1
|
Fan CY, Zheng JS, Hong LL, Ling ZQ. Macrophage crosstalk and therapies: Between tumor cells and immune cells. Int Immunopharmacol 2024; 141:113037. [PMID: 39213868 DOI: 10.1016/j.intimp.2024.113037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
In the tumor microenvironment, macrophages exhibit different phenotypes and functions in response to various signals, playing a crucial role in the initiation and progression of tumors. Several studies have indicated that intervention in the functions of different phenotypes of tumor-associated macrophages causes significant changes in the crosstalk between tumor cells and immune-related cells, such as T, NK, and B cells, markedly altering the course of tumor development. However, only a few specific therapeutic strategies targeting macrophages are yet available. This article comprehensively reviews the molecular biology mechanisms through which tumor-associated macrophages mediate the crosstalk between tumor cells and immune-related cells. Also, various treatment methods currently used in clinical practice and those in the clinical trial phase have been summarized, and the novel strategies for targeting tumor-associated macrophages have been categorized accordingly.
Collapse
Affiliation(s)
- Cheng-Yuan Fan
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China; The Second School of Clinical Medicine, Wenzhou Medical University, No.109 Xueyuan West Road, Wenzhou, 325027 Zhejiang, China
| | - Jing-Sen Zheng
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China
| | - Lian-Lian Hong
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China
| | - Zhi-Qiang Ling
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
2
|
Liu W, Luo G. NEDD9 is transcriptionally regulated by HDAC4 and promotes breast cancer metastasis and macrophage M2 polarization via the FAK/NF-κB signaling pathway. Neoplasia 2024; 57:101059. [PMID: 39326322 PMCID: PMC11470473 DOI: 10.1016/j.neo.2024.101059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND Breast cancer is a malignancy with a generally poor prognosis. With the advancement of molecular research, we have gained deeper insights into the cellular processes that drive breast cancer development. However, the precise mechanisms remain elusive. RESULTS Based on the CPTAC database, we found that NEDD9 expression is up-regulated in breast cancer tissues and is associated with poor prognosis in breast cancer patients. Functional experiments showed that NEDD9 promotes tumor growth and metastasis both in vitro and in vivo. Overexpression of NEDD9 disrupts mammary epithelial acinus formation and triggers epithelial-mesenchymal transition in breast cancer cells, effects that are reversed upon NEDD9 gene silencing. Mechanistically, NEDD9 upregulates its expression by inhibiting HDAC4 activity, leading to enhanced H3K9 acetylation of the NEDD9 gene promoter and activation of the FAK/NF-κB signaling pathway. Furthermore, NEDD9 overexpression promotes IL-6 secretion, which further drives breast cancer progression. Notably, NEDD9 activation fosters the pro-tumoral M2 macrophage polarization in the tumor microenvironment. NEDD9 stimulates IL-6 secretion, polarizes monocytes towards an M2-like phenotype, and enhances BC cell invasiveness. CONCLUSIONS These findings suggest that NEDD9 upregulation plays a pivotal role in breast cancer metastasis and macrophage M2 polarization via the FAK/NF-κB signaling axis. Targeting NEDD9 may offer a promising therapeutic approach for breast cancer treatment.
Collapse
Affiliation(s)
- Wenhong Liu
- Department of Radiology, The First Affiliated Hospital of University of South China, Hengyang City, 421001, Hunan Province, China
| | - Guanghua Luo
- Department of Radiology, The First Affiliated Hospital of University of South China, Hengyang City, 421001, Hunan Province, China.
| |
Collapse
|
3
|
Rigopoulos C, Georgakopoulos-Soares I, Zaravinos A. A Multi-Omics Analysis of an Exhausted T Cells' Molecular Signature in Pan-Cancer. J Pers Med 2024; 14:765. [PMID: 39064019 PMCID: PMC11278172 DOI: 10.3390/jpm14070765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/06/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
T cells are essential tumor suppressors in cancer immunology, but their dysfunction induced by cancer cells can result in T cell exhaustion. Exhausted T cells (Tex) significantly influence the tumor immune environment, and thus, there is a need for their thorough investigation across different types of cancer. Here, we address the role of Tex cells in pan-cancer, focusing on the expression, mutations, methylation, immune infiltration, and drug sensitivity of a molecular signature comprising of the genes HAVCR2, CXCL13, LAG3, LAYN, TIGIT, and PDCD1across multiple cancer types, using bioinformatics analysis of TCGA data. Our analysis revealed that the Tex signature genes are differentially expressed across 14 cancer types, being correlated with patient survival outcomes, with distinct survival trends. Pathway analysis indicated that the Tex genes influence key cancer-related pathways, such as apoptosis, EMT, and DNA damage pathways. Immune infiltration analysis highlighted a positive correlation between Tex gene expression and immune cell infiltration in bladder cancer, while mutations in these genes were associated with specific immune cell enrichments in UCEC and SKCM. CNVs in Tex genes were widespread across cancers. We also highlight high LAYN methylation in most tumors and a negative correlation between methylation levels and immune cell infiltration in various cancers. Drug sensitivity analysis identified numerous correlations, with CXCL13 and HAVCR2 expressions influencing sensitivity to several drugs, including Apitolisib, Belinostat, and Docetaxel. Overall, these findings highlight the importance of reviving exhausted T cells to enhance the treatment efficacy to significantly boost anti-tumor immunity and achieve better clinical outcomes.
Collapse
Affiliation(s)
- Christos Rigopoulos
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 2404, Cyprus;
- Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia 1678, Cyprus
| | - Ilias Georgakopoulos-Soares
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA;
| | - Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 2404, Cyprus;
- Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia 1678, Cyprus
| |
Collapse
|
4
|
Chen L, Gu R, Li Y, Liu H, Han W, Yan Y, Chen Y, Zhang Y, Jiang Y. Epigenetic target identification strategy based on multi-feature learning. J Biomol Struct Dyn 2024; 42:5946-5962. [PMID: 37827992 DOI: 10.1080/07391102.2023.2259511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/20/2023] [Indexed: 10/14/2023]
Abstract
The identification of potential epigenetic targets for a known bioactive compound is essential and promising as more and more epigenetic drugs are used in cancer clinical treatment and the availability of chemogenomic data related to epigenetics increases. In this study, we introduce a novel epigenetic target identification strategy (ETI-Strategy) that integrates a multi-task graph convolutional neural network prior model and a protein-ligand interaction classification discriminating model using large-scale bioactivity data for a panel of 55 epigenetic targets. Our approach utilizes machine learning techniques to achieve an AUC value of 0.934 for the prior model and 0.830 for the discriminating model, outperforming inverse docking in predicting protein-ligand interactions. When comparing with other open-source target identification tools, it was found that only our tool was able to accurately predict all the targets corresponding to each compound. This further demonstrates the ability of our strategy to take full advantage of molecular-level information as well as protein-level information in molecular activity prediction. Our work highlights the contribution of machine learning in the identification of potential epigenetic targets and offers a novel approach for epigenetic drug discovery and development.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Lingfeng Chen
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, China
| | - Rui Gu
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, China
| | - Yuanyuan Li
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, China
| | - Haichun Liu
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, China
| | - Weijie Han
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, China
| | - Yingchao Yan
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, China
| | - Yadong Chen
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, China
| | - Yanmin Zhang
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, China
| | - Yulei Jiang
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
5
|
Hui SE, Westlund KN. Role of HDAC5 Epigenetics in Chronic Craniofacial Neuropathic Pain. Int J Mol Sci 2024; 25:6889. [PMID: 38999998 PMCID: PMC11241576 DOI: 10.3390/ijms25136889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/08/2024] [Accepted: 06/16/2024] [Indexed: 07/14/2024] Open
Abstract
The information provided from the papers reviewed here about the role of epigenetics in chronic craniofacial neuropathic pain is critically important because epigenetic dysregulation during the development and maintenance of chronic neuropathic pain is not yet well characterized, particularly for craniofacial pain. We have noted that gene expression changes reported vary depending on the nerve injury model and the reported sample collection time point. At a truly chronic timepoint of 10 weeks in our model of chronic neuropathic pain, functional groupings of genes examined include those potentially contributing to anti-inflammation, nerve repair/regeneration, and nociception. Genes altered after treatment with the epigenetic modulator LMK235 are discussed. All of these differentials are key in working toward the development of diagnosis-targeted therapeutics and likely for the timing of when the treatment is provided. The emphasis on the relevance of time post-injury is reiterated here.
Collapse
Affiliation(s)
| | - Karin N. Westlund
- Department of Anesthesiology & Critical Care Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| |
Collapse
|
6
|
Khatun S, Bhagat RP, Amin SA, Jha T, Gayen S. Density functional theory (DFT) studies in HDAC-based chemotherapeutics: Current findings, case studies and future perspectives. Comput Biol Med 2024; 175:108468. [PMID: 38657469 DOI: 10.1016/j.compbiomed.2024.108468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024]
Abstract
Density Functional Theory (DFT) is a quantum chemical computational method used to predict and analyze the electronic properties of atoms, molecules, and solids based on the density of electrons rather than wavefunctions. It provides insights into the structure, bonding, and behavior of different molecules, including those involved in the development of chemotherapeutic agents, such as histone deacetylase inhibitors (HDACis). HDACs are a wide group of metalloenzymes that facilitate the removal of acetyl groups from acetyl-lysine residues situated in the N-terminal tail of histones. Abnormal HDAC recruitment has been linked to several human diseases, especially cancer. Therefore, it has been recognized as a prospective target for accelerating the development of anticancer therapies. Researchers have studied HDACs and its inhibitors extensively using a combination of experimental methods and diverse in-silico approaches such as machine learning and quantitative structure-activity relationship (QSAR) methods, molecular docking, molecular dynamics, pharmacophore mapping, and more. In this context, DFT studies can make significant contribution by shedding light on the molecular properties, interactions, reaction pathways, transition states, reactivity and mechanisms involved in the development of HDACis. This review attempted to elucidate the scope in which DFT methodologies may be used to enhance our comprehension of the molecular aspects of HDAC inhibitors, aiding in the rational design and optimization of these compounds for therapeutic applications in cancer and other ailments. The insights gained can guide experimental efforts toward developing more potent and selective HDAC inhibitors.
Collapse
Affiliation(s)
- Samima Khatun
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Rinki Prasad Bhagat
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Sk Abdul Amin
- Department of Pharmaceutical Technology, JIS University, 81, Nilgunj Road, Agarpara, Kolkata, West Bengal, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Shovanlal Gayen
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
7
|
Curcio A, Rocca R, Alcaro S, Artese A. The Histone Deacetylase Family: Structural Features and Application of Combined Computational Methods. Pharmaceuticals (Basel) 2024; 17:620. [PMID: 38794190 PMCID: PMC11124352 DOI: 10.3390/ph17050620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Histone deacetylases (HDACs) are crucial in gene transcription, removing acetyl groups from histones. They also influence the deacetylation of non-histone proteins, contributing to the regulation of various biological processes. Thus, HDACs play pivotal roles in various diseases, including cancer, neurodegenerative disorders, and inflammatory conditions, highlighting their potential as therapeutic targets. This paper reviews the structure and function of the four classes of human HDACs. While four HDAC inhibitors are currently available for treating hematological malignancies, numerous others are undergoing clinical trials. However, their non-selective toxicity necessitates ongoing research into safer and more efficient class-selective or isoform-selective inhibitors. Computational methods have aided the discovery of HDAC inhibitors with the desired potency and/or selectivity. These methods include ligand-based approaches, such as scaffold hopping, pharmacophore modeling, three-dimensional quantitative structure-activity relationships, and structure-based virtual screening (molecular docking). Moreover, recent developments in the field of molecular dynamics simulations, combined with Poisson-Boltzmann/molecular mechanics generalized Born surface area techniques, have improved the prediction of ligand binding affinity. In this review, we delve into the ways in which these methods have contributed to designing and identifying HDAC inhibitors.
