1
|
Korkusuz E, Sert Y, Arslan S, Aydın H, Yıldırım İ, Demir Y, Gülçin İ, Koca İ. Synthesis and biological studies of pyrimidine derivatives targeting metabolic enzymes. Arch Pharm (Weinheim) 2024; 357:e2300634. [PMID: 38772694 DOI: 10.1002/ardp.202300634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/08/2024] [Accepted: 04/04/2024] [Indexed: 05/23/2024]
Abstract
Novel synthesized pyrimidine derivatives were investigated against carbonic anhydrase isoenzymes I and II (hCA I and II), acetylcholinesterase (AChE), butyrylcholinesterase (BChE), α-glycosidase, and aldose reductase (AR) enzymes associated with some common diseases such as epilepsy, glaucoma, Alzheimer's disease, diabetes, and neuropathy. When the results were examined, novel synthesized pyrimidine derivatives were found to have effective inhibition abilities toward the metabolic enzymes. IC50 values and Ki values were calculated for each pyrimidine derivative and compared to positive controls. The synthesized novel pyrimidine derivatives exhibited Ki values in the range of 39.16 ± 7.70-144.62 ± 26.98 nM against hCA I, 18.21 ± 3.66-136.35 ± 21.48 nM toward hCA II, which is associated with different pathological and physiological processes, 33.15 ± 4.85-52.98 ± 19.86 nM on AChE, and 31.96 ± 8.24-69.57 ± 21.27 nM on BChE. Also, Ki values were determined in the range of 17.37 ± 1.11-253.88 ± 39.91 nM against α-glycosidase and 648.82 ± 53.74-1902.58 ± 98.90 nM toward AR enzymes. Within the scope of the study, the inhibition types of the novel synthesized pyrimidine derivatives were evaluated.
Collapse
Affiliation(s)
- Elif Korkusuz
- Mustafa Cikrikcioglu Vocational College, Kayseri University, Kayseri, Turkey
| | - Yusuf Sert
- Department of Physics, Faculty of Art & Sciences, Yozgat Bozok University, Yozgat, Turkey
| | - Seher Arslan
- Department of Chemistry, Erciyes University, Kayseri, Turkey
| | - Hava Aydın
- Department of Chemistry, Erciyes University, Kayseri, Turkey
| | - İsmail Yıldırım
- Department of Chemistry, Erciyes University, Kayseri, Turkey
| | - Yeliz Demir
- Nihat Delibalta Gole Vocational High School, Ardahan University, Ardahan, Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - İrfan Koca
- Department of Chemistry, Faculty of Art & Sciences, Yozgat Bozok University, Yozgat, Turkey
- Science and Technology Application and Research Center, Yozgat Bozok University, Yozgat, Turkey
| |
Collapse
|
2
|
N Hegde V, J S S, B S C, Benedict Leoma M, N K L. Structural, computational and in silico studies of 4-bromo-3-flurobenzonitrile as anti-Alzheimer and anti-Parkinson agents. J Biomol Struct Dyn 2024; 42:4619-4643. [PMID: 37418246 DOI: 10.1080/07391102.2023.2226755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 05/29/2023] [Indexed: 07/08/2023]
Abstract
A novel dimer of the 4-bromo-3-fluorobenzonitrile was crystallized and studied using a spectroscopic method such as the scanning electron microscope method. The computational simulations substantiated the structural analysis findings. The Hirshfeld surface analysis has been performed for visualizing, exploring and quantifying the intra and inter-molecular interactions that stabilize the crystal packing of the compound. The NBO and QTAIM analyses were applied to study the nature and origin of the attractive forces involved in the crystal structure. Further, the pharmacokinetic properties of the compound were evaluated, indicating good brain-blood barrier and central nervous system penetration capability. Hence, in silico studies was carried out to explore the binding pattern of the titled compound against acetylcholinesterase and butyrylcholinesterase, and tumor necrosis factor-alpha converting enzyme proteins using molecular docking and molecular dynamics simulations approach. Further, the titled compound is compared with standard drugs through molecular docking studies. The in silico studies finally predicts that the compound under investigation may act as a good inhibitor for treating Alzheimer's disease and further in vitro and in vivo studies may provide its therapeutic potential.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Shyambhargav J S
