol γPNA in mouse bone marrow cells.
Collapse
Affiliation(s)
- Stanley N. Oyaghire
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
- These authors contributed equally
| | - Elias Quijano
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
- These authors contributed equally
| | - J. Dinithi R. Perera
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Hanna K. Mandl
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - W. Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
- Department of Chemical & Environmental Engineering, Yale University, New Haven, CT 06511, USA
- Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Dermatology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Raman Bahal
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Peter M. Glazer
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
- Lead contact
| |
Collapse
|
3
|
Sarkar S, Colón‐Roura G, Pearse A, Armitage BA. Targeting a KRAS i-motif forming sequence by unmodified and gamma-modified peptide nucleic acid oligomers. Biopolymers 2023; 114:e23529. [PMID: 36573547 PMCID: PMC10078108 DOI: 10.1002/bip.23529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 12/04/2022] [Accepted: 12/07/2022] [Indexed: 12/28/2022]
Abstract
Growing interest in i-motif DNA as a transcriptional regulatory element motivates development of synthetic molecules capable of targeting these structures. In this study, we designed unmodified peptide nucleic acid (PNA) and gamma-modified PNA (γPNA) oligomers complementary to an i-motif forming sequence derived from the promoter of the KRAS oncogene. Biophysical techniques such as circular dichroism (CD) spectroscopy, CD melting, and fluorescence spectroscopy demonstrated the successful invasion of the i-motif by PNA and γPNA. Both PNA and γPNA showed very strong binding to the target sequence with high thermal stability of the resulting heteroduplexes. Interestingly fluorescence and CD experiments indicated formation of an intermolecular i-motif structure via the overhangs of target-probe heteroduplexes formed by PNA/γPNA invasion of the intramolecular i-motif. Targeting promoter i-motif forming sequences with high-affinity oligonucleotide mimics like γPNAs may represent a new approach for inhibiting KRAS transcription, thereby representing a potentially useful anti-cancer strategy.
Collapse
Affiliation(s)
- Srijani Sarkar
- Department of Chemistry and Center for Nucleic Acids Science and TechnologyCarnegie Mellon UniversityPittsburghPennsylvaniaUSA
| | - Gabriela Colón‐Roura
- Department of Chemistry and Center for Nucleic Acids Science and TechnologyCarnegie Mellon UniversityPittsburghPennsylvaniaUSA
| | - Alexander Pearse
- Department of Chemistry and Center for Nucleic Acids Science and TechnologyCarnegie Mellon UniversityPittsburghPennsylvaniaUSA
| | - Bruce A. Armitage
- Department of Chemistry and Center for Nucleic Acids Science and TechnologyCarnegie Mellon UniversityPittsburghPennsylvaniaUSA
| |
Collapse
|
4
|
New Guanidinium and Aminoguanidinim Salts of 2-Hydroxypyridine-3-carboxylic acid: Preparation and Spectral, Structural, Thermal, ADMET, Biological, and Molecular Docking Studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Swenson CS, Heemstra JM. Peptide nucleic acids harness dual information codes in a single molecule. Chem Commun (Camb) 2020; 56:1926-1935. [PMID: 32009137 DOI: 10.1039/c9cc09905k] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Nature encodes the information required for life in two fundamental biopolymers: nucleic acids and proteins. Peptide nucleic acid (PNA), a synthetic analog comprised of nucleobases arrayed along a pseudopeptide backbone, has the ability to combine the power of nucleic acids to encode information with the versatility of amino acids to encode structure and function. Historically, PNA has been perceived as a simple nucleic acid mimic having desirable properties such as high biostability and strong affinity for complementary nucleic acids. In this feature article, we aim to adjust this perception by highlighting the ability of PNA to act as a peptide mimic and showing the largely untapped potential to encode information in the amino acid sequence. First, we provide an introduction to PNA and discuss the use of conjugation to impart tunable properties to the biopolymer. Next, we describe the integration of functional groups directly into the PNA backbone to impart specific physical properties. Lastly, we highlight the use of these integrated amino acid side chains to encode peptide-like sequences in the PNA backbone, imparting novel activity and function and demonstrating the ability of PNA to simultaneously mimic both a peptide and a nucleic acid.
