1
|
Cao J, Lyu WY, Zhang Y, Su Z, Li T, Zhang Q, Gan L, Lu JJ, Lin L. Polycyclic polyprenylated acylphloroglucinols from the pericarps of Garcinia multiflora champ. ex Benth. with cytotoxic property. PHYTOCHEMISTRY 2024; 228:114242. [PMID: 39127394 DOI: 10.1016/j.phytochem.2024.114242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
The phytochemical investigation on the pericarps of Garcinia multiflora resulted in the isolation of 12 previously undescribed polycyclic polyprenylated acylphloroglucinols (PPAPs, 1-12) with a variety of skeletons. Their structures were determined by comprehensive spectroscopic analyses, ECD calculations, and single-crystal X-ray diffraction. Compounds 6-9 possess a rare bicyclo[4.3.1]decane skeleton. Additionally, the anti-tumor activity of the 12 isolates was evaluated. The results indicated that compounds 5, 9, and 12 exhibited significant cytotoxicity in a wide range of cancer cell lines, including the human breast cancer MDA-MB-231 cells, human lung cancer A549 cells, human colon cancer SW480 cells and human ovarian cancer HEY cells. Further studies indicated that compound 5 induced cell cycle arrest and apoptosis, to inhibit the growth of MDA-MB-231 cells. Taken together, these findings expand the chemical diversity of PPAPs and further demonstrate the potential of PPAPs as candidates for cancer treatment.
Collapse
Affiliation(s)
- Jun Cao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Wen-Yu Lyu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Yujia Zhang
- School of Biotechnology and Health Sciences, International Healthcare Innovation Institute, Wuyi University, Jiangmen, 529020, China
| | - Zhicheng Su
- School of Biotechnology and Health Sciences, International Healthcare Innovation Institute, Wuyi University, Jiangmen, 529020, China
| | - Ting Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Qingwen Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau, 999078, China
| | - Lishe Gan
- College of Pharmaceutical Sciences, Zhejiang University of Traditional Chinese Medicine, Hangzhou, 310053, China.
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau, 999078, China.
| | - Ligen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau, 999078, China.
| |
Collapse
|
2
|
Chantree P, Martviset P, Thongsepee N, Sangpairoj K, Sornchuer P. Anti-Inflammatory Effect of Garcinol Extracted from Garcinia dulcis via Modulating NF-κB Signaling Pathway. Nutrients 2023; 15:nu15030575. [PMID: 36771283 PMCID: PMC9918937 DOI: 10.3390/nu15030575] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/14/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Garcinia is a significant medicinal plant with many beneficial phytoconstituents, including garcinol. This study investigated the anti-inflammatory effect of garcinol isolated from Garcinia dulcis fruit in LPS-activated THP-1 and Raw 264.7 macrophages. The results demonstrated that the low concentration of garcinol did not alter cell viability. Furthermore, co-incubation of garcinol with LPS inhibited the production of pro-inflammatory cytokines, including TNF-α, IL-8, IL-6, IL-1β, and pro-inflammatory mediators, including iNOS and COX-2 at the mRNA and protein expression levels. Garcinol also decreased the secretion of TNF-α, IL-6, IL-1β, PGE2, and NO. Moreover, the anti-inflammatory effects involved an alteration in the NF-κB signaling pathway. Downregulation of pIKKα/β, pIκBα, and pNF-κB was observed, hence reducing the translocation of pNF-κB from the cytosol into the nucleus, which subsequently decreased the production of pro-inflammatory molecules. Therefore, garcinol isolated from Garcinia dulcis is a potential candidate as an anti-inflammatory agent for inflammation-related disease treatment.