- Department of Studies in Physics, University of Mysore, Mysuru, India
| | - Chethan B S
- Department of Studies in Physics, University of Mysore, Mysuru, India
| | | | - Lokanath N K
- Department of Studies in Physics, University of Mysore, Mysuru, India
| |
Collapse
|
3
|
Naderi A, Akıncıoğlu A, Çağan A, Çelikkaleli H, Akıncıoğlu H, Göksu S. Design, synthesis and anticholinergic properties of novel α-benzyl dopamine, tyramine, and phenethylamine derivatives. Bioorg Chem 2024; 144:107146. [PMID: 38262088 DOI: 10.1016/j.bioorg.2024.107146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/25/2024]
Abstract
Due to the important biological properties of dopamine, phenethylamine, and tyramine derivatives in the central nervous system, herein the synthesis of novel α-benzyl dopamine, phenethylamine, and tyramine derivatives is described. The title compounds were synthesized starting from 3-phenylpropanoic acids and methoxybenzenes in six or seven steps. Firstly, 3-(2,3-dimethoxyphenyl)propanoic acid (11) and 3-(3,4-dimethoxyphenyl)propanoic acid (12) were selectively brominated with N-bromosuccinimide (NBS). The Friedel-Crafts acylation of methoxylated benzenes with these brominated acids or commercially available 3-phenylpropanoic acid in polyphosphoric acid gave the desired dihydrochalcones. α-Carboxylation of dihydrochalcones, reduction of benzylic carbonyl groups, hydrolysis of esters to acid derivatives, and the Curtius rearrangement reaction of acids followed by in situ synthesis of carbamates from alkyl isocyanates and hydrogenolysis of the carbamates afforded the title compounds in good total yields. Alzheimer's disease (AD) and Parkinson's disease (PD) are chronic neurodegenerative diseases that become serious over time. However, the exact pathophysiology of both diseases has not been revealed yet. There have been many different approaches to the treatment of patients for many years, especially studies on the cholinergic system cover a wide area. Within the scope of this study, the inhibition effects of dopamine-derived carbamates and amine salts on the cholinergic enzymes AChE and BChE were examined. Dopamine-derived carbamate 24a-i showed inhibition in the micro-nanomolar range; compound 24d showed a Ki value of 26.79 nM against AChE and 3.33 nM against BChE, while another molecule, 24i, showed a Ki range of 27.24 nM and 0.92 nM against AChE and BChE, respectively. AChE and BChE were effectively inhibited by dopamine-derived amine salts 25j-s, with Ki values in the range of 17.70 to 468.57 µM and 0.76-211.23 µM, respectively. Additionally, 24c, 24e and 25m were determined to be 60, 276 and 90 times more selective against BChE than AChE, respectively.
Collapse
Affiliation(s)
- Ali Naderi
- Atatürk University, Faculty of Science, Department of Chemistry, Erzurum, Turkiye
| | - Akın Akıncıoğlu
- Ağrı İbrahim Çeçen University, Central Researching Laboratory, 04100, Ağrı, Turkiye; Vocational School, Ağrı İbrahim Çeçen University, 04100, Ağrı, Turkiye
| | - Ahmet Çağan
- Ağrı İbrahim Çeçen University, Central Researching Laboratory, 04100, Ağrı, Turkiye
| | - Hilal Çelikkaleli
- Atatürk University, Faculty of Science, Department of Chemistry, Erzurum, Turkiye
| | - Hülya Akıncıoğlu
- Ağrı İbrahim Çeçen University, Faculty of Arts and Science, 04100 Ağrı, Turkiye
| | - Süleyman Göksu
- Atatürk University, Faculty of Science, Department of Chemistry, Erzurum, Turkiye.
