1
|
Chahal S, Rani P, Shweta, Goel KK, Joshi G, Singh R, Kumar P, Singh D, Sindhu J. Pyrano[2,3-c]pyrazole fused spirooxindole-linked 1,2,3-triazoles as antioxidant agents: Exploring their utility in the development of antidiabetic drugs via inhibition of α-amylase and DPP4 activity. Bioorg Chem 2024; 147:107363. [PMID: 38657527 DOI: 10.1016/j.bioorg.2024.107363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024]
Abstract
Environment-benign, multicomponent synthetic methodologies are vital in modern pharmaceutical research and facilitates multi-targeted drug development via synergistic approach. Herein, we reported green and efficient synthesis of pyrano[2,3-c]pyrazole fused spirooxindole linked 1,2,3-triazoles using a tea waste supported copper catalyst (TWCu). The synthetic approach involves a one-pot, five-component reaction using N-propargylated isatin, hydrazine hydrate, ethyl acetoacetate, malononitrile/ethyl cyanoacetate and aryl azides as model substrates. Mechanistically, the reaction was found to proceed via in situ pyrazolone formation followed by Knoevenagel condensation, azide alkyne cycloaddition and Michael's addition reactions. The molecules were developed using structure-based drug design. The primary goal is to identifying anti-oxidant molecules with potential ability to modulate α-amylase and DPP4 (dipeptidyl-peptidase 4) activity. The anti-oxidant analysis, as determined via DPPH, suggested that the synthesized compounds, A6 and A10 possessed excellent anti-oxidant potential compared to butylated hydroxytoluene (BHT). In contrast, compounds A3, A5, A8, A9, A13, A15, and A18 were found to possess comparable anti-oxidant potential. Among these, A3 and A13 possessed potential α-amylase inhibitory activity compared to the acarbose, and A3 further emerged as dual inhibitors of both DPP4 and α-amylase with anti-oxidant potential. The relationship of functionalities on their anti-oxidant and enzymatic inhibition was explored in context to their SAR that was further corroborated using in silico techniques and enzyme kinetics.
Collapse
Affiliation(s)
- Sandhya Chahal
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University, Hisar 125004, India
| | - Payal Rani
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University, Hisar 125004, India
| | - Shweta
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University, Hisar 125004, India
| | - Kapil Kumar Goel
- Department of Pharmaceutical Sciences, Gurukul Kangri (Deemed to be University), Haridwar 249404, India
| | - Gaurav Joshi
- Department of Pharmaceutical Science, Hemvati Nandan Bahuguna Garhwal (A Central) University, Srinagar-246174, Dist. Garhwal, Uttarakhand, India
| | - Rajvir Singh
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University, Hisar 125004, India
| | - Parvin Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana 136119, India.
| | - Devender Singh
- Department of Chemistry, Maharshi Dayanand University, Rohtak 124001, India
| | - Jayant Sindhu
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University, Hisar 125004, India.
| |
Collapse
|
2
|
Synthesis of 2-Aminopyrimidine Derivatives and Their Evaluation as β-Glucuronidase Inhibitors: In Vitro and In Silico Studies. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227786. [PMID: 36431887 PMCID: PMC9693052 DOI: 10.3390/molecules27227786] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022]
Abstract
Currently the discovery and development of potent β-glucuronidase inhibitors is an active area of research due to the observation that increased activity of this enzyme is associated with many pathological conditions, such as colon cancer, renal diseases, and infections of the urinary tract. In this study, twenty-seven 2-aminopyrimidine derivatives 1-27 were synthesized by fusion of 2-amino-4,6-dichloropyrimidine with a variety of amines in the presence of triethylamine without using any solvent and catalyst, in good to excellent yields. All synthesized compounds were characterized by EI-MS, HREI-MS and NMR spectroscopy. Compounds 1-27 were then evaluated for their β-glucuronidase inhibitory activity, and among them, compound 24 (IC50 = 2.8 ± 0.10 µM) showed an activity much superior to standard D-saccharic acid 1,4-lactone (IC50 = 45.75 ± 2.16 µM). To predict the binding mode of the substrate and β-glucuronidase, in silico study was performed. Conclusively, this study has identified a potent β-glucuronidase inhibitor that deserves to be further studied for the development of pharmaceutical products.