Collapse
Affiliation(s)
- Antonio Curcio
- Dipartimento di Scienze della Salute, Campus “S. Venuta”, Università degli Studi “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (A.C.); (S.A.); (A.A.)
| | - Roberta Rocca
- Dipartimento di Scienze della Salute, Campus “S. Venuta”, Università degli Studi “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (A.C.); (S.A.); (A.A.)
- Net4Science S.r.l., Università degli Studi “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Campus “S. Venuta”, Università degli Studi “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (A.C.); (S.A.); (A.A.)
- Net4Science S.r.l., Università degli Studi “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Anna Artese
- Dipartimento di Scienze della Salute, Campus “S. Venuta”, Università degli Studi “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (A.C.); (S.A.); (A.A.)
- Net4Science S.r.l., Università degli Studi “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| |
Collapse
|
8
|
Tseng YW, Yang TJ, Hsu YL, Liu JH, Tseng YC, Hsu TW, Lu Y, Pan SH, Cheng TJR, Fang JM. Dual-targeting compounds possessing enhanced anticancer activity via microtubule disruption and histone deacetylase inhibition. Eur J Med Chem 2024; 265:116042. [PMID: 38141287 DOI: 10.1016/j.ejmech.2023.116042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/29/2023] [Accepted: 12/09/2023] [Indexed: 12/25/2023]
Abstract
Dual-targeting anticancer agents 4-29 are designed by combining the structural features of purine-type microtubule-disrupting compounds and HDAC inhibitors. A library of the conjugate compounds connected by appropriate linkers was synthesized and found to possess HDACs inhibitory activity and render microtubule fragmentation by activating katanin, a microtubule-severing protein. Among various zinc-binding groups, hydroxamic acid shows the highest inhibitory activity of Class I HDACs, which was also reconfirmed by three-dimensional quantitative structure-activity relationship (3D-QSAR) pharmacophore prediction. The purine-hydroxamate conjugates exhibit enhanced cytotoxicity against MDA-MB231 breast cancer cells, H1975 lung cancer cells, and various clinical isolated non-small-cell lung cancer cells with different epidermal growth factor receptor (EGFR) status. Pyridyl substituents could be used to replace the C2 and N9 phenyl moieties in the purine-type scaffold, which can help to improve the solubility under physiological conditions, thus increasing cytotoxicity. In mice treated with the purine-hydroxamate conjugates, the tumor growth rate was significantly reduced without causing toxic effects. Our study demonstrates the potential of the dual-targeting purine-hydroxamate compounds for cancer monotherapy.
Collapse
Affiliation(s)
- Yu-Wei Tseng
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Tsung-Jung Yang
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Yuan-Ling Hsu
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Jyung-Hurng Liu
- Graduate Institute of Genomics and Bioinformatics, College of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Yin-Chen Tseng
- The Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Tse-Wei Hsu
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Yueh Lu
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Szu-Hua Pan
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, 100, Taiwan; Doctoral Degree Program of Translational Medicine, National Taiwan University, Taipei, 100, Taiwan; Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, 100, Taiwan.
| | | | - Jim-Min Fang
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan; The Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan.
| |
Collapse
|
9
|
Rana N, Grover P, Singh H. Recent Developments and Future Perspectives of Purine Derivatives as a Promising Scaffold in Drug Discovery. Curr Top Med Chem 2024; 24:541-579. [PMID: 38288806 DOI: 10.2174/0115680266290152240110074034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/17/2023] [Accepted: 12/27/2023] [Indexed: 05/31/2024]
Abstract
Numerous purine-containing compounds have undergone extensive investigation for their medical efficacy across various diseases. The swift progress in purine-based medicinal chemistry has brought to light the therapeutic capabilities of purine-derived compounds in addressing challenging medical conditions. Defined by a heterocyclic ring comprising a pyrimidine ring linked with an imidazole ring, purine exhibits a diverse array of therapeutic attributes. This review systematically addresses the multifaceted potential of purine derivatives in combating various diseases, including their roles as anticancer agents, antiviral compounds (anti-herpes, anti-HIV, and anti-influenzae), autoimmune and anti-inflammatory agents, antihyperuricemic and anti-gout solutions, antimicrobial agents, antitubercular compounds, anti-leishmanial agents, and anticonvulsants. Emphasis is placed on the remarkable progress made in developing purine-based compounds, elucidating their significant target sites. The article provides a comprehensive exploration of developments in both natural and synthetic purines, offering insights into their role in managing a diverse range of illnesses. Additionally, the discussion delves into the structure-activity relationships and biological activities of the most promising purine molecules. The intriguing capabilities revealed by these purine-based scaffolds unequivocally position them at the forefront of drug candidate development. As such, this review holds potential significance for researchers actively involved in synthesizing purine-based drug candidates, providing a roadmap for the continued advancement of this promising field.
Collapse
Affiliation(s)
- Neha Rana
- School of Pharmacy (SOP), Noida International University, Yamuna Expressway, Gautam Budh Nagar, 203201, India
| | - Parul Grover
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, 201206, India
| | - Hridayanand Singh
- Dr. K. N. Modi Institute of Pharmaceutical Education and Research, Modinagar, 201204, Uttar Pradesh, India
| |
Collapse
|
10
|
Han H, Feng X, He T, Wu Y, He T, Yue Z, Zhou W. Discussion on structure classification and regulation function of histone deacetylase and their inhibitor. Chem Biol Drug Des 2024; 103:e14366. [PMID: 37776270 DOI: 10.1111/cbdd.14366] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023]
Abstract
Epigenetic regulation of genes through posttranslational regulation of proteins is a well-explored approach for disease treatment, particularly in cancer chemotherapy. Histone deacetylases have shown significant potential as effective drug targets in therapeutic studies aiming to restore epigenetic normality in oncology. Besides their role in modifying histones, histone deacetylases can also catalyze the deacetylation of various nonhistone proteins and participate in the regulation of multiple biological processes. This paper provides a review of the classification, structure, and functional characteristics of the four classes of human histone deacetylases. The increasing abundance of structural information on HDACs has led to the gradual elucidation of structural differences among subgroups and subtypes. This has provided a reasonable explanation for the selectivity of certain HDAC inhibitors. Currently, the US FDA has approved a total of six HDAC inhibitors for marketing, primarily for the treatment of various hematological tumors and a few solid tumors. These inhibitors all have a common pharmacodynamic moiety consisting of three parts: CAP, ZBG, and Linker. In this paper, the structure-effect relationship of HDAC inhibitors is explored by classifying the six HDAC inhibitors into three main groups: isohydroxamic acids, benzamides, and cyclic peptides, based on the type of inhibitor ZBG. However, there are still many questions that need to be answered in this field. In this paper, the structure-functional characteristics of HDACs and the structural information of the pharmacophore model and enzyme active region of HDAC is are considered, which can help to understand the inhibition mechanism of the compounds as well as the rational design of HDACs. This paper integrates the structural-functional characteristics of HDACs as well as the pharmacophore model of HDAC is and the structural information of the enzymatic active region, which not only contributes to the understanding of the inhibition mechanism of the compounds, but also provides a basis for the rational design of HDAC inhibitors.
Collapse
Affiliation(s)
- Han Han
- Department of Biochemistry and Molecular Biology, Shenyang Medical College, Shenyang City, P. R. China
| | - Xue Feng
- Department of Pathogen Biology, Shenyang Medical College, Shenyang City, P. R. China
| | - Ting He
- Department of Pathogen Biology, Shenyang Medical College, Shenyang City, P. R. China
| | - Yingfan Wu
- Department of Pathogen Biology, Shenyang Medical College, Shenyang City, P. R. China
| | - Tianmei He
- Department of Pathogen Biology, Shenyang Medical College, Shenyang City, P. R. China
| | - Ziwen Yue
- Department of Pathogen Biology, Shenyang Medical College, Shenyang City, P. R. China
| | - Weiqiang Zhou
- Department of Pathogen Biology, Shenyang Medical College, Shenyang City, P. R. China
| |
Collapse
|
11
|
De Vita S, Meninno S, Capasso L, Colarusso E, Chini MG, Lauro G, Rinaldi R, De Cicco A, Sian V, Terracciano S, Nebbioso A, Lattanzi A, Bifulco G. 2-Substituted 1,5-benzothiazepine-based HDAC inhibitors exert anticancer activities on human solid and acute myeloid leukemia cell lines. Bioorg Med Chem 2023; 93:117444. [PMID: 37611334 DOI: 10.1016/j.bmc.2023.117444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/31/2023] [Accepted: 08/11/2023] [Indexed: 08/25/2023]
Abstract
Herein, we report the development of a new series of histone deacetylase inhibitors (HDACi) containing a 2-substituted 1,5-benzothiazepine scaffold. First, a virtual combinatorial library (∼1.6 × 103 items) was built according to a convenient synthetic route, and then it was submitted to molecular docking experiments on seven HDACs isoforms belonging to classes I and II. Integrated computational filters were used to select the most promising ones that were synthesized through an optimized approach, also amenable to generating both racemic and enantioenriched benzothiazepine-based derivatives. The obtained compounds showed potent HDAC inhibitory activity, especially those containing the sulphone moiety, endowed with IC50 in the nanomolar range. In addition, in vitro outcomes of our synthesized compounds demonstrated a cytotoxic effect on U937 and HCT116 cell lines and an arrest in the G2/M phase (13 ≤ IC50 ≤ 18 µM). Finally, Western blot analyses outlined the modulation of the histone acetyl markers such as H3K9/14, acetyl-tubulin, and the apoptotic indicator p21 in both cancer cell lines, disclosing a good HDAC inhibitor activity exerted by the designed items. Given the key role of HDACs in many cellular pathways, which makes these enzymes appealing and "hot" drug targets, our findings highlighted the importance of these 2-substituted 1,5-benzothiazepine-based compounds (both in the reduced and oxidized version) for the development of novel epidrugs.
Collapse
Affiliation(s)
- Simona De Vita
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy.
| | - Sara Meninno
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy.
| | - Lucia Capasso
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138 Naples, Italy.
| | - Ester Colarusso
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy.
| | - Maria Giovanna Chini
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, Pesche, Isernia 86090, Italy.
| | - Gianluigi Lauro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy.
| | - Romolo Rinaldi
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy.
| | - Annalisa De Cicco
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy.
| | - Veronica Sian
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138 Naples, Italy.
| | - Stefania Terracciano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy.
| | - Angela Nebbioso
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138 Naples, Italy.
| | - Alessandra Lattanzi
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy.
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy.
| |
Collapse
|
12
|
Gao Y, Li F, Ni X, Yang S, Liu H, Wu X, Liu J, Ma J. Design, synthesis and biological evaluation of VEGFR-2/HDAC dual inhibitors as multitargeted antitumor agents based on fruquintinib and vorinostat. RSC Adv 2023; 13:28462-28480. [PMID: 37771923 PMCID: PMC10523135 DOI: 10.1039/d3ra05542f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/19/2023] [Indexed: 09/30/2023] Open
Abstract
Herein, a series of 4-(benzofuran-6-yloxy)quinazoline derivatives as VEGFR-2/HDAC dual inhibitors were designed and synthesized based on fruquintinib and vorinostat. Among them, compound 13 exhibited potent inhibitory activity against VEGFR-2 and HDAC1 with IC50 values of 57.83 nM and 9.82 nM, and displayed moderate to significant antiproliferative activity against MCF-7, A549, HeLa and HUVEC. The cellular mechanism studies revealed that compound 13 arrested the cell cycle at the S and G2 phases, and induced significant apoptosis in HeLa cells. Tube formation assay in HUVECs demonstrated that 13 had a significant anti-angiogenic effect. Additionally, a molecular docking study supported the initial design strategy. These results highlighted that 13 was a valuable VEGFR-2/HDAC dual inhibitor and deserved further study for cancer therapy.