| |
Collapse
|
4
|
Gök Y, Taslimi P, Şen B, Bal S, Aktaş A, Aygün M, Sadeghi M, Gülçin İ. Design, Synthesis, Characterization, Crystal Structure, In silico Studies, and Inhibitory Properties of the PEPPSI Type Pd(II)NHC Complexes Bearing Chloro/Fluorobenzyl Group. Bioorg Chem 2023; 135:106513. [PMID: 37030104 DOI: 10.1016/j.bioorg.2023.106513] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/26/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
This work contains synthesis, characterization, crystal structure, and biological activity of a new series of the PEPPSI type Pd(II)NHC complexes [(NHC)Pd(II)(3-Cl-py)]. NMR, FTIR, and elemental analysis techniques were used to characterize all (NHC)Pd(II)(3-Cl-py) complexes. Also, molecular and crystal structures of complex 1c were established by single-crystal X-ray diffraction. Regarding the X-ray studies, the palladium(II) atom has a slightly distorted square-planar coordination environment. Additionally, the enzyme inhibitory effect of new (NHC)Pd(II)(3-Cl-py) complexes (1a-1g) was studied. They exhibited highly potent inhibition effect on acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and carbonic anhydrases (hCAs) (Ki values are in the range of 0.08 ± 0.01 to 0.65 ± 0.06 µM, 10.43 ± 0.98 to 22.48 ± 2.01 µM, 6.58 ± 0.30 to 10.88 ± 1.01 µM and 6.34 ± 0.37 to 9.02 ± 0.72 µM for AChE, BChE, hCA I, and hCA II, respectively). Based on the molecular docking, among the seven synthesized complexes, 1c, 1b, 1e, and 1a significantly inhibited AChE, BChE, hCA I, and hCA II enzymes, respectively. The findings highpoint that (NHC)Pd(II)(3-Cl-py) complexes can be considered as possible inhibitors via metabolic enzyme inhibition.
Collapse
|
5
|
Karagecili H, Yılmaz MA, Ertürk A, Kiziltas H, Güven L, Alwasel SH, Gulcin İ. Comprehensive Metabolite Profiling of Berdav Propolis Using LC-MS/MS: Determination of Antioxidant, Anticholinergic, Antiglaucoma, and Antidiabetic Effects. Molecules 2023; 28:1739. [PMID: 36838726 PMCID: PMC9965732 DOI: 10.3390/molecules28041739] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Propolis is a complex natural compound that honeybees obtain from plants and contributes to hive safety. It is rich in phenolic and flavonoid compounds, which contain antioxidant, antimicrobial, and anticancer properties. In this study, the chemical composition and antioxidant activities of propolis were investigated; ABTS•+, DPPH• and DMPD•+ were prepared using radical scavenging antioxidant methods. The phenolic and flavonoid contents of propolis were 53 mg of gallic acid equivalent (GAE)/g and 170.164 mg of quercetin equivalent (QE)/g, respectively. The ferric ion (Fe3+) reduction, CUPRAC and FRAP reduction capacities were also studied. The antioxidant and reducing capacities of propolis were compared with those of butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), α-tocopherol and Trolox reference standards. The half maximal inhibition concentration (IC50) values of propolis for ABTS•+, DPPH• and DMPD•+ scavenging activities were found to be 8.15, 20.55 and 86.64 μg/mL, respectively. Propolis extract demonstrated IC50 values of 3.7, 3.4 and 19.6 μg/mL against α-glycosidase, acetylcholinesterase (AChE) and carbonic anhydrase II (hCA II) enzyme, respectively. These enzymes' inhibition was associated with diabetes, Alzheimer's disease (AD) and glaucoma. The reducing power, antioxidant activity and enzyme inhibition capacity of propolis extract were comparable to those demonstrated by the standards. Twenty-eight phenolic compounds, including acacetin, caffeic acid, p-coumaric acid, naringenin, chrysin, quinic acid, quercetin, and ferulic acid, were determined by LC-MS/MS to be major organic compounds in propolis. The polyphenolic antioxidant-rich content of the ethanol extract of propolis appears to be a natural product that can be used in the treatment of diabetes, AD, glaucoma, epilepsy, and cancerous diseases.