Collapse
|
3
|
Synthesis of Novel Benzimidazole-Based Thiazole Derivatives as Multipotent Inhibitors of α-Amylase and α-Glucosidase: In Vitro Evaluation along with Molecular Docking Study. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196457. [PMID: 36234994 PMCID: PMC9572811 DOI: 10.3390/molecules27196457] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022]
Abstract
In this study, hybrid analogs of benzimidazole containing a thiazole moiety (1-17) were afforded and then tested for their ability to inhibit α-amylase and α-glucosidase when compared to acarbose as a standard drug. The recently available analogs showed a wide variety of inhibitory potentials that ranged between 1.31 ± 0.05 and 38.60 ± 0.70 µM (against α-amylase) and between 2.71 ± 0.10 and 42.31 ± 0.70 µM (against α-glucosidase) under the positive control of acarbose (IC50 = 10.30 ± 0.20 µM against α-amylase) (IC50 = 9.80 ± 0.20 µM against α-glucosidase). A structure-activity relationship (SAR) study was carried out for all analogs based on substitution patterns around both rings B and C respectively. It was concluded from the SAR study that analogs bearing either substituent(s) of smaller size (-F and Cl) or substituent(s) capable of forming hydrogen bonding (-OH) with the catalytic residues of targeted enzymes enhanced the inhibitory potentials. Therefore, analogs 2 (bearing meta-fluoro substitution), 3 (having para-fluoro substitution) and 4 (with ortho-fluoro group) showed enhanced potency when evaluated against standard acarbose drug with IC50 values of 4.10 ± 0.10, 1.30 ± 0.05 and 1.90 ± 0.10 (against α-amylase) and 5.60 ± 0.10, 2.70 ± 0.10 and 2.90 ± 0.10 µM (against α-glucosidase), correspondingly. On the other hand, analogs bearing substituent(s) of either a bulky nature (-Br) or that are incapable of forming hydrogen bonds (-CH3) were found to lower the inhibitory potentials. In order to investigate the binding sites for synthetic analogs and how they interact with the active areas of both targeted enzymes, molecular docking studies were also conducted on the potent analogs. The results showed that these analogs adopted many important interactions with the active areas of enzymes. The precise structure of the newly synthesized compounds was confirmed using several spectroscopic techniques as NMR and HREI-MS.
Collapse
|
4
|
Çol S, Emirik M, Alım Z, Baran A. Physical–chemical studies of new, versatile carbazole derivatives and zinc complexes: Their synthesis, investigation of
in–vitro
inhibitory effects on
α
–glucosidase and human erythrocyte carbonic anhydrase I and II isoenzymes. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sümeyye Çol
- Sakarya University, Faculty of Arts and Sciences, Chemistry Department Sakarya Turkey
| | - Mustafa Emirik
- Recep Tayyip Erdoğan University, Faculty of Arts and Sciences, Chemistry Department Rize Turkey
| | - Zuhal Alım
- Ahi Evran University, Faculty of Arts and Sciences, Chemistry Department Kırşehir Turkey
| | - Arif Baran
- Sakarya University, Faculty of Arts and Sciences, Chemistry Department Sakarya Turkey
| |
Collapse
|
5
|
Thakal S, Singh A, Singh V. In vitro and in silico evaluation of N-(alkyl/aryl)-2-chloro-4-nitro-5- [(4-nitrophenyl)sulfamoyl]benzamide derivatives for antidiabetic potential using docking and molecular dynamic simulations. J Biomol Struct Dyn 2022; 40:4140-4163. [PMID: 33272102 DOI: 10.1080/07391102.2020.1854116] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
A series of N-(alkyl/aryl)-2-chloro-4-nitro-5-[(4-nitrophenyl)sulfamoyl]benzamide derivatives were synthesized and evaluated for its in vitro antidiabetic potential against α-glucosidase and α-amylase enzymes and also for its antimicrobial potential. Compounds N-(2-methyl-4-nitrophenyl)-2-chloro-4-nitro-5-[(4-nitrophenyl)sulfamoyl]benzamide and N-(2-methyl-5-nitrophenyl)-2-chloro-4-nitro-5-[(4-nitrophenyl)sulfamoyl]benzamide were found to be the most potent α-glucosidase and α-amylase inhibitors with IC50 values of 10.13 and 1.52 µM, respectively. The docking results depicted reasonable dock score -10.2 to -8.0 kcal/mol (α-glucosidase), -11.1 to -8.3 kcal/mol (α-amylase) and binding interactions of synthesized molecules with respective targets with enzymes. During molecular dynamic simulations, analysis of RMSD of ligand protein complex suggested stability of the most active compound at binding site of target proteins. Compound N-(2-chloro-4-nitrophenyl)-2-chloro-4-nitro-5-[(4-nitrophenyl)sulfamoyl] benzamide showed antibacterial potential against Gram positive and Gram negative bacteria and compound N-(2-methyl-5-nitrophenyl)-2-chloro-4-nitro-5-[(4-nitrophenyl)sulfamoyl] benzamide showed excellent antifungal potential against Candida albicans and Aspergillus niger. The computational studies were also executed to predict the drug-likeness and ADMET properties of the title compounds. The N-(alkyl/aryl)-2-chloro-4-nitro-5-[(4-nitrophenyl)sulfamoyl]benzamide derivatives showed significant antidiabetic and antimicrobial potential which is equally supported by the molecular dynamic and docking studies. This study will prove useful in revealing the molecular structure and receptor target site details which can be further utilized for the development of newer active antidiabetic and antimicrobial agents.