Collapse
Affiliation(s)
- Yali Gao
- Pharmacy Department, The Second Affiliated Hospital of Fujian Medical University Quanzhou 362000 PR China
| | - Fei Li
- School of Medicine, Huaqiao University Quanzhou 362000 PR China
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine Shiyan 442008 Hubei PR China
| | - Xin Ni
- School of Medicine, Huaqiao University Quanzhou 362000 PR China
| | - Siwang Yang
- School of Medicine, Huaqiao University Quanzhou 362000 PR China
| | - Han Liu
- School of Medicine, Huaqiao University Quanzhou 362000 PR China
| | - Xingye Wu
- School of Medicine, Huaqiao University Quanzhou 362000 PR China
| | - Jieqing Liu
- School of Medicine, Huaqiao University Quanzhou 362000 PR China
| | - Junjie Ma
- School of Medicine, Huaqiao University Quanzhou 362000 PR China
| |
Collapse
|
13
|
Pulya S, Himaja A, Paul M, Adhikari N, Banerjee S, Routholla G, Biswas S, Jha T, Ghosh B. Selective HDAC3 Inhibitors with Potent In Vivo Antitumor Efficacy against Triple-Negative Breast Cancer. J Med Chem 2023; 66:12033-12058. [PMID: 37660352 DOI: 10.1021/acs.jmedchem.3c00614] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
HDAC3 modulation shows promise for breast cancer, including triple-negative cases. Novel pyrazino-hydrazide-based HDAC3 inhibitors were designed and synthesized. Lead compound 4i exhibited potent HDAC3 inhibition (IC50 = 14 nM) with at least 121-fold selectivity. It demonstrated strong cytotoxicity against triple-negative breast cancer cells (IC50: 0.55 μM for 4T1, 0.74 μM for MDA-MB-231) with least normal cell toxicity. Metabolically stable 4i displayed a superior pharmacokinetic profile. A dose-dependent therapeutic efficacy of 4i was observed in a tumor-bearing mouse model. The biomarker analysis with tumor tissues displayed enhanced acetylation on Ac-H3K9, Ac-H3K27, and Ac-H4K12 compared to Ac-tubulin and Ac-SMC3 indicating HDAC3 selectivity of 4i in vivo. The immunoblotting study with tumor tissue showed upregulation of apoptotic proteins caspase-3, caspase-7, and cytochrome c and the downregulation of proliferation markers Bcl-2, CD44, EGFR, and Ki-67. Compound 4i represents a promising candidate for targeted breast cancer therapy, particularly for cases with triple-negative breast cancer.
Collapse
Affiliation(s)
- Sravani Pulya
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad 500078, India
| | - Ambati Himaja
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad 500078, India
| | - Milan Paul
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad 500078, India
| | - Nilanjan Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, P.O. Box 17020, Kolkata, West Bengal 700032, India
| | - Suvankar Banerjee
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, P.O. Box 17020, Kolkata, West Bengal 700032, India
| | - Ganesh Routholla
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad 500078, India
| | - Swati Biswas
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad 500078, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, P.O. Box 17020, Kolkata, West Bengal 700032, India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad 500078, India
| |
Collapse
|
14
|
Li Y, Huang Y, Liang H, Wang W, Li B, Liu T, Huang Y, Zhang Z, Qin Y, Zhou X, Wang R, Huang T. The roles and applications of short-chain fatty acids derived from microbial fermentation of dietary fibers in human cancer. Front Nutr 2023; 10:1243390. [PMID: 37614742 PMCID: PMC10442828 DOI: 10.3389/fnut.2023.1243390] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/21/2023] [Indexed: 08/25/2023] Open
Abstract
Dietary fibers (DFs) and their metabolites attract significant attention in research on health and disease, attributing to their effects on regulating metabolism, proliferation, inflammation, and immunity. When fermented by gut microbiota, DFs mainly produce short-chain fatty acids (SCFAs), such as acetic acid, propionic acid, and butyric acid. As the essential nutrients for intestinal epithelial cells, SCFAs maintain intestinal homeostasis and play essential roles in a wide range of biological functions. SCFAs have been found to inhibit histone deacetylase, activate G protein-coupled receptors, and modulate the immune response, which impacts cancer and anti-cancer treatment. Notably, while extensive studies have illuminated the roles of SCFAs in colorectal cancer development, progression, and treatment outcomes, limited evidence is available for other types of cancers. This restricts our understanding of the complex mechanisms and clinical applications of SCFAs in tumors outside the intestinal tract. In this study, we provide a comprehensive summary of the latest evidence on the roles and mechanisms of SCFAs, with a focus on butyric acid and propionic acid, derived from microbial fermentation of DFs in cancer. Additionally, we recapitulate the clinical applications of SCFAs in cancer treatments and offer our perspectives on the challenges, limitations, and prospects of utilizing SCFAs in cancer research and therapy.
Collapse
Affiliation(s)
- Yuanqing Li
- Department of Radiation Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Yaxuan Huang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Haili Liang
- Guangxi Zhuang Autonomous Region Institute of Product Quality Inspection (GXQT), Nanning, China
| | - Wen Wang
- Guangxi Zhuang Autonomous Region Institute of Product Quality Inspection (GXQT), Nanning, China
| | - Bo Li
- Department of Radiation Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ting Liu
- Department of Radiation Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yuqi Huang
- The First School of Clinical Medicine, Guangxi Medical University, Nanning, China
| | - Zhe Zhang
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yutao Qin
- Department of Radiation Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaoying Zhou
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Life Science Institute, Guangxi Medical University, Nanning, China
| | - Rensheng Wang
- Department of Radiation Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Tingting Huang
- Department of Radiation Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
| |
Collapse
|
15
|
Farani MR, Sarlak M, Gholami A, Azaraian M, Binabaj MM, Kakavandi S, Tambuwala MM, Taheriazam A, Hashemi M, Ghasemi S. Epigenetic drugs as new emerging therapeutics: What is the scale's orientation of application and challenges? Pathol Res Pract 2023; 248:154688. [PMID: 37494800 DOI: 10.1016/j.prp.2023.154688] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023]
Abstract
Epigenetics is the study of heritable changes in gene expression or function without altering the DNA sequence. Important factors are part of epigenetic events, such as methylation, DNA histone rearrangements, nucleosome transposition, and non-coding RNAs. Dysregulated epigenetic mechanics are associated with various cancers' initiation, development, and metastasis. It is known that the occurrence and development of cancer can be controlled by regulating unexpected epigenetic events. Epi-drugs are used singly or in combination with chemotherapy and enhance antitumor activity, reduce drug resistance, and stimulate the host immune response. Despite these benefits, epigenetic therapy as a single therapy or in combination with other drugs leads to adverse effects. This review article introduces and compares the advantages, disadvantages, and side effects of using these drugs for the first time since their introduction. Also, this article describes the mechanism of action of various epigenetic drugs. Recommendations for future use of epigenetic drugs as cancer therapeutics are suggested as an overall conclusion.
Collapse
Affiliation(s)
- Marzieh Ramezani Farani
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), the Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, 1417614411 Tehran, Iran
| | - Maryam Sarlak
- Department of Chemistry, Portland State University, Portland, OR, USA
| | - Amir Gholami
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Maryam Azaraian
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany; Department of Bioanalytical Ecotoxicology, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Maryam Moradi Binabaj
- Clinical Biochemistry, Department of Biochemistry and Nutrition, School of Medicine, Sabzevar University of Medical Science, Sabzevar, Iran; Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Sareh Kakavandi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, 0United Kingdom
| | - Afshin Taheriazam
- Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Sorayya Ghasemi
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
16
|
Han B, Wang M, Li J, Chen Q, Sun N, Yang X, Zhang Q. Perspectives and new aspects of histone deacetylase inhibitors in the therapy of CNS diseases. Eur J Med Chem 2023; 258:115613. [PMID: 37399711 DOI: 10.1016/j.ejmech.2023.115613] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/20/2023] [Accepted: 06/28/2023] [Indexed: 07/05/2023]
Abstract
Many populations worldwide are suffering from central nervous system (CNS) diseases such as brain tumors, neurodegenerative diseases (Alzheimer's disease, Parkinson's disease and Huntington's disease) and stroke. There is a shortage of effective drugs for most CNS diseases. As one of the regulatory mechanisms of epigenetics, the particular role and therapeutic benefits of histone deacetylases (HDACs) in the CNS have been extensively studied. In recent years, HDACs have attracted increasing attention as potential drug targets for CNS diseases. In this review, we summarize the recent applications of representative histone deacetylases inhibitors (HDACis) in CNS diseases and discuss the challenges in developing HDACis with different structures and better blood-brain barrier (BBB) permeability, hoping to promote the development of more effective bioactive HDACis for the treatment of CNS diseases.
Collapse
Affiliation(s)
- Bo Han
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
| | - Mengfei Wang
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
| | - Jiayi Li
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, 201203, China; School of Chemistry & Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Qiushi Chen
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, 201203, China; School of Chemistry & Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Niubing Sun
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, 201203, China; School of Chemistry & Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Xuezhi Yang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Qingwei Zhang
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, 201203, China.
| |
Collapse
|
17
|
Amin SA, Khatun S, Gayen S, Das S, Jha T. Are inhibitors of histone deacetylase 8 (HDAC8) effective in hematological cancers especially acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL)? Eur J Med Chem 2023; 258:115594. [PMID: 37429084 DOI: 10.1016/j.ejmech.2023.115594] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/17/2023] [Accepted: 06/23/2023] [Indexed: 07/12/2023]
Abstract
Histone deacetylase 8 (HDAC8) aberrantly deacetylates histone and non-histone proteins. These include structural maintenance of chromosome 3 (SMC3) cohesin protein, retinoic acid induced 1 (RAI1), p53, etc and thus, regulating diverse processes such as leukemic stem cell (LSC) transformation and maintenance. HDAC8, one of the crucial HDACs, affects the gene silencing process in solid and hematological cancer progressions especially on acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL). A specific HDAC8 inhibitor PCI-34051 showed promising results against both T-cell lymphoma and AML. Here, we summarize the role of HDAC8 in hematological malignancies, especially in AML and ALL. This article also introduces the structure/function of HDAC8 and a special attention has been paid to address the HDAC8 enzyme selectivity issue in hematological cancer especially against AML and ALL.
Collapse
Affiliation(s)
- Sk Abdul Amin
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India; Department of Pharmaceutical Technology, JIS University, 81, Nilgunj Road, Agarpara, Kolkata, West Bengal, India.
| | - Samima Khatun
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Shovanlal Gayen
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| | - Sanjib Das
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
18
|
Yang Y, Liu Q, Wang X, Gou S. Design, synthesis, and biological evaluation of novel HDAC inhibitors with a 3-(benzazol-2-yl)quinoxaline framework. Bioorg Med Chem Lett 2023; 88:129305. [PMID: 37116762 DOI: 10.1016/j.bmcl.2023.129305] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/28/2023] [Accepted: 04/24/2023] [Indexed: 04/30/2023]
Abstract
A series of novel histone deacetylase (HDAC) inhibitors derived from 3-(benzazol-2-yl)quinoxaline derivatives were designed and synthesized by a pharmacophore fusion strategy. In vitro results showed that most of the synthesized compounds exhibited good anti-proliferative activity. Among them, compound 10c showed the most potent cytotoxicity, especially in HCT-116 cells with an IC50 value of 0.91 μM much superior to Vorinostat (5.66 μM). 10c was also found to induce cell apoptosis, arrest the cell cycle at G2/M phase, induce the generation of reactive oxygen species and inhibit cell invasion and migration in HCT-116 cells. Further studies revealed that 10c could up-regulate the acetylation levels of H3 and α-tubulin, exhibit significant Topo I inhibition and induce the release of related apoptotic biomarkers. These results highlight the great potential of 10c to become a promising anti-cancer HDAC inhibitor.