Collapse
Affiliation(s)
- Hasan Karagecili
- Department of Nursing, Faculty of Health Sciences, Siirt University, Siirt 56100, Turkey
| | - Mustafa Abdullah Yılmaz
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Dicle University, Diyarbakır 21280, Turkey
| | - Adem Ertürk
- Department of Pharmacy Services, Hınıs Vocational School, Ataturk University, Erzurum 25600, Turkey
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum 25240, Turkey
| | - Hatice Kiziltas
- Department of Pharmacy Services, Vocational School of Health Services, Van Yuzuncu Yil University, Van 65080, Turkey
| | - Leyla Güven
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Ataturk University, Erzurum 25240, Turkey
| | - Saleh H. Alwasel
- Department of Zoology, College of Science, King Saud University, Riyadh 11362, Saudi Arabia
| | - İlhami Gulcin
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum 25240, Turkey
| |
Collapse
|
6
|
Kısa D, Imamoglu R, Genc N, Taslimi P, Kaya Z, Taskin‐Tok T. HPLC analysis, Phytochemical Content, and Biological Effects of
Centaurea kilae
Against Some Metabolic Enzymes: In Vitro and In Silico Studies. ChemistrySelect 2023. [DOI: 10.1002/slct.202204196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Dursun Kısa
- Department of Molecular Biology and Genetics, Faculty of Science Bartin University 74100 Bartin Turkey
| | - Rizvan Imamoglu
- Department of Molecular Biology and Genetics, Faculty of Science Bartin University 74100 Bartin Turkey
| | - Nusret Genc
- Department of Chemistry, Faculty of Science and Arts Gaziosmanpasa University Tokat Turkey
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science Bartin University 74100 Bartin Turkey
| | - Zafer Kaya
- Department of Forest Engineering, Faculty of Forestry Bartin University Turkey
| | - Tugba Taskin‐Tok
- Department of Chemistry, Faculty of Arts and Sciences Gaziantep University 27310 – Gaziantep Turkey
- Department of Bioinformatics and Computational Biology, Institute of Health Sciences Gaziantep University 27310 – Gaziantep Turkey
| |
Collapse
|
7
|
Karaca EÖ, Bingöl Z, Gürbüz N, Özdemir İ, Gülçin İ. Vinyl functionalized 5,6-dimethylbenzimidazolium salts: Synthesis and biological activities. J Biochem Mol Toxicol 2023; 37:e23255. [PMID: 36424355 DOI: 10.1002/jbt.23255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 09/23/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022]
Abstract
A series of vinyl functionalized 5,6-dimethylbenzimidazolium salts are synthesized. All compounds were fully characterized by elemental analyses, MS, 1 H-NMR, 13 C-NMR, and IR spectroscopy techniques. Enzyme inhibition is a very active area of research in drug design and development. In this study, the synthesized novel benzimidazolium salts were evaluated toward the human erythrocyte carbonic anhydrase I (hCA I), and II (hCA II) isoenzymes, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. They demonstrated highly potent inhibition ability against hCA I with Ki values of 484.8 ± 62.6-1389.7 ± 243.2 nM, hCA II with Ki values of 298.9 ± 55.7-926.1 ± 330.0 nM, α-glycosidase with Ki values of 170.3 ± 27-760.1 ± 269 μM, AChE with Ki values of 27.1 ± 3-77.6 ± 1.7 nM, and BChE with Ki values of 21.0 ± 5-61.3 ± 15 nM. As a result, novel vinyl functionalized 5,6-dimethylbenzimidazolium salts (1a-g) exhibited effective inhibition profiles toward studied metabolic enzymes. Therefore, we believe that these results may contribute to the development of new drugs particularly to treat some global disorders including glaucoma, Alzheimer's disease, and diabetes.