Collapse
Affiliation(s)
- Samridhi Thakal
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - Amit Singh
- Discipline of Chemistry, Indian Institute of Technology, Gandhinagar, Gujarat, India
| | - Vikramjeet Singh
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, India
| |
Collapse
|
6
|
Shah S, Khan M, Ali M, Wadood A, Ur Rehman A, Shah Z, Yousaf M, Salar U, Khan KM. Bis-1,3,4-Oxadiazole Derivatives as Novel and Potential Urease Inhibitors; Synthesis, In Vitro, and In Silico Studies. Med Chem 2022; 18:820-830. [PMID: 35232342 DOI: 10.2174/1573406418666220301161934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/22/2021] [Accepted: 01/06/2022] [Indexed: 11/22/2022]
Abstract
AIMS Synthesis of bis-1,3,4-oxadiazole derivatives as novel and potential urease inhibitors. BACKGROUND Despite many important biological activities associated with oxadiazoles, they are still neglected by medicinal chemists for their possible urease inhibitory activity. Keeping in view the countless importance of urease inhibitors, we have synthesized a new library of substituted bis-oxadiazole derivatives (1-21) to evaluate their urease inhibitory potential. OBJECTIVE Synthesis of substituted bis-oxadiazole derivatives (1-21) to evaluate their urease inhibitory potential. METHOD Bis-1,3,4-oxadiazole derivatives 1-21 were synthesized through sequential reactions using starting material isophthalic acid. Esterification reaction was done by refluxing in methanol for 2 h in the presence of the catalytic amount of concentrated H2SO4 till dissolution. In the second step, dimethyl isophthalate and hydrazine hydrate in excess (1:5) were refluxed in methanol to afford isophthalic dihydrazide. Then, isophthalic dihydrazide was treated with different substituted benzaldehydes in a 1:2 ratio under acidic conditions Result: In vitro urease, the inhibitory activity of the synthesized compounds were evaluated and results demonstrated good activities with IC50 values in the range of 13.46 ± 0.34 to 74.45 ± 3.81 µM as compared to the standard thiourea (IC50 = 21.13 ± 0.415 µM). Most of the compounds were found to be more potent than the standard. The structure-activity relationship (SAR) suggested that the variations in the inhibitory activities of the compounds were due to different substitutions. Furthermore; in silico study was also performed. CONCLUSION Current study identified a new class of urease inhibitors. All synthetic compounds 1-21 showed potent as well as good to moderate urease inhibitory activities except 3. SAR suggested that hydroxy-bearing analogs were identified exceptionally good. Molecular docking revealed many important interactions made by compounds with the active site of the urease enzyme.
Collapse
Affiliation(s)
- Sana Shah
- Department of Chemistry, Abdul Wali Khan University, Mardan-23200, Khyber Pakhtunkhwa, Pakistan
| | - Momin Khan
- Department of Chemistry, Abdul Wali Khan University, Mardan-23200, Khyber Pakhtunkhwa, Pakistan
| | - Mahboob Ali
- Department of Biochemistry, Abdul Wali Khan University, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Abdul Wadood
- School of Biological Sciences, University of California, Irvine, CA 92697-3900, U.S.A
| | - Ashfaq Ur Rehman
- Department of Chemistry, Bacha Khan University Charsadda, Charsadda-24420, Pakistan
| | - Zarbad Shah
- Department of Chemistry, Abdul Wali Khan University, Mardan-23200, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Yousaf
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Uzma Salar
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 31441, Dammam, Saudi Arabia
| |
Collapse
|
7
|
Saleem F, Kanwal, Mohammed Khan K, Chigurupati S, Andriani Y, Solangi M, Hameed S, Abdel Monem Abdel Hafez A, Begum F, Arif Lodhi M, Taha M, Rahim F, Sifzizul bin Tengku Muhammad T, Perveen S. Dicyanoanilines as potential and dual inhibitors of α-amylase and α-glucosidase enzymes: Synthesis, characterization, in vitro, in silico, and kinetics studies. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103651] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
8
|
Synthesis of indole derivatives as diabetics II inhibitors and enzymatic kinetics study of α-glucosidase and α-amylase along with their in-silico study. Int J Biol Macromol 2021; 190:301-318. [PMID: 34481854 DOI: 10.1016/j.ijbiomac.2021.08.207] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 12/27/2022]
Abstract
In this study, we have investigated a series of indole-based compounds for their inhibitory study against pancreatic α-amylase and intestinal α-glucosidase activity. Inhibitors of carbohydrate degrading enzymes appear to have an essential role as antidiabetic drugs. All analogous exhibited good to moderate α-amylase (IC50 = 3.80 to 47.50 μM), and α-glucosidase inhibitory interactions (IC50 = 3.10-52.20 μM) in comparison with standard acarbose (IC50 = 12.28 μM and 11.29 μM). The analogues 4, 11, 12, 15, 14 and 17 had good activity potential both for enzymes inhibitory interactions. Structure activity relationships were deliberated to propose the influence of substituents on the inhibitory potential of analogues. Docking studies revealed the interaction of more potential analogues and enzyme active site. Further, we studied their kinetic study of most active compounds showed that compounds 15, 14, 12, 17 and 11 are competitive for α-amylase and non- competitive for α-glucosidase.