Collapse
Affiliation(s)
- Yawen Yang
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Qingqing Liu
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; School of Pharmacy, Jilin Medical University, Jilin City 132013, Jilin Province, China
| | - Xinyi Wang
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Shaohua Gou
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China.
| |
Collapse
|
19
|
Al-Wabli RI, Issa IS, Al-Mutairi MS, Almomen AA, Attia MI. A Facile Synthesis and Molecular Characterization of Certain New Anti-Proliferative Indole-Based Chemical Entities. Int J Mol Sci 2023; 24:ijms24097862. [PMID: 37175570 PMCID: PMC10178769 DOI: 10.3390/ijms24097862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/06/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Cancer cells frequently develop drug resistance, which leads to chemotherapeutic treatment failure. Additionally, chemotherapies are hindered by their high toxicity. Therefore, the development of new chemotherapeutic drugs with improved clinical outcomes and low toxicity is a major priority. Several indole derivatives exhibit distinctive anti-cancer mechanisms which have been associated with various molecular targets. In this study, target compounds 4a-q were obtained through the reaction of substituted benzyl chloride with hydrazine hydrate, which produces benzyl hydrazine. Subsequently, the appropriate substituted benzyl hydrazine was allowed to react with 1H-indole-2-carboxylic acid or 5-methoxy-1H-indole-2-carboxylic acid using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide as a coupling agent. All compounds exhibited cytotoxicity in three cell lines, namely, MCF-7, A549, and HCT. Compound 4e exhibited the highest cytotoxicity, with an average IC50 of 2 µM. Moreover, a flow cytometry study revealed a significantly increased prevalence of Annexin-V and 7-AAD positive cell populations. Several derivatives of 4a-q showed moderate to high cytotoxicity against the tested cell lines, with compound 4e having the highest cytotoxicity, indicating that it may possess potential apoptosis-inducing capabilities.
Collapse
Affiliation(s)
- Reem I Al-Wabli
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Iman S Issa
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Maha S Al-Mutairi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Aliyah A Almomen
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohamed I Attia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
20
|
Targeting histone deacetylases for cancer therapy: Trends and challenges. Acta Pharm Sin B 2023. [DOI: 10.1016/j.apsb.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
|
21
|
Huang Y, Liu N, Pan Z, Li Z, Sheng C. BET-HDAC Dual Inhibitors for Combinational Treatment of Breast Cancer and Concurrent Candidiasis. J Med Chem 2023; 66:1239-1253. [PMID: 36622852 DOI: 10.1021/acs.jmedchem.2c01191] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Breast cancer is susceptible to Candida infections, and candidiasis has an enhancing effect on the progression and metastasis of tumor. Breast cancer and concurrent candidiasis represent a significant challenge in clinical therapy. Herein, a series of novel small molecule inhibitors simultaneously targeting bromodomain and extra-terminal (BET) and histone deacetylase (HDAC) were designed for combinational treatment of breast cancer and resistant Candida albicans infections. Among them, compounds 13c and 17b exhibited excellent and balanced inhibitory activity against both BET family proteins BRD4 and HDAC1. As compared with BRD4 or HDAC1 inhibitors, dual inhibitors 13c and 17b displayed improved in vivo antitumor efficacy in MDA-MB-231 breast cancer xenograft models. Notably, they synergized with fluconazole (FLC) to effectively reduce the kidney fungal burden in a murine model of disseminated candidiasis. Thus, the BET-HDAC dual inhibitors represented a novel therapeutic strategy for combinational treatment of breast cancer and concurrent candidiasis.
Collapse
Affiliation(s)
- Yahui Huang
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People's Republic of China
| | - Na Liu
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People's Republic of China
| | - Zhizhi Pan
- College of Pharmacy, Dali University, Xueren Road 2, Dali 671000, People's Republic of China
| | - Zhuang Li
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People's Republic of China
| | - Chunquan Sheng
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People's Republic of China
| |
Collapse
|
22
|
Histone deacetylase inhibitors promote breast cancer metastasis by elevating NEDD9 expression. Signal Transduct Target Ther 2023; 8:11. [PMID: 36604412 PMCID: PMC9816171 DOI: 10.1038/s41392-022-01221-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/13/2022] [Accepted: 09/29/2022] [Indexed: 01/07/2023] Open
Abstract
Histone deacetylase (HDAC) is a kind of protease that modifies histone to regulate gene expression, and is usually abnormally activated in tumors. The approved pan-HDAC inhibitors have demonstrated clinical benefits for patients in some hematologic malignancies. Only limited therapeutic success in breast cancer has been observed in clinical trials. In this study, we declare that pan-HDAC inhibitors targeting NEDD9-FAK pathway exacerbate breast cancer metastasis in preclinical models, which may severely impede their clinical success. NEDD9 is not an oncogene, however, it has been demonstrated recently that there are high level or activity changes of NEDD9 in a variety of cancer, including leukemia, colon cancer, and breast cancer. Mechanistically, pan-HDAC inhibitors enhance H3K9 acetylation at the nedd9 gene promoter via inhibition of HDAC4 activity, thus increase NEDD9 expression, and then activate FAK phosphorylation. The realization that pan-HDAC inhibitors can alter the natural history of breast cancer by increasing invasion warrants clinical attention. In addition, although NEDD9 has been reported to have a hand in breast cancer metastasis, it has not received much attention, and no therapeutic strategies have been developed. Notably, we demonstrate that FAK inhibitors can reverse breast cancer metastasis induced by upregulation of NEDD9 via pan-HDAC inhibitors, which may offer a potential combination therapy for breast cancer.
Collapse
|
23
|
Gao C, Zhang L, Xu Y, Ma X, Chen P, Chen ZS, Wei L. I13 overrides resistance mediated by the T315I mutation in chronic myeloid leukemia by direct BCR-ABL inhibition. Front Pharmacol 2023; 14:1183052. [PMID: 37124196 PMCID: PMC10130674 DOI: 10.3389/fphar.2023.1183052] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 03/29/2023] [Indexed: 05/02/2023] Open
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm caused by a BCR-ABL fusion gene. Imatinib has significantly improved the treatment of CML as a first-generation tyrosine kinase inhibitor (TKIs). The T315I mutant form of BCR-ABL is the most common mutation that confers resistance to imatinib or the second-generation TKIs, resulting in poor clinical prognosis. In this work, we assessed the effect of a potent histone deacetylase (HDAC) inhibitor, I13, on the differentiation blockade in CML cells harboring T315I-mutated and wild-type BCR-ABL by MTT assay, flow cytometery, cell colony formation assay, mRNA Sequencing, Quantitative real-time PCR and Western blotting analysis. We found that I13 possessed highly potent activity against T315I-mutated BCR-ABL mutant-expressing cells and wild-type BCR-ABL-expressing cells. I13 induced cell differentiation and significantly suppressed the proliferation of these CML cells via the cell cycle G0/G1-phase accumulation. Moreover, it was revealed that I13 triggered the differentiation of BaF3-T315I cells, which was attributed to the block of the chronic myeloid leukemia signaling pathway via the depletion of BCR-ABL that was mediated by the inhibition of HDAC activity presented by the acetylation of histones H3 and H4. Taken together, I13 efficiently depleted BCR-ABL in CML cells expressing the BCR-ABL-T315I mutation, which blocked its function, serving as a scaffold protein that modulated the chronic myeloid leukemia signaling pathway mediating cell differentiation. The present findings demonstrate that I13 is a BCR-ABL modulator for the development of CML therapy that can override resistance caused by T315I-mutated BCR-ABL.
Collapse
Affiliation(s)
- Congying Gao
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Lei Zhang
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Yun Xu
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Xiangyu Ma
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Peilei Chen
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
- *Correspondence: Zhe-Sheng Chen, ; Liuya Wei,
| | - Liuya Wei
- School of Pharmacy, Weifang Medical University, Weifang, China
- *Correspondence: Zhe-Sheng Chen, ; Liuya Wei,
| |
Collapse
|
24
|
Pradhan V, Salahuddin, Kumar R, Mazumder A, Abdullah MM, Shahar Yar M, Ahsan MJ, Ullah Z. Molecular Target Interactions of Quinoline Derivatives as Anticancer Agents: A Review. Chem Biol Drug Des 2022; 101:977-997. [PMID: 36533867 DOI: 10.1111/cbdd.14196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/23/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
One of the leading causes of death worldwide is cancer, which poses substantial risks to both society and an individual's life. Cancer therapy is still challenging, despite developments in the field and continued research into cancer prevention. The search for novel anticancer active agents with a broader cytotoxicity range is therefore continuously ongoing. The benzene ring gets fused to a pyridine ring at two carbon atoms close to one another to form the double ring structure of the heterocyclic aromatic nitrogen molecule known as quinoline (1-azanaphthalene). Quinoline derivatives contain a wide range of pharmacological activities, including antitubercular, antifungal, antibacterial, and antimalarial properties. Quinoline derivatives have also been shown to have anticancer properties. There are many quinoline derivatives widely available as anticancer drugs that act via a variety of mechanisms on various molecular targets, such as inhibition of topoisomerase, inhibition of tyrosine kinases, inhibition of heat shock protein 90 (Hsp90), inhibition of histone deacetylases (HDACs), inhibition of cell cycle arrest and apoptosis, and inhibition of tubulin polymerization.
Collapse
Affiliation(s)
- Vikas Pradhan
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida
| | - Salahuddin
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida
| | - Rajnish Kumar
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida
| | - Avijit Mazumder
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida
| | | | - Mohammad Shahar Yar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, New Delhi
| | - Mohamed Jawed Ahsan
- Department of Pharmaceutical Chemistry, Maharishi Arvind College of Pharmacy, Jaipur, Rajasthan, India
| | - Zabih Ullah
- Department of Pharmaceutical Sciences, College of Dentistry and Pharmacy, Buraydah Colleges, Al-Qassim, Saudi Arabia
| |
Collapse
|
25
|
Yang Y, Zhang M, Wang Y. The roles of histone modifications in tumorigenesis and associated inhibitors in cancer therapy. JOURNAL OF THE NATIONAL CANCER CENTER 2022; 2:277-290. [PMID: 39036551 PMCID: PMC11256729 DOI: 10.1016/j.jncc.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022] Open
Abstract
Histone modifications are key factors in chromatin packaging, and are responsible for gene regulation during cell fate determination and development. Abnormal alterations in histone modifications potentially affect the stability of the genome and disrupt gene expression patterns, leading to many diseases, including cancer. In recent years, mounting evidence has shown that various histone modifications altered by aberrantly expressed modifier enzymes contribute to tumor development and metastasis through the induction of epigenetic, transcriptional, and phenotypic changes. In this review, we will discuss the existing histone modifications, both well-studied and rare ones, and their roles in solid tumors and hematopoietic cancers, to identify the molecular pathways involved and investigate targeted therapeutic drugs to reorganize the chromatin and enhance cancer treatment efficiency. Finally, clinical inhibitors of histone modifications are summarized to better understand the developmental stage of cancer therapy in using these drugs to inhibit the histone modification enzymes.
Collapse
Affiliation(s)
| | | | - Yan Wang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
26
|
Nguyen HP, Tran QD, Nguyen CQ, Hoa TP, Duy Binh T, Nhu Thao H, Hue BTB, Tuan NT, Le Dang Q, Quoc Chau Thanh N, Van Ky N, Pham MQ, Yang SG. Anti-multiple myeloma potential of resynthesized belinostat derivatives: an experimental study on cytotoxic activity, drug combination, and docking studies. RSC Adv 2022; 12:22108-22118. [PMID: 36043105 PMCID: PMC9364358 DOI: 10.1039/d2ra01969h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 07/18/2022] [Indexed: 11/21/2022] Open
Abstract
Multiple myeloma is a deadly cancer that is a complex and multifactorial disease. In the present study, 12 belinostat derivatives (four resynthesized and eight new), HDAC inhibitors, were resynthesized via either Knoevenagel condensation, or Wittig reaction, or Heck reaction. Then an evaluation of the antiproliferative activities against myeloma cells MOPC-315 was carried out. Amongst them, compound 7f was the most bioactive compound with an IC50 of 0.090 ± 0.016 μM, being 3.5-fold more potent than the reference belinostat (IC50 = 0.318 ± 0.049 μM). Furthermore, we also confirmed the inhibitory activity of 7f in a cellular model. Additionally, we found that the inhibitory activity of 7f against histone deacetylase 6 catalytic activity (HDAC6) is more potent than that of belinostat. Finally, we observed the strong synergistic interaction between the derivative 7f and the proteasome bortezomib inhibitor (CI = 0.26), while belinostat and bortezomib showed synergism with a CI value of 0.36. Taken together, the above results suggest that 7f is a promising HDAC inhibitor deserving further investigation.