Collapse
Affiliation(s)
- Pathanin Chantree
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathumthani 12120, Thailand
- Research Group in Medical Biomolecules, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
- Correspondence: ; Tel.: +66-846-171-817
| | - Pongsakorn Martviset
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathumthani 12120, Thailand
- Research Group in Medical Biomolecules, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
| | - Nattaya Thongsepee
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathumthani 12120, Thailand
| | - Kant Sangpairoj
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathumthani 12120, Thailand
| | - Phornphan Sornchuer
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathumthani 12120, Thailand
| |
Collapse
|
3
|
Garcinia spp: Products and by-products with potential pharmacological application in cancer. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Desai S, Sharma P, Kashyap P, Choudhary B, Kaur J. Bioactive compounds, bio‐functional properties, and food applications of
Garcinia indica
: A review. J Food Biochem 2022; 46:e14344. [DOI: 10.1111/jfbc.14344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/06/2022] [Accepted: 07/09/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Sahil Desai
- Department of Food Technology and Nutrition School of Agriculture, Lovely Professional University Phagwara India
| | - Poorva Sharma
- Department of Food Technology and Nutrition School of Agriculture, Lovely Professional University Phagwara India
| | - Piyush Kashyap
- Department of Food Technology and Nutrition School of Agriculture, Lovely Professional University Phagwara India
| | | | - Jasleen Kaur
- Department of Food Technology and Nutrition School of Agriculture, Lovely Professional University Phagwara India
| |
Collapse
|
5
|
Prabhakar P, Pavankumar GS, Raghu SV, Rao S, Prasad K, George T, Baliga MS. Utility of Indian fruits in cancer prevention and treatment: Time to undertake translational and bedside studies. Curr Pharm Des 2022; 28:1543-1560. [PMID: 35652402 DOI: 10.2174/1381612828666220601151931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/31/2022] [Indexed: 11/22/2022]
Abstract
The World Health Organization predicts a 70% increase in cancer incidents in developing nations over the next decade, and it will be the second leading cause of death worldwide. Traditional plant-based medicine systems play an important role against various diseases and provide health care to a large section of the population in developing countries. Indigenous fruits and their bioactive compounds with beneficial effects like antioxidant, antiproliferative, and immunomodulatory are shown to be useful in preventing the incidence of cancer. India is one of the biodiversity regions and is native to numerous flora and fauna in the world. Of the many fruiting trees indigenous to India, Mango (Mangifera indica), Black plum (Eugenia jambolana or Syzygium jambolana), Indian gooseberry (Emblica officinalis or Phyllanthus emblica), kokum (Garcinia indica or Brindonia indica), stone apple or bael (Aegle marmelos), Jackfruit (Artocarpus heterophyllus), Karaunda (Carissa carandas) and Phalsa (Grewia asiatica), Monkey Jackfruit (Artocarpus lakoocha) and Elephant apple (Dillenia indica) have been shown to be beneficial in preventing cancer and in the treatment of cancer in validated preclinical models of study. In this review, efforts are also made to collate the fruits' anticancer effects and the important phytochemicals. Efforts are also made at emphasizing the underlying mechanism/s responsible for the beneficial effects in cancer prevention and treatment. These fruits have been a part of the diet, are non-toxic, and easily acceptable for human application. The plants and some of their phytochemicals possess diverse medicinal properties. The authors propose that future studies should be directed at detailed studies with various preclinical models of study with both composite fruit extract/juice and the individual phytochemicals. Additionally, translational studies should be planned with the highly beneficial, well-investigated and pharmacologically multifactorial amla to understand its usefulness as a cancer preventive in the high-risk population and as a supportive agent in cancer survivors. The outcome of both preclinical and clinical studies will be useful for patients, the healthcare fraternity, pharmaceutical, and agro-based sectors.
Collapse
Affiliation(s)
- Pankaj Prabhakar
- Department of Pharmacology, Indira Gandhi Institute of Medical Sciences (IGIMS), Sheikhpura, Patna, Bihar, 800014, India
| | - Giriyapura Srikantachar Pavankumar
- Department of Biotechnology, Kuvempu University, India.,Sri Lakshmi Group of Institution, Magadi Main Road, Sunkadakatte, Bengaluru, Karnataka, India
| | - Shamprasad Varija Raghu
- Department of Applied Zoology, Mangalore University, Mangalagangotri, Konaje, Karnataka India