Collapse
|
9
|
Zhou TS, He LL, He J, Yang ZK, Zhou ZY, Du AQ, Yu JB, Li YS, Wang SJ, Wei B, Cui ZN, Wang H. Discovery of a series of 5-phenyl-2-furan derivatives containing 1,3-thiazole moiety as potent Escherichia coli β-glucuronidase inhibitors. Bioorg Chem 2021; 116:105306. [PMID: 34521047 DOI: 10.1016/j.bioorg.2021.105306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 01/13/2023]
Abstract
Gut microbial β-glucuronidases have drawn much attention due to their role as a potential therapeutic target to alleviate some drugs or their metabolites-induced gastrointestinal toxicity. In this study, fifteen 5-phenyl-2-furan derivatives containing 1,3-thiazole moiety (1-15) were synthesized and evaluated for their inhibitory effects against Escherichia coli β-glucuronidase (EcGUS). Twelve of them showed satisfactory inhibition against EcGUS with IC50 values ranging from 0.25 μM to 2.13 μM with compound 12 exhibited the best inhibition. Inhibition kinetics studies indicated that compound 12 (Ki = 0.14 ± 0.01 μM) was an uncompetitive inhibitor for EcGUS and molecular docking simulation further predicted the binding model and capability of compound 12 with EcGUS. A preliminary structure-inhibitory activity relationship study revealed that the heterocyclic backbone and bromine substitution of benzene may be essential for inhibition against EcGUS. The compounds have the potential to be applied in drug-induced gastrointestinal toxicity and the findings would help researchers to design and develop more effective 5-phenyl-2-furan type EcGUS inhibitors.
Collapse
Affiliation(s)
- Tao-Shun Zhou
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lu-Lu He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Jing He
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhi-Kun Yang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Zhen-Yi Zhou
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ao-Qi Du
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jin-Biao Yu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ya-Sheng Li
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Si-Jia Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; Center for Human Nutrition, David Geffen School of Medicine, University of California, Rehabilitation Building 32-21, 1000 Veteran Avenue, Los Angeles, CA 90024, USA
| | - Bin Wei
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China.
| | - Zi-Ning Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China.
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China.
| |
Collapse
|
10
|
Aroua LM, Almuhaylan HR, Alminderej FM, Messaoudi S, Chigurupati S, Al-Mahmoud S, Mohammed HA. A facile approach synthesis of benzoylaryl benzimidazole as potential α-amylase and α-glucosidase inhibitor with antioxidant activity. Bioorg Chem 2021; 114:105073. [PMID: 34153810 DOI: 10.1016/j.bioorg.2021.105073] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/25/2021] [Accepted: 06/06/2021] [Indexed: 12/23/2022]
Abstract
Synthetic routes to a series of benzoylarylbenzimidazol 3a-h have been derived from 3,4-diaminobenzophenone and an appropriate arylaldehyde in the presence of ammonium chloride or a mixture of ammonium chloride and sodium metabisulfite as catalyst. The antioxidant activity of targeted compounds 3a-h has been measured by four different methods and the overall antioxidant evaluation of the compounds indicated the significant MCA, FRAP, and (DPPH-SA) of the compounds except for the compound 3h. In vitro antidiabetic assay of α-amylase and α-glucosidase suggest a good to excellent activity for most tested compounds. The target benzimidazole 3f containing hydroxyl motif at para-position of phenyl revealed an important activity inhibitor against α- amylase (IC50 = 12.09 ± 0.38 µM) and α-glucosidase (IC50 = 11.02 ± 0.04 µM) comparable to the reference drug acarbose. The results of the anti hyperglycemic activity were supported by means of in silico molecular docking calculations showing strong binding affinity of compounds 3a-h with human pancreatic α-amylase (HPA) and human lysosomal acid-α-glucosidase (HLAG) active sites that confirm a good to excellent activity for most of tested compounds.