Collapse
Affiliation(s)
- Hong Phuong Nguyen
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine Incheon 22212 South Korea +82-32-890-1199 +82-32-890-2832
| | - Quang De Tran
- Department of Chemistry, College of Natural Sciences, Can Tho University Can Tho 90000 Vietnam +84934527817
| | - Cuong Quoc Nguyen
- Department of Chemistry, College of Natural Sciences, Can Tho University Can Tho 90000 Vietnam +84934527817
| | - Tran Phuong Hoa
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine Incheon 22212 South Korea +82-32-890-1199 +82-32-890-2832
| | - Tran Duy Binh
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine Incheon 22212 South Korea +82-32-890-1199 +82-32-890-2832
| | - Huynh Nhu Thao
- Department of Chemistry, College of Natural Sciences, Can Tho University Can Tho 90000 Vietnam +84934527817
| | - Bui Thi Buu Hue
- Department of Chemistry, College of Natural Sciences, Can Tho University Can Tho 90000 Vietnam +84934527817
| | - Nguyen Trong Tuan
- Department of Chemistry, College of Natural Sciences, Can Tho University Can Tho 90000 Vietnam +84934527817
| | - Quang Le Dang
- Institute for Tropical Technology, Vietnam Academy of Science and Technology Hanoi 10000 Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology Hanoi 100000 Vietnam
| | - Nguyen Quoc Chau Thanh
- Department of Chemistry, College of Natural Sciences, Can Tho University Can Tho 90000 Vietnam +84934527817
| | - Nguyen Van Ky
- Department of Chemistry, College of Natural Sciences, Can Tho University Can Tho 90000 Vietnam +84934527817
| | - Minh Quan Pham
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology Hanoi 100000 Vietnam
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology Hanoi 100000 Vietnam
| | - Su-Geun Yang
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine Incheon 22212 South Korea +82-32-890-1199 +82-32-890-2832
| |
Collapse
|
27
|
Mo H, Zhang R, Chen Y, Li S, Wang Y, Zou W, Lin Q, Zhao DG, Du Y, Zhang K, Ma YY. Synthesis and anticancer activity of novel histone deacetylase inhibitors that inhibit autophagy and induce apoptosis. Eur J Med Chem 2022; 243:114705. [DOI: 10.1016/j.ejmech.2022.114705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/10/2022] [Accepted: 08/19/2022] [Indexed: 12/01/2022]
|
28
|
Umehara T. Epidrugs: Toward Understanding and Treating Diverse Diseases. EPIGENOMES 2022; 6:epigenomes6030018. [PMID: 35893014 PMCID: PMC9326711 DOI: 10.3390/epigenomes6030018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 02/04/2023] Open
Abstract
Epigenomic modifications are unique in the type and amount of chemical modification at each chromosomal location, can vary from cell to cell, and can be externally modulated by small molecules. In recent years, genome-wide epigenomic modifications have been revealed, and rapid progress has been made in the identification of proteins responsible for epigenomic modifications and in the development of compounds that regulate them. This Special Issue on “Epidrugs: Toward Understanding and Treating Diverse Diseases” aims to provide insights into various aspects of the biology and development of epigenome-regulating compounds.
Collapse
Affiliation(s)
- Takashi Umehara
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| |
Collapse
|
29
|
Phaosiri C, Yenjai C, Senawong T, Senawong G, Saenglee S, Somsakeesit LO, Kumboonma P. Histone Deacetylase Inhibitory Activity and Antiproliferative Potential of New [6]-Shogaol Derivatives. Molecules 2022; 27:molecules27103332. [PMID: 35630809 PMCID: PMC9144829 DOI: 10.3390/molecules27103332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/15/2022] [Accepted: 05/19/2022] [Indexed: 12/10/2022] Open
Abstract
Twenty newly synthesized derivatives of [6]-shogaol (4) were tested for inhibitory activity against histone deacetylases. All derivatives showed moderate to good histone deacetylase inhibition at 100 µM with a slightly lower potency than the lead compound. Most potent inhibitors among the derivatives were the pyrazole products, 5j and 5k, and the Michael adduct with pyridine 4c and benzothiazole 4d, with IC50 values of 51, 65, 61 and 60 µM, respectively. They were further evaluated for isoform selectivity via a molecular docking study. Compound 4d showed the best selectivity towards HDAC3, whereas compound 5k showed the best selectivity towards HDAC2. The potential derivatives were tested on five cancer cell lines, including human cervical cancer (HeLa), human colon cancer (HCT116), human breast adenocarcinoma cancer (MCF-7), and cholangiocarcinoma (KKU100 and KKU-M213B) cells with MTT-based assay. The most active histone deacetylase inhibitor 5j exhibited the best antiproliferative activity against HeLa, HCT116, and MCF-7, with IC50 values of 8.09, 9.65 and 11.57 µM, respectively, and a selective binding to HDAC1 based on molecular docking experiments. The results suggest that these compounds can be putative candidates for the development of anticancer drugs via inhibiting HDACs.
Collapse
Affiliation(s)
- Chanokbhorn Phaosiri
- Natural Products Research Unit, Center of Excellence for Innovation in Chemistry, Ministry of Higher Education, Science, Research and Innovation (Implementation Unit-IU, Khon Kaen University), Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (C.P.); (C.Y.)
| | - Chavi Yenjai
- Natural Products Research Unit, Center of Excellence for Innovation in Chemistry, Ministry of Higher Education, Science, Research and Innovation (Implementation Unit-IU, Khon Kaen University), Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (C.P.); (C.Y.)
| | - Thanaset Senawong
- Natural Products Research Unit, Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (T.S.); (G.S.)
| | - Gulsiri Senawong
- Natural Products Research Unit, Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (T.S.); (G.S.)
| | - Somprasong Saenglee
- Ban Dong Sub-District Administration Organization, Ubolratana District, Khon Kaen 40250, Thailand;
| | - La-or Somsakeesit
- Department of Chemistry, Faculty of Engineering, Rajamangala University of Technology Isan, Khon Kaen 40000, Thailand;
| | - Pakit Kumboonma
- Department of Applied Chemistry, Faculty of Science and Liberal Arts, Rajamangala University of Technology Isan, Nakhon Ratchasima 30000, Thailand
- Correspondence:
| |
Collapse
|
30
|
Yao J, Li G, Cui Z, Chen P, Wang J, Hu Z, Zhang L, Wei L. The Histone Deacetylase Inhibitor I1 Induces Differentiation of Acute Leukemia Cells With MLL Gene Rearrangements via Epigenetic Modification. Front Pharmacol 2022; 13:876076. [PMID: 35571127 PMCID: PMC9091196 DOI: 10.3389/fphar.2022.876076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/02/2022] [Indexed: 12/19/2022] Open
Abstract
Acute leukemia (AL) is characterized by excessive proliferation and impaired differentiation of leukemic cells. AL includes acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL). Previous studies have demonstrated that about 10% of AML and 22% of ALL are mixed lineage leukemia gene rearrangements (MLLr) leukemia. The prognosis of MLLr leukemia is poor and new therapeutics are urgently needed. Differentiation therapy with all-trans-retinoic acid (ATRA) has prolonged the 5-years disease-free survival rate in acute promyelocytic leukemia (APL), a subtype of AML. However, the differentiation therapy has not been effective in other acute leukemia. Here, we aim to explore the cell differentiation effect of the potent HDACs inhibitor, I1, and the possible mechanism on the MLLr-AML and MLLr-ALL cells (MOLM-13, THP-1, MV4-11 and SEM). It is shown that I1 can significantly inhibit the proliferation and the colony-forming ability of MOLM-13, THP-1, MV4-11 and SEM cells by promoting cell differentiation coupled with cell cycle block at G0/G1 phase. We show that the anti-proliferative effect of I1 attributed to cell differentiation is most likely associated with the HDAC inhibition activity, as assessed by the acetylation of histone H3 and H4, which may dictates the activation of hematopoietic cell lineage pathway in both MOLM-13 and THP-1 cell lines. Moreover, the activity of HDAC inhibition of I1 is stronger than that of SAHA in MOLM-13 and THP-1 cells. Our findings suggest that I1, as a chromatin-remodeling agent, could be a potent epigenetic drug to overcome differentiation block in MLLr-AL patients and would be promising for the treatment of AL.
Collapse
Affiliation(s)
- Jingfang Yao
- Laboratory for Stem Cell and Regenerative Medicine, Affiliated Hospital of Weifang Medical University, Weifang, China.,School of Pharmacy, Weifang Medical University, Weifang, China
| | - Gentao Li
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Zihui Cui
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Peilei Chen
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Jinhong Wang
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Zhenbo Hu
- Laboratory for Stem Cell and Regenerative Medicine, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Lei Zhang
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Liuya Wei
- School of Pharmacy, Weifang Medical University, Weifang, China
| |
Collapse
|
31
|
Ma X, Zhao M, Wu ZX, Yao J, Zhang L, Wang J, Hu Z, Wei L, Chen ZS. The Histone Deacetylase Inhibitor I13 Induces Differentiation of M2, M3 and M5 Subtypes of Acute Myeloid Leukemia Cells and Leukemic Stem-Like Cells. Front Oncol 2022; 12:855570. [PMID: 35494054 PMCID: PMC9039182 DOI: 10.3389/fonc.2022.855570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/14/2022] [Indexed: 11/25/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous hematologic malignancy characterized by reduced differentiation of myeloid cells and uncontrolled cell proliferation. AML is prone to drug resistance and has a high recurrence rate during treatment with cytarabine-based chemotherapy. Our study aims to explore the cell differentiation effect of a potent histone deacetylase inhibitor (HDACi), I13, and its possible mechanism on AML cell lines (Kasumi-1, KG-1, MOLM-13 and NB4). It has been shown that I13 can significantly inhibit proliferation and colony formation of these AML cells by inducing cell differentiation coupled with cell-cycle exit at G0/G1. Mechanically, I13 presented the property of HDAC inhibition, as assessed by the acetylation of histone H3, which led to the differentiation of Kasumi-1 cells. In addition, the HDAC inhibition of I13 likely dictated the activation of the antigen processing and presentation pathway, which maybe has the potential to promote immune cells to recognize leukemic cells and respond directly against leukemic cells. These results indicated that I13 could induce differentiation of M3 and M5 subtypes of AML cells, M2 subtype AML cells with t(8;21) translocation and leukemic stem-like cells. Therefore, I13 could be an alternative compound which is able to overcome differentiation blocks in AML.