| | - Suresh Rao
- Radiation Oncology, c Pumpwell, Mangalore, Karnataka, India
| | - Krishna Prasad
- Medical Oncology, Mangalore Institute of Oncology, Pumpwell, Mangalore, Karnataka, India
| | - Thomas George
- Research Unit, Mangalore Institute of Oncology, Pumpwell, Mangalore, Karnataka, India
| | | |
Collapse
|
6
|
Lee PS, Nagabhushanam K, Ho CT, Pan MH. Inhibitory Effect of Garcinol on Obesity-Exacerbated, Colitis-Mediated Colon Carcinogenesis. Mol Nutr Food Res 2021; 65:e2100410. [PMID: 34245224 DOI: 10.1002/mnfr.202100410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/16/2021] [Indexed: 12/24/2022]
Abstract
SCOPE Epidemiological studies show a consistent and compelling association between the risk of colorectal cancer development and obesity, but its mechanisms remain poorly understood. Evidence is mounting that colorectal cancer can be prevented by nutritional supplements, such as phytochemicals. Garcinol, a polyisoprenylated benzophenone derivative, is widely present in Garcinia plants. This study investigates the potential role of garcinol supplementation in ameliorating obesity-induced colon cancer development. METHODS AND RESULTS An animal model to investigate the effect of high-fat-diet (HFD)-induced obesity on promoting colitis-associated colon cancer (AOM (azoxymethane)/DSS (dextran sodium sulfate)-induced) is designed. The results show that HFD can promote colitis-associated colon cancer as compared to an AOM/DSS group without the intervention of obesity, and supplementing with 0.05% garcinol in the diet can significantly ameliorate obesity-promoted colon carcinogenesis. The results also reveals that the microbiota composition of each group is significantly different and clustered. The most representative genera are Alistipes, Romboutsia, and Ruminococcus. The RNA-sequencing results show that the administration of garcinol can regulate genes and improve obesity-promoting colitis-associated colon carcinogenesis. CONCLUSION The study results suggest that garcinol can prevent obesity-promoted colorectal cancer, and these findings provide important niches for the future development of garcinol as functional foods or adjuvant therapeutic agents.
Collapse
Affiliation(s)
- Pei-Sheng Lee
- Institute of Food Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | | | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
7
|
Garcinol-A Natural Histone Acetyltransferase Inhibitor and New Anti-Cancer Epigenetic Drug. Int J Mol Sci 2021; 22:ijms22062828. [PMID: 33799504 PMCID: PMC8001519 DOI: 10.3390/ijms22062828] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 12/11/2022] Open
Abstract
Garcinol extracted from Garcinia indica fruit peel and leaves is a polyisoprenylated benzophenone. In traditional medicine it was used for its antioxidant and anti-inflammatory properties. Several studies have shown anti-cancer properties of garcinol in cancer cell lines and experimental animal models. Garcinol action in cancer cells is based on its antioxidant and anti-inflammatory properties, but also on its potency to inhibit histone acetyltransferases (HATs). Recent studies indicate that garcinol may also deregulate expression of miRNAs involved in tumour development and progression. This paper focuses on the latest research concerning garcinol as a HAT inhibitor and miRNA deregulator in the development and progression of various cancers. Garcinol may be considered as a candidate for next generation epigenetic drugs, but further studies are needed to establish the precise toxicity, dosages, routes of administration, and safety for patients.
Collapse
|
8
|
Zhang J, Fang H, Zhang J, Guan W, Xu G. Garcinol Alone and in Combination With Cisplatin Affect Cellular Behavior and PI3K/AKT Protein Phosphorylation in Human Ovarian Cancer Cells. Dose Response 2020; 18:1559325820926732. [PMID: 32489337 PMCID: PMC7238453 DOI: 10.1177/1559325820926732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 11/15/2022] Open
Abstract
Garcinol is a plant-derived compound that has some physiological benefits to human cells. However, the effect of garcinol on ovarian cancer (OC) cell proliferation and apoptosis is unknown. The current study aimed to examine the effects of garcinol alone and in combination with cisplatin (DDP) on cellular behavior and to explore the expression pattern of PI3K/AKT and nuclear factor-κB (NF-κB) in human OC cells. We found that OVCAR-3 cell viability was decreased after garcinol treatment. Garcinol alone and in combination with DDP significantly inhibited cell proliferation and had a synergistic effect evaluated by CompuSyn software. The cell cycle analysis showed the S phase arrest by garcinol. Furthermore, garcinol alone and in combination with DDP promoted cell apoptosis. The garcinol-induced apoptosis was further confirmed by the detection of cleavage forms of PARP and caspase 3. An increase in proapoptotic factor Bax expression was also found in garcinol-treated cells. Moreover, garcinol significantly decreased the phosphorylation of PI3K and AKT proteins and downregulated the expression of NF-κB. Thus, our data demonstrated that garcinol has the potential to be used as an anticancer agent and may synergize the effect of DDP. These actions are most likely through the regulation of the PI3K/AKT and NF-κB pathways.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Clinical Nutrition, Jinshan Hospital, Fudan University, Shanghai, China