Collapse
Affiliation(s)
- Lotfi M Aroua
- Department of Chemistry, College of Science, Qassim University, Campus University, King Abdulaziz Road, Al-Malida, 51452-P.O. Box: 6644, Buraydah, Qassim, Saudi Arabia; Laboratory of Organic Structural Chemistry and Macromolecules, Department of Chemistry, Faculty of Sciences of Tunis, Tunis El-Manar University, El Manar I 2092, Tunis, Tunisia; Carthage University, Faculty of Sciences of Bizerte, 7021 Jarzouna, Tunisia.
| | - Hind R Almuhaylan
- Department of Chemistry, College of Science, Qassim University, Campus University, King Abdulaziz Road, Al-Malida, 51452-P.O. Box: 6644, Buraydah, Qassim, Saudi Arabia
| | - Fahad M Alminderej
- Department of Chemistry, College of Science, Qassim University, Campus University, King Abdulaziz Road, Al-Malida, 51452-P.O. Box: 6644, Buraydah, Qassim, Saudi Arabia
| | - Sabri Messaoudi
- Department of Chemistry, College of Science, Qassim University, Campus University, King Abdulaziz Road, Al-Malida, 51452-P.O. Box: 6644, Buraydah, Qassim, Saudi Arabia; Carthage University, Faculty of Sciences of Bizerte, 7021 Jarzouna, Tunisia
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah 52571, Saudi Arabia
| | - Suliman Al-Mahmoud
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah 52571, Saudi Arabia
| | - Hamdoon A Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah 52571, Saudi Arabia; Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
11
|
Synthesis of novel 5-(2,5-bis(2,2,2-trifluoroethoxy)phenyl)-1,3,4-oxadiazole-2-thiol derivatives as potential glucosidase inhibitors. Bioorg Chem 2021; 114:105046. [PMID: 34126575 DOI: 10.1016/j.bioorg.2021.105046] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND A hybrid molecule of different biologically active substances can improve affinity and efficiency compared to a standard drug. Hence based on this fact, we predict that a combination of fluorine, oxadiazole, sulfur, etc., may enhance α-glucosidase inhibition activity compared to a standard drug. METHODS A series of novel 5-(2,5-bis(2,2,2-trifluoroethoxy)phenyl)-1,3,4-oxadiazole-2-thiol derivatives (2a-2i) were synthesized and characterized using spectroscopic techniques such as 1HNMR and LC-MS. In order to evaluate its bioactivity, in vitro α-amylase and α-glycosidase inhibitory activity were performed. In vivo study was carried using a genetic model, Drosophila melanogaster, for assessing the antihyperglycemic effects. RESULTS The compounds 2a-2i demonstrated α-amylase inhibitory activity in the range of IC50 = 40.00-80.00 μg/ml as compare to standard acarbose (IC50 = 34.71 μg/ml). Compounds 2a-2i demonstrated α-glucosidase inhibitory activity in the range of IC50 = 46.01-81.65 μg/ml as compared to standard acarbose (IC50 = 34.72 μg/ml). Docking studies on a target protein, N-terminal subunit of human Maltase-glucoamylase (PDB:2QMJ) was carried and the compounds were found to dock into the active site of the enzyme (Fig. 1). The predicted binding energies of the compounds were calculated. The in vitro studies indicate that compounds 2b and 2g had better activity among the synthesized compounds. Whereas in vivo study indicates that 2b, 2g, and 2i could lower glucose levels in the Drosophila, but then 17-30% reduced capacity than acarbose and may be overcome by adjusting their dosage. CONCLUSIONS The in vitro and in vivo studies indicate that compounds 2b and 2g had better activity among the synthesized compounds. This study has recognized that compounds like 2b, 2g, and 2i may be considered potential candidates for further developing a novel class of antidiabetic agents.
Collapse
|
12
|
Zhou TS, Wei B, He M, Li YS, Wang YK, Wang SJ, Chen JW, Zhang HW, Cui ZN, Wang H. Thiazolidin-2-cyanamides derivatives as novel potent Escherichia coli β-glucuronidase inhibitors and their structure-inhibitory activity relationships. J Enzyme Inhib Med Chem 2021; 35:1736-1742. [PMID: 32928007 PMCID: PMC7534389 DOI: 10.1080/14756366.2020.1816998] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Gut microbial β-glucuronidases have the ability to deconjugate glucuronides of some drugs, thus have been considered as an important drug target to alleviate the drug metabolites-induced gastrointestinal toxicity. In this study, thiazolidin-2-cyanamide derivatives containing 5-phenyl-2-furan moiety (1–13) were evaluated for inhibitory activity against Escherichia coli β-glucuronidase (EcGUS). All of them showed more potent inhibition than a commonly used positive control, d-saccharic acid 1,4-lactone, with the IC50 values ranging from 1.2 µM to 23.1 µM. Inhibition kinetics studies indicated that compound 1–3 were competitive type inhibitors for EcGUS. Molecular docking studies were performed and predicted the potential molecular determinants for their potent inhibitory effects towards EcGUS. Structure–inhibitory activity relationship study revealed that chloro substitution on the phenyl moiety was essential for EcGUS inhibition, which would help researchers to design and develop more effective thiazolidin-2-cyanamide type inhibitors against EcGUS.