Collapse
Affiliation(s)
- Xiangyu Ma
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Mengjie Zhao
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY, United States
| | - Jingfang Yao
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Lei Zhang
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Jinhong Wang
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Zhenbo Hu
- Laboratory for Stem Cell and Regenerative Medicine, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Liuya Wei
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY, United States
| |
Collapse
|
32
|
Bär SI, Dittmer A, Nitzsche B, Ter-Avetisyan G, Fähling M, Klefenz A, Kaps L, Biersack B, Schobert R, Höpfner M. Chimeric HDAC and the cytoskeleton inhibitor broxbam as a novel therapeutic strategy for liver cancer. Int J Oncol 2022; 60:73. [PMID: 35485292 PMCID: PMC9097774 DOI: 10.3892/ijo.2022.5363] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/11/2022] [Indexed: 12/24/2022] Open
Abstract
Broxbam, also known as N-hydroxy-4-{1-methoxy-4-[4′-(3′-bromo-4′,5′-dimethoxyphenyl)-oxazol-5′-yl]-2-phenoxy} butanamide, is a novel chimeric inhibitor that contains two distinct pharmacophores in its molecular structure. It has been previously demonstrated to inhibit the activity of histone deacetylases (HDAC) and tubulin polymerisation, two critical components required for cancer growth and survival. In the present study, the potential suitability of broxbam for the treatment of liver cancer was investigated. The effects of broxbam on cell proliferation and apoptosis, in addition to the under-lying molecular mechanism of action, were first investigated in primary liver cancer cell lines Huh7, HepG2, TFK1 and EGI1. Real-time proliferation measurements made using the iCEL-Ligence system and viable cell number counting following crystal violet staining) revealed that broxbam time- and dose-dependently reduced the proliferation of liver cancer cell lines with IC50 values <1 µM. In addition, a significant inhibition of the growth of hepatoblastoma microtumours on the chorioallantoic membranes (CAM) of fertilised chicken eggs by broxbam was observed according to results from the CAM assay, suggesting antineoplastic potency in vivo. Broxbam also exerted apoptotic effects through p53- and mitochondria-driven caspase-3 activation in Huh7 and HepG2 cells according to data from western blotting (p53 and phosphorylated p53), mitochondrial membrane potential measurements (JC-1 assay) and fluorometric capsase-3 measurements. Notably, no contribution of unspecific cytotoxic effects mediated by broxbam were observed from LDH-release measurements. HDAC1, -2, -4 and -6 expression was measured by western blotting and the HDAC inhibitory potency of broxbam was next evaluated using subtype-specific HDAC enzymatic assays, which revealed a largely pan-HDAC inhibitory activity with the most potent inhibition observed on HDAC6. Silencing HDAC6 expression in Huh7 cells led to a drop in the expression of the proliferation markers Ki-67 and E2F3, suggesting that HDAC6 inhibition by broxbam may serve a predomi-nant role in their antiproliferative effects on liver cancer cells. Immunofluorescence staining of cytoskeletal proteins (α-tubulin & actin) of broxbam-treated HepG2 cells revealed a pronounced inhibition of tubulin polymerisation, which was accompanied by reduced cell migration as determined by wound healing scratch assays. Finally, data from zebrafish angiogenesis assays revealed marked antiangiogenic effects of broxbam in vivo, as shown by the suppression of subintestinal vein growth in zebrafish embryos. To conclude, the pleiotropic anticancer activities of this novel chimeric HDAC- and tubulin inhibitor broxbam suggest that this compound is a promising candidate for liver cancer treatment, which warrants further pre-clinical and clinical evaluation.
Collapse
Affiliation(s)
- Sofia Isolde Bär
- Organic Chemistry Laboratory, University of Bayreuth, D-95447 Bayreuth, Germany
| | - Alexandra Dittmer
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, D-10117 Berlin, Germany
| | - Bianca Nitzsche
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, D-10117 Berlin, Germany
| | - Gohar Ter-Avetisyan
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, D-10117 Berlin, Germany
| | - Michael Fähling
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, D-10117 Berlin, Germany
| | - Adrian Klefenz
- Institute of Translational Immunology, University Medical Center of the Johannes Gutenberg University, D-55131 Mainz, Germany
| | - Leonard Kaps
- Institute of Translational Immunology, University Medical Center of the Johannes Gutenberg University, D-55131 Mainz, Germany
| | - Bernhard Biersack
- Organic Chemistry Laboratory, University of Bayreuth, D-95447 Bayreuth, Germany
| | - Rainer Schobert
- Organic Chemistry Laboratory, University of Bayreuth, D-95447 Bayreuth, Germany
| | - Michael Höpfner
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, D-10117 Berlin, Germany
| |
Collapse
|
33
|
Peng X, Li L, Chen J, Ren Y, Liu J, Yu Z, Cao H, Chen J. Discovery of Novel Histone Deacetylase 6 (HDAC6) Inhibitors with Enhanced Antitumor Immunity of Anti-PD-L1 Immunotherapy in Melanoma. J Med Chem 2022; 65:2434-2457. [PMID: 35043615 DOI: 10.1021/acs.jmedchem.1c01863] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A series of 2-phenylthiazole analogues were designed and synthesized as potential histone deacetylase 6 (HDAC6) inhibitors based on compound 12c (an HDAC6/tubulin dual inhibitor discovered by us recently) and CAY10603 (a known HDAC6 inhibitor). Among them, compound XP5 was the most potent HDAC6 inhibitor with an IC50 of 31 nM and excellent HDAC6 selectivity (SI = 338 for HDAC6 over HDAC3). XP5 also displayed high antiproliferative activity against various cancer cell lines including the HDACi-resistant YCC3/7 gastric cancer cells (IC50 = 0.16-2.31 μM), better than CAY10603. Further, XP5 (50 mg/kg) exhibited significant antitumor efficacy in a melanoma tumor model with a tumor growth inhibition (TGI) of 63% without apparent toxicity. Moreover, XP5 efficiently enhanced the in vivo antitumor immune response when combined with a small-molecule PD-L1 inhibitor, as demonstrated by the increased tumor-infiltrating lymphocytes and reduced PD-L1 expression levels. Taken together, the above results suggest that XP5 is a promising HDAC6 inhibitor deserving further investigation.
Collapse
Affiliation(s)
- Xiaopeng Peng
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 516000, China
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Ling Li
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 516000, China
| | - Jingxuan Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 516000, China
| | - Yichang Ren
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 516000, China
| | - Jin Liu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 516000, China
| | - Ziwen Yu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 516000, China
| | - Hao Cao
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 516000, China
| | - Jianjun Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 516000, China
| |
Collapse
|
34
|
Zheng H, Dai Q, Yuan Z, Fan T, Zhang C, Liu Z, Chu B, Sun Q, Chen Y, Jiang Y. Quinazoline-based hydroxamic acid derivatives as dual histone methylation and deacetylation inhibitors for potential anticancer agents. Bioorg Med Chem 2022; 53:116524. [PMID: 34847495 DOI: 10.1016/j.bmc.2021.116524] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/03/2021] [Accepted: 11/11/2021] [Indexed: 12/31/2022]
Abstract
Cancer is a common malignant disease with complex signaling networks, which means it is unmanageable to cancer therapy by using single classical targeted drug. Recently, dual- or multitarget drugs have emerged as a promising option for cancer therapies. Although many multifunctional compounds targeting HDAC have been validated, as far as we know, there is no molecule targeting GLP and HDAC synchronously. In the present work, we designed and synthesized a series of quinazoline-based hydroxamic acid derivatives as dual GLP and HDAC inhibitors. These hybrid compounds showed potent enzymatic inhibitory activities against GLP and HDAC1/6 with IC50 values in the nanomolar range of less than 190 nM. Furthermore, most of our compounds displayed significant broad spectrum cytotoxic activities apart from D3 and D8 against all the tested cancer cells with IC50 values less than 50 μM. D1, D6 and D7 showed more potent cytotoxic activities than D2, D4 and D5 in those cancer cells. Especially, compound D7 showed potent inhibitory potency activity against both GLP and HDAC1/6 with IC50 values of 1.3, 89, 13 nM. Besides, D7 exhibited the most potent antiproliferative activity against all the tested cancer cells. Further evaluations indicated that D7 could inhibit the methylation and deacetylation of H3K9 on protein level. Moreover, D7 could induce cancer cell apoptosis, G0/G1 cell cycle arrest, and partly block migration and invasion. All these thorough evaluations warranted D7 as a promising lead compound worth further optimization and development for cancer therapy.
Collapse
Affiliation(s)
- Haoting Zheng
- Department of Chemistry, Tsinghua University, Beijing 100084, PR China; National & Local United Engineering Lab for Personalized Anti-tumor Drugs, The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, PR China
| | - Qiuzi Dai
- Department of Chemistry, Tsinghua University, Beijing 100084, PR China; National & Local United Engineering Lab for Personalized Anti-tumor Drugs, The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, PR China
| | - Zigao Yuan
- National & Local United Engineering Lab for Personalized Anti-tumor Drugs, The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, PR China; National & Local United Engineering Lab for Personalized Anti-tumor Drugs, Shenzhen Kivita Innovative Drug Discovery Institute, The Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China
| | - Tingting Fan
- National & Local United Engineering Lab for Personalized Anti-tumor Drugs, The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, PR China
| | - Cunlong Zhang
- National & Local United Engineering Lab for Personalized Anti-tumor Drugs, Shenzhen Kivita Innovative Drug Discovery Institute, The Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China
| | - Zijian Liu
- National & Local United Engineering Lab for Personalized Anti-tumor Drugs, Shenzhen Kivita Innovative Drug Discovery Institute, The Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China
| | - Bizhu Chu
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, PR China
| | - Qinsheng Sun
- National & Local United Engineering Lab for Personalized Anti-tumor Drugs, The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, PR China; National & Local United Engineering Lab for Personalized Anti-tumor Drugs, Shenzhen Kivita Innovative Drug Discovery Institute, The Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China; School of Life Sciences, Tsinghua University, 100084 Beijing, PR China
| | - Yan Chen
- National & Local United Engineering Lab for Personalized Anti-tumor Drugs, The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, PR China; National & Local United Engineering Lab for Personalized Anti-tumor Drugs, Shenzhen Kivita Innovative Drug Discovery Institute, The Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China; School of Life Sciences, Tsinghua University, 100084 Beijing, PR China.
| | - Yuyang Jiang
- National & Local United Engineering Lab for Personalized Anti-tumor Drugs, The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, PR China; Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, PR China; School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
35
|
Wagh SB, Maslivetc VA, La Clair JJ, Kornienko A. Lessons in Organic Fluorescent Probe Discovery. Chembiochem 2021; 22:3109-3139. [PMID: 34062039 PMCID: PMC8595615 DOI: 10.1002/cbic.202100171] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/22/2021] [Indexed: 02/03/2023]
Abstract
Fluorescent probes have gained profound use in biotechnology, drug discovery, medical diagnostics, molecular and cell biology. The development of methods for the translation of fluorophores into fluorescent probes continues to be a robust field for medicinal chemists and chemical biologists, alike. Access to new experimental designs has enabled molecular diversification and led to the identification of new approaches to probe discovery. This review provides a synopsis of the recent lessons in modern fluorescent probe discovery.
Collapse
Affiliation(s)
- Sachin B Wagh
- The Department of Chemistry and Biochemistry, Texas State University, San Marcos, USA
| | - Vladimir A Maslivetc
- The Department of Chemistry and Biochemistry, Texas State University, San Marcos, USA
| | - James J La Clair
- Xenobe Research Institute, P. O. Box 3052, San Diego, CA, 92163-1062, USA
| | - Alexander Kornienko
- The Department of Chemistry and Biochemistry, Texas State University, San Marcos, USA
| |
Collapse
|
36
|
Neganova M, Aleksandrova Y, Suslov E, Mozhaitsev E, Munkuev A, Tsypyshev D, Chicheva M, Rogachev A, Sukocheva O, Volcho K, Klochkov S. Novel Multitarget Hydroxamic Acids with a Natural Origin CAP Group against Alzheimer's Disease: Synthesis, Docking and Biological Evaluation. Pharmaceutics 2021; 13:pharmaceutics13111893. [PMID: 34834312 PMCID: PMC8623418 DOI: 10.3390/pharmaceutics13111893] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/30/2021] [Accepted: 11/04/2021] [Indexed: 02/05/2023] Open
Abstract
Hydroxamic acids are one of the most promising and actively studied classes of chemical compounds in medicinal chemistry. In this study, we describe the directed synthesis and effects of HDAC6 inhibitors. Fragments of adamantane and natural terpenes camphane and fenchane, combined with linkers of various nature with an amide group, were used as the CAP groups. Accordingly, 11 original target compounds were developed, synthesized, and exposed to in vitro and in vivo biological evaluations, including in silico methods. In silico studies showed that all synthesized compounds were drug-like and could penetrate through the blood-brain barrier. According to the in vitro testing, hydroxamic acids 15 and 25, which effectively inhibited HDAC6 and exhibited anti-aggregation properties against β-amyloid peptides, were chosen as the most promising substances to study their neuroprotective activities in vivo. All in vivo studies were performed using 5xFAD transgenic mice simulating Alzheimer's disease. In these animals, the Novel Object Recognition and Morris Water Maze Test showed that the formation of hippocampus-dependent long-term episodic and spatial memory was deteriorated. Hydroxamic acid 15 restored normal memory functions to the level observed in control wild-type animals. Notably, this effect was precisely associated with the ability to restore lost cognitive functions, but not with the effect on motor and exploratory activities or on the level of anxiety in animals. Conclusively, hydroxamic acid 15 containing an adamantane fragment linked by an amide bond to a hydrocarbon linker is a possible potential multitarget agent against Alzheimer's disease.