Collapse
Affiliation(s)
- Colin S Swenson
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, USA.
| | | |
Collapse
|
6
|
Synthesis of novel (E)-2-((anthracen-9-ylmethylene)amino)pyridin-3-ol and its transition metal complexes: Multispectral characterization, biological evaluation and computational studies. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.01.101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Expatiating biological excellence of aminoantipyrine derived novel metal complexes: Combined DNA interaction, antimicrobial, free radical scavenging studies and molecular docking simulations. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.10.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
8
|
Moccia M, Adamo MFA, Saviano M. Insights on chiral, backbone modified peptide nucleic acids: Properties and biological activity. ARTIFICIAL DNA, PNA & XNA 2014; 5:e1107176. [PMID: 26752710 PMCID: PMC5329900 DOI: 10.1080/1949095x.2015.1107176] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 10/02/2015] [Accepted: 10/07/2015] [Indexed: 12/14/2022]
Abstract
PNAs are emerging as useful synthetic devices targeting natural miRNAs. In particular 3 classes of structurally modified PNAs analogs are herein described, namely α, β and γ, which differ by their backbone modification. Their mode and binding affinity for natural nucleic acids and their use in medicinal chemistry as potential miRNA binders is discussed.
Collapse
Affiliation(s)
- Maria Moccia
- Consiglio Nazionale delle Ricerche-Institute of Cristallography; Bari, Italy
| | - Mauro F A Adamo
- Centre for Synthesis and Chemical Biology (CSCB); Department of Pharmaceutical & Medicinal Chemistry; Royal College of Surgeons in Ireland; Dublin, Ireland
| | - Michele Saviano
- Consiglio Nazionale delle Ricerche-Institute of Cristallography; Bari, Italy
| |
Collapse
|
9
|
Chouikhi D, Ciobanu M, Zambaldo C, Duplan V, Barluenga S, Winssinger N. Expanding the scope of PNA-encoded synthesis (PES): Mtt-protected PNA fully orthogonal to fmoc chemistry and a broad array of robust diversity-generating reactions. Chemistry 2012; 18:12698-704. [PMID: 22915361 DOI: 10.1002/chem.201201337] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 06/15/2012] [Indexed: 01/11/2023]
Abstract
Nucleic acid-encoded libraries are emerging as an attractive and highly miniaturized format for the rapid identification of protein ligands. An important criterion in the synthesis of nucleic acid encoded libraries is the scope of reactions that can be used to introduce molecular diversity and devise divergent pathways for diversity-oriented synthesis (DOS). To date, the protecting group strategies that have been used in peptide nucleic acid (PNA) encoded synthesis (PES) have limited the choice of reactions used in the library synthesis to just a few prototypes. Herein, we describe the preparation of PNA monomers with a protecting group combination (Mtt/Boc) that is orthogonal to Fmoc-based synthesis and compatible with a large palette of reactions that have been productively used in DOS (palladium cross-couplings, metathesis, reductive amination, amidation, heterocycle formation, nucleophilic addition, conjugate additions, Pictet-Spengler cyclization). We incorporate γ-modifications in the PNA backbone that are known to enhance hybridization and solubility. We demonstrate the robustness of this strategy with a library synthesis that is characterized by MALDI MS analysis at every step.
Collapse
Affiliation(s)
- Dalila Chouikhi
- Institut de Science et Ingénierie Supramoléculaires, ISIS - UMR, Université de Strasbourg - CNRS, France
| | | | | | | | | | | |
Collapse
|
10
|
Avitabile C, Moggio L, Malgieri G, Capasso D, Di Gaetano S, Saviano M, Pedone C, Romanelli A. γ Sulphate PNA (PNA S): highly selective DNA binding molecule showing promising antigene activity. PLoS One 2012; 7:e35774. [PMID: 22586450 PMCID: PMC3346730 DOI: 10.1371/journal.pone.0035774] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 03/21/2012] [Indexed: 11/18/2022] Open
Abstract
Peptide Nucleic Acids (PNAs), nucleic acid analogues showing high stability to enzyme degradation and strong affinity and specificity of binding toward DNA and RNA are widely investigated as tools to interfere in gene expression. Several studies have been focused on PNA analogues with modifications on the backbone and bases in the attempt to overcome solubility, uptake and aggregation issues. γ PNAs, PNA derivatives having a substituent in the γ position of the backbone show interesting properties in terms of secondary structure and affinity of binding toward complementary nucleic acids. In this paper we illustrate our results obtained on new analogues, bearing a sulphate in the γ position of the backbone, developed to be more DNA-like in terms of polarity and charge. The synthesis of monomers and oligomers is described. NMR studies on the conformational properties of monomers and studies on the secondary structure of single strands and triplexes are reported. Furthermore the hybrid stability and the effect of mismatches on the stability have also been investigated. Finally, the ability of the new analogue to work as antigene, interfering with the transcription of the ErbB2 gene on a human cell line overexpressing ErbB2 (SKBR3), assessed by FACS and qPCR, is described.