Collapse
Affiliation(s)
- Tao-Shun Zhou
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Bin Wei
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Min He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Ya-Sheng Li
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Ya-Kun Wang
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Si-Jia Wang
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China.,Center for Human Nutrition, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Jian-Wei Chen
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Hua-Wei Zhang
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Zi-Ning Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Hong Wang
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
13
|
Saleem F, Kanwal, Khan KM, Chigurupati S, Solangi M, Nemala AR, Mushtaq M, Ul-Haq Z, Taha M, Perveen S. Synthesis of azachalcones, their α-amylase, α-glucosidase inhibitory activities, kinetics, and molecular docking studies. Bioorg Chem 2020; 106:104489. [PMID: 33272713 DOI: 10.1016/j.bioorg.2020.104489] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 09/23/2020] [Accepted: 11/16/2020] [Indexed: 12/20/2022]
Abstract
Diabetes being a chronic metabolic disorder have attracted the attention of medicinal chemists and biologists. The introduction of new and potential drug candidates for the cure and treatment of diabetes has become a major concern due to its increased prevelance worldwide. In the current study, twenty-seven azachalcone derivatives 3-29 were synthesized and evaluated for their antihyperglycemic activities by inhibiting α-amylase and α-glucosidase enzymes. Five compounds 3 (IC50 = 23.08 ± 0.03 µM), (IC50 = 26.08 ± 0.43 µM), 5 (IC50 = 24.57 ± 0.07 µM), (IC50 = 27.57 ± 0.07 µM), 6 (IC50 = 24.94 ± 0.12 µM), (IC50 = 27.13 ± 0.08 µM), 16 (IC50 = 27.57 ± 0.07 µM), (IC50 = 29.13 ± 0.18 µM), and 28 (IC50 = 26.94 ± 0.12 µM) (IC50 = 27.99 ± 0.09 µM) demonstrated good inhibitory activities against α-amylase and α-glucosidase enzymes, respectively. Acarbose was used as the standard in this study. Structure-activity relationship was established by considering the parent skeleton and different substitutions on aryl ring. The compounds were also subjected for kinetic studies to study their mechanism of action and they showed competitive mode of inhibition against both enzymes. The molecular docking studies have supported the results and showed that these compounds have been involved in various binding interactions within the active site of enzyme.
Collapse
Affiliation(s)
- Faiza Saleem
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Kanwal
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Institute of Marine Biotechnology, Universiti Malaysia Terengannu, 21030 Kuala Terengganu, Terengganu, Malaysia
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Pakistan Academy of Sciences, 3-Constitution Avenue G-5/2, Islamabad, Pakistan; Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 31441, Dammam, Saudi Arabia.
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah 52571, Saudi Arabia
| | - Mehwish Solangi
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Appala Raju Nemala
- Department of Pharmaceutical Chemistry, Sultan-Ul-Uloom College of Pharmacy, Hyderabad, Telangana, India
| | - Maria Mushtaq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 31441, Dammam, Saudi Arabia
| | - Shahnaz Perveen
- PCSIR Laboratories Complex, Karachi, Shahra-e-Dr. Salimuzzaman Siddiqui, Karachi 75280, Pakistan
| |
Collapse
|
14
|
Iraji A, Nouri A, Edraki N, Pirhadi S, Khoshneviszadeh M, Khoshneviszadeh M. One-pot synthesis of thioxo-tetrahydropyrimidine derivatives as potent β-glucuronidase inhibitor, biological evaluation, molecular docking and molecular dynamics studies. Bioorg Med Chem 2020; 28:115359. [PMID: 32098709 DOI: 10.1016/j.bmc.2020.115359] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/27/2020] [Accepted: 02/03/2020] [Indexed: 01/26/2023]
Abstract
A series of N,N-diethyl phenyl thioxo-tetrahydropyrimidine carboxamide have been synthesized and investigated for their β-glucuronidase inhibitory activities. All molecules exhibited excellent inhibition with IC50 values ranging from 0.35 to 42.05 µM and found to be even more potent than the standard d-saccharic acid. Structure-activity relationship analysis indicated that the meta-aryl-substituted derivatives significantly influenced β-glucuronidase inhibitory activities while the para-substitution counterpart outperforming moderate potency. The most potent compound in this series was 4g bearing thiophene motif with IC50 of 0.35 ± 0.09 µM. To verify the SAR, molecular docking and molecular dynamics studies were also performed.