| | - Huan Fang
- Department of Clinical Pharmacy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Jinguo Zhang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China
| | - Wencai Guan
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Zheng Y, Guo C, Zhang X, Wang X, Ma A. Garcinol acts as an antineoplastic agent in human gastric cancer by inhibiting the PI3K/AKT signaling pathway. Oncol Lett 2020; 20:667-676. [PMID: 32565991 PMCID: PMC7285879 DOI: 10.3892/ol.2020.11585] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 04/15/2020] [Indexed: 12/13/2022] Open
Abstract
Gastric cancer (GC) is one of the most common malignancies worldwide; however, treatment options other than surgery remain limited. Neoadjuvant chemotherapy has the potential to suppress of gastric tumorigenesis. Garcinol has been reported to exert inhibitory effects on the progression of numerous carcinomas. However, its effects in GC remain unclear. Therefore, the aim of the present study was to investigate the effects of garcinol on the proliferation, invasion and apoptosis of gastric carcinoma cells and then to explore the underlying mechanisms. Garcinol significantly decreased the proliferation and invasion of GC cells and increased apoptosis in a dose-dependent manner. Additionally, the expression of AKTp-Thr308, cyclin D1, Bcl-2, BAX, matrix metalloprotease (MMP-2) and MMP-9 in HGC-27 cells following treatment with garcinol. The results obtained in the present study suggested that garcinol may inhibit gastric tumorigenesis by suppressing the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Yuanyuan Zheng
- Department of Gastroenterology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, Zhejiang 312000, P.R. China
| | - Chuanyong Guo
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University of Medicine, Shanghai 200072, P.R. China
| | - Xiaoping Zhang
- Department of Gastroenterology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, Zhejiang 312000, P.R. China
| | - Xiaoli Wang
- Department of Gastroenterology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, Zhejiang 312000, P.R. China
| | - A'Huo Ma
- Department of Gastroenterology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, Zhejiang 312000, P.R. China
| |
Collapse
|
10
|
Aggarwal V, Tuli HS, Kaur J, Aggarwal D, Parashar G, Chaturvedi Parashar N, Kulkarni S, Kaur G, Sak K, Kumar M, Ahn KS. Garcinol Exhibits Anti-Neoplastic Effects by Targeting Diverse Oncogenic Factors in Tumor Cells. Biomedicines 2020; 8:103. [PMID: 32365899 PMCID: PMC7277375 DOI: 10.3390/biomedicines8050103] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
Garcinol, a polyisoprenylated benzophenone, is the medicinal component obtained from fruits and leaves of Garcinia indica (G. indica) and has traditionally been extensively used for its antioxidant and anti-inflammatory properties. In addition, it has been also been experimentally illustrated to elicit anti-cancer properties. Several in vitro and in vivo studies have illustrated the potential therapeutic efficiency of garcinol in management of different malignancies. It mainly acts as an inhibitor of cellular processes via regulation of transcription factors NF-κB and JAK/STAT3 in tumor cells and have been demonstrated to effectively inhibit growth of malignant cell population. Numerous studies have highlighted the anti-neoplastic potential of garcinol in different oncological transformations including colon cancer, breast cancer, prostate cancer, head and neck cancer, hepatocellular carcinoma, etc. However, use of garcinol is still in its pre-clinical stage and this is mainly attributed to the limitations of conclusive evaluation of pharmacological parameters. This necessitates evaluation of garcinol pharmacokinetics to precisely identify an appropriate dose and route of administration, tolerability, and potency under physiological conditions along with characterization of a therapeutic index. Hence, the research is presently ongoing in the dimension of exploring the precise metabolic mechanism of garcinol. Despite various lacunae, garcinol has presented with promising anti-cancer effects. Hence, this review is motivated by the constantly emerging and promising positive anti-cancerous effects of garcinol. This review is the first effort to summarize the mechanism of action of garcinol in modulation of anti-cancer effect via regulation of different cellular processes.