Collapse
Affiliation(s)
- Concetta Avitabile
- Dipartimento delle Scienze Biologiche, Facoltà di Scienze Biotecnologiche, Università di Napoli “Federico II”, Napoli, Italy
| | - Loredana Moggio
- Dipartimento delle Scienze Biologiche, Facoltà di Scienze Biotecnologiche, Università di Napoli “Federico II”, Napoli, Italy
| | - Gaetano Malgieri
- Dipartimento di Scienze Ambientali, Seconda Università degli Studi di Napoli, Caserta, Italy
| | - Domenica Capasso
- Dipartimento delle Scienze Biologiche, Facoltà di Scienze Biotecnologiche, Università di Napoli “Federico II”, Napoli, Italy
| | | | | | - Carlo Pedone
- Dipartimento delle Scienze Biologiche, Facoltà di Scienze Biotecnologiche, Università di Napoli “Federico II”, Napoli, Italy
- Istituto di Biostrutture e Bioimmagini (CNR), Napoli, Italy
| | - Alessandra Romanelli
- Dipartimento delle Scienze Biologiche, Facoltà di Scienze Biotecnologiche, Università di Napoli “Federico II”, Napoli, Italy
- Istituto di Biostrutture e Bioimmagini (CNR), Napoli, Italy
- * E-mail:
| |
Collapse
|
11
|
Fabbri E, Brognara E, Borgatti M, Lampronti I, Finotti A, Bianchi N, Sforza S, Tedeschi T, Manicardi A, Marchelli R, Corradini R, Gambari R. miRNA therapeutics: delivery and biological activity of peptide nucleic acids targeting miRNAs. Epigenomics 2012; 3:733-45. [PMID: 22126292 DOI: 10.2217/epi.11.90] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Peptide nucleic acids (PNAs) are DNA/RNA mimics extensively used for pharmacological regulation of gene expression in a variety of cellular and molecular systems, and they have been described as excellent candidates for antisense and antigene therapies. At present, very few data are available on the use of PNAs as molecules targeting miRNAs. miRNAs are a family of small nc RNAs that regulate gene expression by sequence-selective targeting of mRNAs, leading to a translational repression or mRNA degradation to the control of highly regulated biological functions, such as differentiation, cell cycle and apoptosis. The aim of this article is to present the state-of-the-art concerning the possible use of PNAs to target miRNAs and modify their biological metabolism within the cells. The results present in the literature allow to propose PNA-based molecules as very promising reagents to modulate the biological activity of miRNAs. In consideration of the involvement of miRNAs in human pathologies, PNA-mediated targeting of miRNAs has been proposed as a potential novel therapeutic approach.
Collapse
Affiliation(s)
- Enrica Fabbri
- Department of Biochemistry & Molecular Biology, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Avitabile C, Saviano M, D'Andrea L, Bianchi N, Fabbri E, Brognara E, Gambari R, Romanelli A. Targeting pre-miRNA by peptide nucleic acids: a new strategy to interfere in the miRNA maturation. ARTIFICIAL DNA, PNA & XNA 2012; 3:88-96. [PMID: 22699795 PMCID: PMC3429535 DOI: 10.4161/adna.20911] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PNAs conjugated to carrier peptides have been employed for the targeting of miRNA precursor, with the aim to develop molecules able to interfere in the pre-miRNA processing. The capability of the molecules to bind pre-miRNA has been tested in vitro by fluorescence assayes on Thiazole Orange labeled molecules and in vivo, in K562 cells, evaluating the amount of miRNA produced after treatment of cells with two amounts of PNAs.