Collapse
Affiliation(s)
- Margarita Neganova
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 142432 Moscow, Russia; (M.N.); (Y.A.); (M.C.)
| | - Yulia Aleksandrova
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 142432 Moscow, Russia; (M.N.); (Y.A.); (M.C.)
| | - Evgenii Suslov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.S.); (E.M.); (A.M.); (D.T.); (A.R.); (K.V.)
| | - Evgenii Mozhaitsev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.S.); (E.M.); (A.M.); (D.T.); (A.R.); (K.V.)
| | - Aldar Munkuev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.S.); (E.M.); (A.M.); (D.T.); (A.R.); (K.V.)
| | - Dmitry Tsypyshev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.S.); (E.M.); (A.M.); (D.T.); (A.R.); (K.V.)
| | - Maria Chicheva
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 142432 Moscow, Russia; (M.N.); (Y.A.); (M.C.)
| | - Artem Rogachev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.S.); (E.M.); (A.M.); (D.T.); (A.R.); (K.V.)
| | - Olga Sukocheva
- Discipline of Health Sciences, College of Nursing and Health Sciences, Flinders University, Bedford Park, SA 5042, Australia;
| | - Konstantin Volcho
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.S.); (E.M.); (A.M.); (D.T.); (A.R.); (K.V.)
| | - Sergey Klochkov
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 142432 Moscow, Russia; (M.N.); (Y.A.); (M.C.)
- Correspondence: ; Tel.: +7-(496)-5242525
| |
Collapse
|
37
|
Dallavalle S, Musso L, Cincinelli R, Darwiche N, Gervasoni S, Vistoli G, Guglielmi MB, La Porta I, Pizzulo M, Modica E, Prosperi F, Signorino G, Colelli F, Cardile F, Fucci A, D'Andrea EL, Riccio A, Pisano C. Antitumor activity of novel POLA1-HDAC11 dual inhibitors. Eur J Med Chem 2021; 228:113971. [PMID: 34772529 DOI: 10.1016/j.ejmech.2021.113971] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/29/2021] [Accepted: 10/31/2021] [Indexed: 12/27/2022]
Abstract
Hybrid molecules targeting simultaneously DNA polymerase α (POLA1) and histone deacetylases (HDACs) were designed and synthesized to exploit a potential synergy of action. Among a library of screened molecules, MIR002 and GEM144 showed antiproliferative activity at nanomolar concentrations on a panel of human solid and haematological cancer cell lines. In vitro functional assays confirmed that these molecules inhibited POLA1 primer extension activity, as well as HDAC11. Molecular docking studies also supported these findings. Mechanistically, MIR002 and GEM144 induced acetylation of p53, activation of p21, G1/S cell cycle arrest, and apoptosis. Oral administration of these inhibitors confirmed their antitumor activity in in vivo models. In human non-small cancer cell (H460) xenografted in nude mice MIR002 at 50 mg/kg, Bid (qd × 5 × 3w) inhibited tumor growth (TGI = 61%). More interestingly, in POLA1 inhibitor resistant cells (H460-R9A), the in vivo combination of MIR002 with cisplatin showed an additive antitumor effect with complete disappearance of tumor masses in two animals at the end of the treatment. Moreover, in two human orthotopic malignant pleural mesothelioma xenografts (MM473 and MM487), oral treatments with MIR002 and GEM144 confirmed their significant antitumor activity (TGI = 72-77%). Consistently with recent results that have shown an inverse correlation between POLA1 expression and type I interferon levels, MIR002 significantly upregulated interferon-α in immunocompetent mice.
Collapse
Affiliation(s)
- Sabrina Dallavalle
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy.
| | - Loana Musso
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy
| | - Raffaella Cincinelli
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy
| | - Nadine Darwiche
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Silvia Gervasoni
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, via Mangiagalli 25, Milano, 20133, Italy
| | - Giulio Vistoli
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, via Mangiagalli 25, Milano, 20133, Italy
| | - Mario B Guglielmi
- Biogem, Institute of Molecular Biology and Genetics, Via Camporeale, 83031 Ariano Irpino(AV), Italy
| | - Ilaria La Porta
- Biogem, Institute of Molecular Biology and Genetics, Via Camporeale, 83031 Ariano Irpino(AV), Italy
| | - Maddalena Pizzulo
- Biogem, Institute of Molecular Biology and Genetics, Via Camporeale, 83031 Ariano Irpino(AV), Italy
| | - Elisa Modica
- Biogem, Institute of Molecular Biology and Genetics, Via Camporeale, 83031 Ariano Irpino(AV), Italy
| | - Federica Prosperi
- Biogem, Institute of Molecular Biology and Genetics, Via Camporeale, 83031 Ariano Irpino(AV), Italy
| | - Giacomo Signorino
- Biogem, Institute of Molecular Biology and Genetics, Via Camporeale, 83031 Ariano Irpino(AV), Italy
| | - Fabiana Colelli
- Biogem, Institute of Molecular Biology and Genetics, Via Camporeale, 83031 Ariano Irpino(AV), Italy
| | - Francesco Cardile
- Biogem, Institute of Molecular Biology and Genetics, Via Camporeale, 83031 Ariano Irpino(AV), Italy
| | - Alessandra Fucci
- Biogem, Institute of Molecular Biology and Genetics, Via Camporeale, 83031 Ariano Irpino(AV), Italy
| | - Egildo Luca D'Andrea
- Biogem, Institute of Molecular Biology and Genetics, Via Camporeale, 83031 Ariano Irpino(AV), Italy
| | - Assunta Riccio
- Biogem, Institute of Molecular Biology and Genetics, Via Camporeale, 83031 Ariano Irpino(AV), Italy
| | - Claudio Pisano
- Biogem, Institute of Molecular Biology and Genetics, Via Camporeale, 83031 Ariano Irpino(AV), Italy.
| |
Collapse
|
38
|
Yan Z, Zhang K, Ji M, Xu H, Chen X. A Dual PI3K/HDAC Inhibitor Downregulates Oncogenic Pathways in Hematologic Tumors In Vitro and In Vivo. Front Pharmacol 2021; 12:741697. [PMID: 34658878 PMCID: PMC8519310 DOI: 10.3389/fphar.2021.741697] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/12/2021] [Indexed: 01/07/2023] Open
Abstract
Purpose: To investigate the efficacy and mechanism of compound 23, a PI3K/HDAC dual-target inhibitor, on hematologic tumor cells in vitro and in vivo. Methods: The MTS Kit was used to study the antiproliferative effects in vitro. Western blot was used to analyze the involved signaling pathways. Flow cytometry was used to analyze apoptosis and the cell cycle. The antiproliferative effects were evaluated in vivo using EL4 and A20 xenograft models. The CCLE database was used to analyze gene expression. Results: Compound 23 significantly inhibited the proliferation of hematologic tumors; it simultaneously regulated PI3K/HDAC pathways and induced apoptosis and G1-phase arrest in EL4, NB4, and A20 cells in vitro. When tested in vivo, compound 23 significantly inhibited the proliferation of EL4 and A20. The expression levels of ErbB2 and ErbB3 decreased in hematologic tumors compared with it in solid tumors. Conclusion: Compound 23 modulates the PI3K/HDAC pathway, which results in significant inhibition of hematologic tumor proliferation in vivo and in vitro. The differential levels of ERBB2 and ERBB3 might be related to the difference in the effect of compound 23 on hematologic tumors and solid tumors.
Collapse
Affiliation(s)
- Zheng Yan
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kehui Zhang
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming Ji
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Heng Xu
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoguang Chen
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
39
|
Saccharomyces cerevisiae DNA repair pathways involved in repair of lesions induced by mixed ternary mononuclear Cu(II) complexes based on valproic acid with 1,10-phenanthroline or 2,2'- bipyridine ligands. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2021; 868-869:503390. [PMID: 34454693 DOI: 10.1016/j.mrgentox.2021.503390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/25/2021] [Accepted: 08/07/2021] [Indexed: 11/21/2022]
Abstract
The sodium valproate has been largely used as an anti-epilepsy drug and, recently, as a putative drug in cancer therapy. However, the treatment with sodium valproate has some adverse effects. In this sense, more effective and secure complexes than sodium valproate should be explored in searching for new active drugs. This study aims to evaluate the cytotoxicity of sodium valproate, mixed ternary mononuclear Cu(II) complexes based on valproic acid (VA) with 1,10-phenanthroline (Phen) or 2,2'- bipyridine (Bipy) ligands - [Cu2(Valp)4], [Cu(Valp)2Phen] and [Cu(Valp)2Bipy] - in yeast Saccharomyces cerevisiae, proficient or deficient in different repair pathways, such as base excision repair (BER), nucleotide excision repair (NER), translesion synthesis (TLS), DNA postreplication repair (PRR), homologous recombination (HR) and non-homologous end-joining (NHEJ). The results indicated that the Cu(II) complexes have higher cytotoxicity than sodium valproate in the following order: [Cu(Valp)2Phen] > [Cu(Valp)2Bipy] > [Cu2(Valp)4] > sodium valproate. The treatment with Cu(II) complexes and sodium valproate induced mutations in S. cerevisiae. The data indicated that yeast strains deficient in BER (Ogg1p), NER (complex Rad1p-Rad10p) or TLS (Rev1p, Rev3p and Rad30p) proteins are associated with increased sensitivity to sodium valproate. The BER mutants (ogg1Δ, apn1Δ, rad27Δ, ntg1Δ and ntg2Δ) showed increased sensitivity to Cu(II) complexes. DNA damage induced by the complexes requires proteins from NER (Rad1p and Rad10p), TLS (Rev1p, Rev3p and Rad30p), PRR (Rad6 and Rad18p) and HR (Rad52p and Rad50p) for efficient repair. Therefore, Cu(II) complexes display enhanced cytotoxicity when compared to the sodium valproate and induce distinct DNA lesions, indicating a potential application as cytotoxic agents.
Collapse
|
40
|
|
41
|
Peng X, Chen J, Li L, Sun Z, Liu J, Ren Y, Huang J, Chen J. Efficient Synthesis and Bioevaluation of Novel Dual Tubulin/Histone Deacetylase 3 Inhibitors as Potential Anticancer Agents. J Med Chem 2021; 64:8447-8473. [PMID: 34097389 DOI: 10.1021/acs.jmedchem.1c00413] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Novel dual HDAC3/tubulin inhibitors were designed and efficiently synthesized by combining the pharmacophores of SMART (tubulin inhibitor) and MS-275 (HDAC inhibitor), among which compound 15c was found to be the most potent and balanced HDAC3/tubulin dual inhibitor with high HDAC3 activity (IC50 = 30 nM) and selectivity (SI > 1000) as well as excellent antiproliferative potency against various cancer cell lines, including an HDAC-resistant gastric cancer cell line (YCC3/7) with IC50 values in the range of 30-144 nM. Compound 15c inhibited B16-F10 cancer cell migration and colony formation. In addition, 15c demonstrated significant in vivo antitumor efficacy in a B16-F10 melanoma tumor model with a better TGI (70.00%, 10 mg/kg) than that of the combination of MS-275 and SMART. Finally, 15c presented a safe cardiotoxicity profile and did not cause nephro-/hepatotoxicity. Collectively, this work shows that compound 15c represents a novel tubulin/HDAC3 dual-targeting agent deserving further investigation as a potential anticancer agent.