Collapse
Affiliation(s)
- Vaishali Aggarwal
- Department of Histopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, Punjab 160012, India;
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India; (D.A.); or (G.P.); (N.C.P.)
| | - Jagjit Kaur
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), Faculty of Engineering, The University of New South Wales, Sydney 2052, Australia;
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India; (D.A.); or (G.P.); (N.C.P.)
| | - Gaurav Parashar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India; (D.A.); or (G.P.); (N.C.P.)
| | - Nidarshana Chaturvedi Parashar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India; (D.A.); or (G.P.); (N.C.P.)
| | - Samruddhi Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’S NMIMS, Vileparle-West, Mumbai 400056, India; (S.K.); (G.K.)
| | - Ginpreet Kaur
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’S NMIMS, Vileparle-West, Mumbai 400056, India; (S.K.); (G.K.)
| | | | - Manoj Kumar
- Department of Chemistry, Maharishi Markandeshwar University, Sadopur 133001, India;
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| |
Collapse
|
11
|
Ahmad R, Khan MA, Srivastava A, Gupta A, Srivastava A, Jafri TR, Siddiqui Z, Chaubey S, Khan T, Srivastava AK. Anticancer Potential of Dietary Natural Products: A Comprehensive Review. Anticancer Agents Med Chem 2020; 20:122-236. [DOI: 10.2174/1871520619666191015103712] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 06/21/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023]
Abstract
Nature is a rich source of natural drug-like compounds with minimal side effects. Phytochemicals
better known as “Natural Products” are found abundantly in a number of plants. Since time immemorial, spices
have been widely used in Indian cuisine as flavoring and coloring agents. Most of these spices and condiments
are derived from various biodiversity hotspots in India (which contribute 75% of global spice production) and
form the crux of India’s multidiverse and multicultural cuisine. Apart from their aroma, flavor and taste, these
spices and condiments are known to possess several medicinal properties also. Most of these spices are mentioned
in the Ayurveda, the indigenous system of medicine. The antimicrobial, antioxidant, antiproliferative,
antihypertensive and antidiabetic properties of several of these natural products are well documented in
Ayurveda. These phytoconstituemts are known to act as functional immunoboosters, immunomodulators as well
as anti-inflammatory agents. As anticancer agents, their mechanistic action involves cancer cell death via induction
of apoptosis, necrosis and autophagy. The present review provides a comprehensive and collective update
on the potential of 66 commonly used spices as well as their bioactive constituents as anticancer agents. The
review also provides an in-depth update of all major in vitro, in vivo, clinical and pharmacological studies done
on these spices with special emphasis on the potential of these spices and their bioactive constituents as potential
functional foods for prevention, treatment and management of cancer.
Collapse
Affiliation(s)
- Rumana Ahmad
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Mohsin A. Khan
- Chancellor, Era University, Sarfarazganj, Hardoi Road, Lucknow-226003, UP, India
| | - A.N. Srivastava
- Department of Pathology, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Anamika Gupta
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Aditi Srivastava
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Tanvir R. Jafri
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Zainab Siddiqui
- Department of Pathology, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Sunaina Chaubey
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Tahmeena Khan
- Department of Chemistry, Integral University, Dasauli, P.O. Bas-ha, Kursi Road, Lucknow 226026, UP, India
| | - Arvind K. Srivastava
- Department of Food and Nutrition, Era University, Sarfarazganj, Lucknow-226003, UP, India
| |
Collapse
|
12
|
Targeting USP9x/SOX2 axis contributes to the anti-osteosarcoma effect of neogambogic acid. Cancer Lett 2019; 469:277-286. [PMID: 31605775 DOI: 10.1016/j.canlet.2019.10.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/21/2019] [Accepted: 10/03/2019] [Indexed: 12/15/2022]
Abstract
SOX2 has been viewed as a critical oncoprotein in osteosarcoma. Emerging evidence show that inducing the degradation of transcription factors such as SOX2 is a promising strategy to make them druggable. Here, we show that neogambogic acid (NGA), an active ingredient in garcinia, significantly inhibited the proliferation of osteosarcoma cells with ubiquitin proteasome-mediated degradation of SOX2 in vitro and in vivo. We further identified USP9x as a bona fide deubiquitinase for SOX2 and NGA directly interacts with USP9x in cells. Moreover, knockdown of USP9x inhibited the proliferation and colony formation of osteosarcoma cells, which could be rescued by overexpression of SOX2. Consistent with this, knockdown of USP9x inhibited the proliferation of osteosarcoma cells in a xenograft mouse model. Collectively, we identify USP9x as the first deubiquitinating enzyme for controlling the stability of SOX2 and USP9x is a direct target for NGA. We propose that targeting the USP9x/SOX2 axis represents a novel strategy for the therapeutic of osteosarcoma and other SOX2 related cancers.