Collapse
Affiliation(s)
- Aida Iraji
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Nouri
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somayeh Pirhadi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsima Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
15
|
Awolade P, Cele N, Kerru N, Gummidi L, Oluwakemi E, Singh P. Therapeutic significance of β-glucuronidase activity and its inhibitors: A review. Eur J Med Chem 2020; 187:111921. [PMID: 31835168 PMCID: PMC7111419 DOI: 10.1016/j.ejmech.2019.111921] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/27/2019] [Accepted: 11/27/2019] [Indexed: 01/02/2023]
Abstract
The emergence of disease and dearth of effective pharmacological agents on most therapeutic fronts, constitutes a major threat to global public health and man's existence. Consequently, this has created an exigency in the search for new drugs with improved clinical utility or means of potentiating available ones. To this end, accumulating empirical evidence supports molecular target therapy as a plausible egress and, β-glucuronidase (βGLU) - a lysosomal acid hydrolase responsible for the catalytic deconjugation of β-d-glucuronides has emerged as a viable molecular target for several therapeutic applications. The enzyme's activity level in body fluids is also deemed a potential biomarker for the diagnosis of some pathological conditions. Moreover, due to its role in colon carcinogenesis and certain drug-induced dose-limiting toxicities, the development of potent inhibitors of βGLU in human intestinal microbiota has aroused increased attention over the years. Nevertheless, although our literature survey revealed both natural products and synthetic scaffolds as potential inhibitors of the enzyme, only few of these have found clinical utility, albeit with moderate to poor pharmacokinetic profile. Hence, in this review we present a compendium of exploits in the present millennium directed towards the inhibition of βGLU. The aim is to proffer a platform on which new scaffolds can be modelled for improved βGLU inhibitory potency and the development of new therapeutic agents in consequential.
Collapse
Affiliation(s)
- Paul Awolade
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Nosipho Cele
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Nagaraju Kerru
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Lalitha Gummidi
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Ebenezer Oluwakemi
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Parvesh Singh
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa.
| |
Collapse
|
16
|
Synthesis of oxadiazole-coupled-thiadiazole derivatives as a potent β-glucuronidase inhibitors and their molecular docking study. Bioorg Med Chem 2019; 27:3145-3155. [DOI: 10.1016/j.bmc.2019.05.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 05/16/2019] [Accepted: 05/31/2019] [Indexed: 11/19/2022]
|
17
|
Thakral S, Singh V. 2,4-Dichloro-5-[(N-aryl/alkyl)sulfamoyl]benzoic Acid Derivatives: In Vitro Antidiabetic Activity, Molecular Modeling and In silico ADMET Screening. Med Chem 2019; 15:186-195. [PMID: 30251608 DOI: 10.2174/1573406414666180924164327] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 09/11/2018] [Accepted: 09/11/2018] [Indexed: 01/17/2023]
Abstract
BACKGROUND Postprandial hyperglycemia can be reduced by inhibiting major carbohydrate hydrolyzing enzymes, such as α-glucosidase and α-amylase which is an effective approach in both preventing and treating diabetes. OBJECTIVE The aim of this study was to synthesize a series of 2,4-dichloro-5-[(N-aryl/alkyl)sulfamoyl] benzoic acid derivatives and evaluate α-glucosidase and α-amylase inhibitory activity along with molecular docking and in silico ADMET property analysis. METHOD Chlorosulfonation of 2,4-dichloro benzoic acid followed by reaction with corresponding anilines/amines yielded 2,4-dichloro-5-[(N-aryl/alkyl)sulfamoyl]benzoic acid derivatives. For evaluating their antidiabetic potential α-glucosidase and α-amylase inhibitory assays were carried out. In silico molecular docking studies of these compounds were performed with respect to these enzymes and a computational study was also carried out to predict the drug-likeness and ADMET properties of the title compounds. RESULTS Compound 3c (2,4-dichloro-5-[(2-nitrophenyl)sulfamoyl]benzoic acid) was found to be highly active having 3 fold inhibitory potential against α-amylase and 5 times inhibitory activity against α-glucosidase in comparison to standard drug acarbose. CONCLUSION Most of the synthesized compounds were highly potent or equipotent to standard drug acarbose for inhibitory potential against α-glucosidase and α-amylase enzyme and hence this may indicate their antidiabetic activity. The docking study revealed that these compounds interact with active site of enzyme through hydrogen bonding and different pi interactions.