Collapse
Affiliation(s)
- Xiaopeng Peng
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jingxuan Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ling Li
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhiqiang Sun
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jin Liu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yichang Ren
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Junli Huang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jianjun Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
42
|
Adhikari N, Jha T, Ghosh B. Dissecting Histone Deacetylase 3 in Multiple Disease Conditions: Selective Inhibition as a Promising Therapeutic Strategy. J Med Chem 2021; 64:8827-8869. [PMID: 34161101 DOI: 10.1021/acs.jmedchem.0c01676] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The acetylation of histone and non-histone proteins has been implicated in several disease states. Modulation of such epigenetic modifications has therefore made histone deacetylases (HDACs) important drug targets. HDAC3, among various class I HDACs, has been signified as a potentially validated target in multiple diseases, namely, cancer, neurodegenerative diseases, diabetes, obesity, cardiovascular disorders, autoimmune diseases, inflammatory diseases, parasitic infections, and HIV. However, only a handful of HDAC3-selective inhibitors have been reported in spite of continuous efforts in design and development of HDAC3-selective inhibitors. In this Perspective, the roles of HDAC3 in various diseases as well as numerous potent and HDAC3-selective inhibitors have been discussed in detail. It will surely open up a new vista in the discovery of newer, more effective, and more selective HDAC3 inhibitors.
Collapse
Affiliation(s)
- Nilanjan Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, P.O. Box 17020, Kolkata, 700032 West Bengal, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, P.O. Box 17020, Kolkata, 700032 West Bengal, India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, BITS-Pilani, Hyderabad Campus, Shamirpet, Hyderabad 500078, India
| |
Collapse
|
43
|
Hearn KN, Ashton TD, Acharya R, Feng Z, Gueven N, Pfeffer FM. Direct Amidation to Access 3-Amido-1,8-Naphthalimides Including Fluorescent Scriptaid Analogues as HDAC Inhibitors. Cells 2021; 10:1505. [PMID: 34203745 PMCID: PMC8232238 DOI: 10.3390/cells10061505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 02/07/2023] Open
Abstract
Methodology to access fluorescent 3-amido-1,8-naphthalimides using direct Buchwald-Hartwig amidation is described. The protocol was successfully used to couple a number of substrates (including an alkylamide, an arylamide, a lactam and a carbamate) to 3-bromo-1,8-naphthalimide in good yield. To further exemplify the approach, a set of scriptaid analogues with amide substituents at the 3-position were prepared. The new compounds were more potent than scriptaid at a number of histone deacetylase (HDAC) isoforms including HDAC6. Activity was further confirmed in a whole cell tubulin deacetylation assay where the inhibitors were more active than the established HDAC6 selective inhibitor Tubastatin. The optical properties of these new, highly active, compounds make them amenable to cellular imaging studies and theranostic applications.
Collapse
Affiliation(s)
- Kyle N. Hearn
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3216, Australia
- STEM College, RMIT University, Melbourne, VIC 3000, Australia;
| | - Trent D. Ashton
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3216, Australia
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Rameshwor Acharya
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart, TAS 7001, Australia; (R.A.); (Z.F.); (N.G.)
| | - Zikai Feng
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart, TAS 7001, Australia; (R.A.); (Z.F.); (N.G.)
| | - Nuri Gueven
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart, TAS 7001, Australia; (R.A.); (Z.F.); (N.G.)
| | - Frederick M. Pfeffer
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3216, Australia
| |
Collapse
|
44
|
Vystorop IV, Shilov GV, Chernyak AV, Klimanova EN, Sashenkova TE, Klochkov SG, Neganova ME, Aleksandrova YR, Allayarova UY, Mishchenko DV. Regioselective Synthesis, Structure, and Chemosensitizing Antitumor Activity of Cyclic Hydroxamic Acid Based on DL-Valine. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021030171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Ahmed Hassen Shntaif, Rashi ZM, Al-Sawaff ZH, Kandemirli F. Quantum Chemical Calculations on Two Compounds of Proquazone and Proquazone Type Calcites as a Calcium Sensing Receptor (CaSR) Inhibitory Profiles. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s106816202103016x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Pojani E, Barlocco D. Romidepsin (FK228), A Histone Deacetylase Inhibitor and its Analogues in Cancer Chemotherapy. Curr Med Chem 2021; 28:1290-1303. [PMID: 32013816 DOI: 10.2174/0929867327666200203113926] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/24/2019] [Accepted: 12/17/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Human HDACs represent a group of enzymes able to modify histone and non-histone proteins, which interact with DNA to generate chromatin. The correlation between irregular covalent modification of histones and tumor development has been proved over the last decades. Therefore, HDAC inhibitors are considered as potential drugs in cancer treatment. Romidepsin (FK228), Belinostat (PXD-101), Vorinostat (SAHA), Panobinostat (LBH-589) and Chidamide were approved by FDA as novel antitumor agents. OBJECTIVE The aim of this review article is to highlight the structure-activity relationships of several FK228 analogues as HDAC inhibitors. In addition, the synergistic effects of a dual HDAC/PI3K inhibition by some derivatives have been investigated. MATERIALS AND METHODS PubMed, MEDLINE, CAPLUS, SciFinder Scholar database were considered by selecting articles which fulfilled the objectives of this review, dating from 2015 till present time. RESULTS HDAC inhibitors have a significant role in cancer pathogenesis and evolution. Class I HDAC isoforms are expressed in many tumor types, therefore, potent and selective Class I HDAC inhibitors are of great interest as candidate therapeutic agents with limited side effects. By structurebased optimization, several FK228 analogues [15 (FK-A5), 22, 23 and 26 (FK-A11)] were identified, provided with significant activity against Class I HDAC enzymes and dose dependent antitumor activity. Compound 26 was recognized as an interesting HDAC/PI3K dual inhibitor (IC50 against p110α of 6.7 μM while for HDAC1 inhibitory activity IC50 was 0.64 nM). CONCLUSION Romidepsin analogues HDAC inhibitors have been confirmed as useful anticancer agents. In addition, dual HDAC/PI3K inhibition showed by some of them exhibited synergistic effects in inducing apoptosis in human cancer cells. Further studies on FK228 analogues may positively contribute to the availability of potent agents in tumor treatment.
Collapse
Affiliation(s)
- Eftiola Pojani
- Department of the Chemical-Toxicological and Pharmacological Evaluation of Drugs, Faculty of Pharmacy, Catholic University "Our Lady of Good Counsel", Tirana, Albania
| | - Daniela Barlocco
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Milan, L. Mangiagalli 25, Milan 20133, Italy
| |
Collapse
|
47
|
Zhang XJ, Liu MH, Luo YS, Han GY, Ma ZQ, Huang F, Wang Y, Miao ZY, Zhang WN, Sheng CQ, Yao JZ. Novel dual-mode antitumor chlorin-based derivatives as potent photosensitizers and histone deacetylase inhibitors for photodynamic therapy and chemotherapy. Eur J Med Chem 2021; 217:113363. [PMID: 33744687 DOI: 10.1016/j.ejmech.2021.113363] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/14/2021] [Accepted: 02/27/2021] [Indexed: 12/18/2022]
Abstract
The combination of photodynamic therapy (PDT) and chemotherapy is a prospective strategy to improve antitumor efficacy. Herein, a series of novel cytotoxic chlorin-based derivatives as dual photosensitizers (PSs) and histone deacetylase inhibitors (HDACIs) were synthesized and investigated for biological activity. Among them, compound 15e showed definite HDAC2 and 10 inhibitory activities by up-regulating expression of acetyl-H4 and highest phototoxicity and dark-toxicity, which was more phototoxic than Talaporfin as a PS while with stronger dark-toxicity compared to vorinostat (SAHA) as a HDACI. The biological assays demonstrated that 15e was liable to enter A549 cells and localized in mitochondria, lysosomes, golgi and endoplasmic reticulum (ER) etc. multiple organelles, resulting in higher cell apoptosis rate and ROS production compared to Talaporfin. Moreover, it could induce tumor cell autophagy as a dual PS and HDACI. All results suggested that compound 15e could be applied as a potential dual cytotoxic drug for PDT and chemotherapy.
Collapse
Affiliation(s)
- Xing-Jie Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Ming-Hui Liu
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, China
| | - Yu-Sha Luo
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Gui-Yan Han
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Zhi-Qiang Ma
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Fei Huang
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Yuan Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Zhen-Yuan Miao
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Wan-Nian Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Chun-Quan Sheng
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Jian-Zhong Yao
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China; Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, China; School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
48
|
Cianferotti C, Faltoni V, Cini E, Ermini E, Migliorini F, Petricci E, Taddei M, Salvini L, Battistuzzi G, Milazzo FM, Anastasi AM, Chiapparino C, De Santis R, Giannini G. Antibody drug conjugates with hydroxamic acid cargos for histone deacetylase (HDAC) inhibition. Chem Commun (Camb) 2021; 57:867-870. [PMID: 33433550 DOI: 10.1039/d0cc06131j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Antitumor hydroxamates SAHA and Dacinostat have been linked to cetuximab and trastuzumab through a non-cleavable linker based on the p-mercaptobenzyl alcohol structure. These antibody drug conjugates (ADCs) were able to inhibit HDAC in several tumour cell lines. The cetuximab based ADCs block human lung adenocarcinoma cell proliferation, demonstrating that bioconjugation with antibodies is a suitable approach for targeted therapy based on hydroxamic acid-containing drugs. This work also shows that ADC-based delivery might be used to overcome the classical pharmacokinetic problems of hydroxamic acids.
Collapse
Affiliation(s)
- Claudio Cianferotti
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy.
| | - Valentina Faltoni
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy.
| | - Elena Cini
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy.
| | - Elena Ermini
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy.
| | - Francesca Migliorini
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy.
| | - Elena Petricci
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy.
| | - Maurizio Taddei
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy.
| | - Laura Salvini
- Fondazione Toscana Life Science, Via Fiorentina 1, 53100, Siena, Italy
| | | | | | | | | | - Rita De Santis
- R&D Alfasigma S.p.A., Via Pontina, Km. 30.400, 00071 Pomezia, Roma, Italy.
| | - Giuseppe Giannini
- R&D Alfasigma S.p.A., Via Pontina, Km. 30.400, 00071 Pomezia, Roma, Italy.
| |
Collapse
|
49
|
Shalini, Kumar V. Have molecular hybrids delivered effective anti-cancer treatments and what should future drug discovery focus on? Expert Opin Drug Discov 2020; 16:335-363. [PMID: 33305635 DOI: 10.1080/17460441.2021.1850686] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Cancer continues to be a big threat and its treatment is a huge challenge among the medical fraternity. Conventional anti-cancer agents are losing their efficiency which highlights the need to introduce new anti-cancer entities for treating this complex disease. A hybrid molecule has a tendency to act through varied modes of action on multiple targets at a given time. Thus, there is the significant scope with hybrid compounds to tackle the existing limitations of cancer chemotherapy. AREA COVERED This perspective describes the most significant hybrids that spring hope in the field of cancer chemotherapy. Several hybrids with anti-proliferative/anti-tumor properties currently approved or in clinical development are outlined, along with a description of their mechanism of action and identified drug targets. EXPERT OPINION The success of molecular hybridization in cancer chemotherapy is quite evident by the number of molecules entering into clinical trials and/or have entered the drug market over the past decade. Indeed, the recent advancements and co-ordinations in the interface between chemistry, biology, and pharmacology will help further the advancement of hybrid chemotherapeutics in the future.List of abbreviations: Deoxyribonucleic acid, DNA; national cancer institute, NCI; peripheral blood mononuclear cells, PBMC; food and drug administration, FDA; histone deacetylase, HDAC; epidermal growth factor receptor, EGFR; vascular endothelial growth factor receptor, VEGFR; suberoylanilide hydroxamic acid, SAHA; farnesyltransferase inhibitor, FTI; adenosine triphosphate, ATP; Tamoxifen, TAM; selective estrogen receptor modulator, SERM; structure activity relationship, SAR; estrogen receptor, ER; lethal dose, LD; half maximal growth inhibitory concentration, GI50; half maximal inhibitory concentration, IC50.
Collapse
Affiliation(s)
- Shalini
- Department of Chemistry, Guru Nanak Dev University, Amritsar-India
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar-India
| |
Collapse
|
50
|
Maslah H, Skarbek C, Pethe S, Labruère R. Anticancer boron-containing prodrugs responsive to oxidative stress from the tumor microenvironment. Eur J Med Chem 2020; 207:112670. [DOI: 10.1016/j.ejmech.2020.112670] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/05/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023]
|