Collapse
|
13
|
Schobert R, Biersack B. Chemical and Biological Aspects of Garcinol and Isogarcinol: Recent Developments. Chem Biodivers 2019; 16:e1900366. [PMID: 31386266 DOI: 10.1002/cbdv.201900366] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/06/2019] [Indexed: 11/08/2022]
Abstract
The natural polyisoprenylated benzophenone derivatives garcinol and isogarcinol are secondary plant metabolites isolated from various Garcinia species including Garcinia indica. This review takes stock of the recent chemical and biological research into these interesting natural compounds over the last five years. New biological sources and chemical syntheses are discussed followed by new insights into the activity of garcinol and isogarcinol against cancer, pathogenic bacteria, parasite infections and various inflammatory diseases.
Collapse
Affiliation(s)
- Rainer Schobert
- Organic Chemistry Laboratory, University of Bayreuth, 95447, Bayreuth, Germany
| | - Bernhard Biersack
- Organic Chemistry Laboratory, University of Bayreuth, 95447, Bayreuth, Germany
| |
Collapse
|
14
|
Zhang G, Fu J, Su Y, Zhang X. Opposite Effects of Garcinol on Tumor Energy Metabolism in Oral Squamous Cell Carcinoma Cells. Nutr Cancer 2019; 71:1403-1411. [PMID: 31074649 DOI: 10.1080/01635581.2019.1607409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Garcinol is a natural polyisoprenylated benzophenone extracted from the dried fruit rind of Garcinia indica. The aim of this study was to investigate the roles of garcinol in oral squamous cell carcinoma (OSCC) cells and its action on cancer cell energy metabolisms. Cell cycle, apoptosis, migration and invasion assays were detected, and oxygen consumption and extracellular acidification rates were also measured with Extracellular Flux Analyzer. Our studies showed that garcinol represses OSCC cells proliferation, cell cycle, migration and invasion, and colony formation. Of note, garcinol directly targeted cancer cell energy producing pathway mitochondrial respiration by significantly inhibiting ATP production, maximal respiration, spare respiration capacity and basal respiration in a dose-dependent manner. But garcinol treatment reflexively boosted glycolysis presented by increased glycolysis and glycolytic capacity. The promotion of garcinol on glycolytic pathway is also confirmed presented by elevated lactic acid content and the activity of pyruvate kinase. Furthermore, the expression of glucose transporter1 and 4, and several important genes related to the glycolysis pathway, including HIF-1α, AKT, and PTEN, was also upregulated after garcinol treatment. Taken together, our results revealed that garcinol has opposite effects on tumor energy metabolism through inhibiting mitochondrial oxidative phosphorylation significantly, and reflexively enhancing glycolysis in OSCC cells. Abbreviations OSCC oral squamous cell carcinoma DMBA dimethylbenzanthracene OCR oxygen consumption rate OXPHOS oxidative phosphorylation ECAR extracellular acidification rate.
Collapse
Affiliation(s)
- Guilian Zhang
- Beijing Institute of Dental Research, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University , Beijing , China
| | - Jie Fu
- Beijing Institute of Dental Research, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University , Beijing , China
| | - Ying Su
- Beijing Institute of Dental Research, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University , Beijing , China
| | - Xinyan Zhang
- Beijing Institute of Dental Research, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University , Beijing , China
| |
Collapse
|
15
|
Emerging Role of Garcinol in Targeting Cancer Stem Cells of Non-small Cell Lung Cancer. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s40495-019-00169-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
16
|
Kim HJ. Regulation of Neural Stem Cell Fate by Natural Products. Biomol Ther (Seoul) 2019; 27:15-24. [PMID: 30481958 PMCID: PMC6319553 DOI: 10.4062/biomolther.2018.184] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/22/2018] [Accepted: 11/02/2018] [Indexed: 12/13/2022] Open
Abstract
Neural stem cells (NSCs) can proliferate and differentiate into multiple cell types that constitute the nervous system. NSCs can be derived from developing fetuses, embryonic stem cells, or induced pluripotent stem cells. NSCs provide a good platform to screen drugs for neurodegenerative diseases and also have potential applications in regenerative medicine. Natural products have long been used as compounds to develop new drugs. In this review, natural products that control NSC fate and induce their differentiation into neurons or glia are discussed. These phytochemicals enable promising advances to be made in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Hyun-Jung Kim
- Laboratory of Molecular Stem Cell Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 06974,
Republic of Korea
| |
Collapse
|