Collapse
Affiliation(s)
- Concetta Avitabile
- Dipartimento delle Scienze Biologiche, Università di Napoli "Federico II", Napoli, Italy
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Bezer S, Rapireddy S, Skorik YA, Ly DH, Achim C. Coordination-driven inversion of handedness in ligand-modified PNA. Inorg Chem 2011; 50:11929-37. [PMID: 22059624 DOI: 10.1021/ic200855p] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peptide nucleic acid (PNA) is a synthetic analogue of DNA, which has the same nucleobases as DNA but typically has a backbone based on aminoethyl glycine (Aeg). PNA forms duplexes by Watson Crick hybridization. The Aeg-based PNA duplexes adopt a chiral helical structure but do not have a preferred handedness because they do not contain a chiral center. An L-lysine situated at the C-end of one or both strands of a PNA duplex causes the duplex to preferably adopt a left-handed structure. We have introduced into the PNA duplexes both a C-terminal L-lysine and one or two PNA monomers that have a γ-(S)-methyl-aminoethyl glycine backbone, which is known to induce a preference for a right-handed structure. Indeed, we found that in these duplexes the γ-methyl monomer exerts the dominant chiral induction effect causing the duplexes to adopt a right-handed structure. The chiral PNA monomer had a 2,2':6',2''-terpyridine (Tpy) ligand instead of a nucleobase and PNA duplexes that contained one or two Tpys formed [Cu(Tpy)(2)](2+) complexes in the presence of Cu(2+). The CD spectroscopy studies showed that these metal-coordinated duplexes were right-handed due to the chiral induction effect exerted by the S-Tpy PNA monomer(s) except for the cases when the [Cu(Tpy)(2)](2+) complex was formed with Tpy ligands from two different PNA duplexes. In the latter case, the metal complex bridged the two PNA duplexes and the duplexes were left-handed. The results of this study show that the preferred handedness of a ligand-modified PNA can be switched as a consequence of metal coordination to the ligand. This finding could be used as a tool in the design of functional nucleic-acid based nanostructures.
Collapse
Affiliation(s)
- Silvia Bezer
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213-3890, USA
| | | | | | | | | |
Collapse
|
14
|
Roviello GN, Musumeci D, Bucci EM, Pedone C. Evidences for supramolecular organization of nucleopeptides: synthesis, spectroscopic and biological studies of a novel dithymine L-serine tetrapeptide. MOLECULAR BIOSYSTEMS 2011; 7:1073-80. [PMID: 21203614 DOI: 10.1039/c0mb00214c] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work concerns a dithymine tetrapeptide, which can be seen as a new analogue of a dinucleoside monophosphate, made of both unfunctionalized and thymine-containing L-serine units alternated in the sequence. The new nucleopeptide was obtained on the solid phase by two different synthetic strategies. The first one is suitable to easily realize nucleopeptides with homonucleobase sequences, obtained by assembling an oligoserine backbone and then simultaneously coupling the free serine hydroxyl groups with the carboxymethylated nucleobase. The other strategy, which makes use of a Fmoc-protected nucleo-L-serine monomer, allows for the obtainment of nucleopeptides with mixed nucleobase sequences. CD spectroscopic studies and laser light scattering experiments, performed on solutions of the novel nucleopeptide, suggested the formation of supramolecular networks based on the self-assembly of the dithymine tetrapeptide molecules. Furthermore, CD binding studies with natural nucleic acids revealed a very weak interaction between the nucleopeptide and DNA (but not RNA). Molecular networks based on this biodegradable and water-soluble nucleopeptide, which is more resistant in plasma than standard tetrapeptides (and oligopeptides), contain a hydrophobic core which could provide the necessary environment to incorporate poorly water-soluble drugs, as evidenced by fluorescence spectroscopy. Furthermore, our studies evidenced that the structure of the tetrapeptide-based supramolecular assembly can be modified by metal ions as evidenced by UV interaction studies with Cu(2+).
Collapse
Affiliation(s)
- Giovanni N Roviello
- Istituto di Biostrutture e Bioimmagini - CNR, Via Mezzocannone 16, 80134 Napoli, Italy.
| | | | | | | |
Collapse
|