Collapse
Affiliation(s)
- Samridhi Thakral
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar-125001, India
| | - Vikramjeet Singh
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar-125001, India
| |
Collapse
|
18
|
Zhao C, Rakesh KP, Ravidar L, Fang WY, Qin HL. Pharmaceutical and medicinal significance of sulfur (S VI)-Containing motifs for drug discovery: A critical review. Eur J Med Chem 2019; 162:679-734. [PMID: 30496988 PMCID: PMC7111228 DOI: 10.1016/j.ejmech.2018.11.017] [Citation(s) in RCA: 299] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/17/2018] [Accepted: 11/07/2018] [Indexed: 01/04/2023]
Abstract
Sulfur (SVI) based moieties, especially, the sulfonyl or sulfonamide based analogues have showed a variety of pharmacological properties, and its derivatives propose a high degree of structural diversity that has established useful for the finding of new therapeutic agents. The developments of new less toxic, low cost and highly active sulfonamides containing analogues are hot research topics in medicinal chemistry. Currently, more than 150 FDA approved Sulfur (SVI)-based drugs are available in the market, and they are widely used to treat various types of diseases with therapeutic power. This comprehensive review highlights the recent developments of sulfonyl or sulfonamides based compounds in huge range of therapeutic applications such as antimicrobial, anti-inflammatory, antiviral, anticonvulsant, antitubercular, antidiabetic, antileishmanial, carbonic anhydrase, antimalarial, anticancer and other medicinal agents. We believe that, this review article is useful to inspire new ideas for structural design and developments of less toxic and powerful Sulfur (SVI) based drugs against the numerous death-causing diseases.
Collapse
Affiliation(s)
- Chuang Zhao
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, PR, China
| | - K P Rakesh
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, PR, China.
| | - L Ravidar
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, PR, China
| | - Wan-Yin Fang
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, PR, China
| | - Hua-Li Qin
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, PR, China.
| |
Collapse
|
19
|
Yousuf M, Shaikh NN, Ul-Haq Z, Choudhary MI. Bioinformatics: A rational combine approach used for the identification and in-vitro activity evaluation of potent β-Glucuronidase inhibitors. PLoS One 2018; 13:e0200502. [PMID: 30517092 PMCID: PMC6281186 DOI: 10.1371/journal.pone.0200502] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 06/27/2018] [Indexed: 11/18/2022] Open
Abstract
Identification of hotspot drug-receptor interactions through in-silico prediction methods (Pharmacophore mapping, virtual screening, 3DQSAR, etc), is considered as a key approach in drug designing and development process. In the current design study, advanced in-silico based computational techniques were used for the identification of lead-like molecules against the targeted receptor β-glucuronidase. The binding pattern of a potent inhibitor in the ligand-receptor X-ray co-crystallize complex was used to identify and extract the structure-base Pharmacophore features. Based on these observations; five structure-based pharmacophore models were derived to conduct the virtual screening of ICCBS in-house data-base. Top-ranked identified Hits (33 compounds) were selected to subject for in-vitro biological activity evaluation against β-glucuronidase enzyme; out of them, twenty compounds (61% of screened compounds) evaluated as actives, however eleven compounds were found to have significantly higher inhibitory activity, including compounds 1, 5–8, 10, 12–13, and 17–19 with IC50 values ranging from 1.2 μM to 34.9 μM. Out of the eleven potent inhibitors, seven compounds 1, 5, 6, 7, 8, 13, and 19 were found new, and evaluated first time for the β-glucuronidase inhibitory activity. Compounds 1, 5 and 19 exhibited a highly potent inhibition in uM of β-glucuronidase enzyme with non-cytotoxic behavior against the mouse fibroblast (3T3) cell line. Our combined in-silico and in-vitro results revealed that the binding pattern analysis of the eleven potent inhibitors, showed almost similar non-covalent interactions, as observed in case of our validated pharmacophore model. The obtained results thus demonstrated that the virtual screening minimizes false positives, and provide a template for the identification and development of new and more potent β-glucuronidase inhibitors with non-toxic effects.
Collapse
Affiliation(s)
- Maria Yousuf
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- * E-mail:
| | - Nimra Naveed Shaikh
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - M. Iqbal Choudhary
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
20
|
Bajaj S, Roy PP, Singh J. Synthesis, thymidine phosphorylase inhibitory and computational study of novel 1,3,4-oxadiazole-2-thione derivatives as potential anticancer agents. Comput Biol Chem 2018; 76:151-160. [DOI: 10.1016/j.compbiolchem.2018.05.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/11/2018] [Accepted: 05/13/2018] [Indexed: 11/25/2022]
|
21
|
Ullah H, Rahim F, Taha M, Uddin I, Wadood A, Shah SAA, Farooq RK, Nawaz M, Wahab Z, Khan KM. Synthesis, molecular docking study and in vitro thymidine phosphorylase inhibitory potential of oxadiazole derivatives. Bioorg Chem 2018. [DOI: 10.1016/j.bioorg.2018.02.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
22
|
Recent advance in oxazole-based medicinal chemistry. Eur J Med Chem 2018; 144:444-492. [DOI: 10.1016/j.ejmech.2017.12.044] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/04/2017] [Accepted: 12/13/2017] [Indexed: 01/09/2023]
|