Collapse
Affiliation(s)
- Emine Ö Karaca
- Catalysis Research and Application Center, İnönü University, Malatya, Turkey.,Drug Application and Research Center, İnönü University, Malatya, Turkey
| | - Zeynebe Bingöl
- Tokat Vocational School of Health Services, Department of Medical Services and Techniques, Gaziosmanpasa University, Tokat, Turkey
| | - Nevin Gürbüz
- Catalysis Research and Application Center, İnönü University, Malatya, Turkey.,Drug Application and Research Center, İnönü University, Malatya, Turkey.,Department of Chemistry, Faculty of Science and Art, İnönü University, Malatya, Turkey
| | - İsmail Özdemir
- Catalysis Research and Application Center, İnönü University, Malatya, Turkey.,Drug Application and Research Center, İnönü University, Malatya, Turkey.,Department of Chemistry, Faculty of Science and Art, İnönü University, Malatya, Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Sciences, Ataturk University, Erzurum, Turkey
| |
Collapse
|
8
|
Gheshlaghi SZ, Ebrahimi A, Faghih Z. A detailed theoretical exploration on the THR-β binding affinities and antioxidant activity of some halogenated bisphenols. J Biomol Struct Dyn 2022; 40:10835-10851. [PMID: 34278964 DOI: 10.1080/07391102.2021.1950568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Natural halogenated phenolic compounds are unique bioactive structures which share features and physicochemical properties with thyroid hormones, who are essential regulators of neurological development and metabolism processes. Also, these structures can be used as natural antioxidants to minimize the diseases related to oxidative stress. In this work, the binding affinity of 32 natural and synthetic halogenated bisphenols were investigated on thyroid hormone receptor-β (THR-β) using the molecular docking, MM/GBSA, molecular dynamics, and a rigorous three-layer ONIOM ((M06-2X/6-31G*:PM6:AMBER) calculation. The desirable potency is observed for binding of selected compounds to THR-β. The Met313, Asn331, and His435 are the main interacting residues in the binding cavity which involved in the hydrogen and halogen bond interactions with the ligands. The most potent candidate on binding to the active site of THR-β is presented with respect to the results of mentioned calculations. Moreover, the antioxidant activity of compounds has been investigated using the quantum mechanical calculations. The electrostatic potential surfaces illustrate well the antioxidant capacity of compounds. The halogen substituents increase the antioxidant activity of the most stable conformers. The position and number of OH groups are crucial factors which affect the activity, whereas two adjacent hydroxyl groups enhance the antioxidant activity of selected compounds.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Saman Zare Gheshlaghi
- Department of Chemistry, Computational Quantum Chemistry Laboratory, University of Sistan and Baluchestan, Zahedan, Iran
| | - Ali Ebrahimi
- Department of Chemistry, Computational Quantum Chemistry Laboratory, University of Sistan and Baluchestan, Zahedan, Iran
| | - Zeinab Faghih
- Pharmaceutical Sciences Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
9
|
Synthesis of Novel Bromophenol with Diaryl Methanes—Determination of Their Inhibition Effects on Carbonic Anhydrase and Acetylcholinesterase. Molecules 2022; 27:molecules27217426. [DOI: 10.3390/molecules27217426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/18/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
In this work, nine new bromophenol derivatives were designed and synthesized. The alkylation reactions of (2-bromo-4,5-dimethoxyphenyl)methanol (7) with substituted benzenes 8–12 produced new diaryl methanes 13–17. Targeted bromophenol derivatives 18–21 were synthesized via the O-Me demethylation of diaryl methanes with BBr3. Moreover, the synthesized bromophenol compounds were tested with some metabolic enzymes such as acetylcholinesterase (AChE), carbonic anhydrase I (CA I), and II (CA II) isoenzymes. The novel synthesized bromophenol compounds showed Ki values that ranged from 2.53 ± 0.25 to 25.67 ± 4.58 nM against hCA I, from 1.63 ± 0.11 to 15.05 ± 1.07 nM against hCA II, and from 6.54 ± 1.03 to 24.86 ± 5.30 nM against AChE. The studied compounds in this work exhibited effective hCA isoenzyme and AChE enzyme inhibition effects. The results show that they can be used for the treatment of glaucoma, epilepsy, Parkinson’s as well as Alzheimer’s disease (AD) after some imperative pharmacological studies that would reveal their drug potential.
Collapse
|
10
|
Kiziltas H, Goren AC, Alwasel SH, Gulcin İ. Sahlep ( Dactylorhiza osmanica): Phytochemical Analyses by LC-HRMS, Molecular Docking, Antioxidant Activity, and Enzyme Inhibition Profiles. Molecules 2022; 27:6907. [PMID: 36296499 PMCID: PMC9611915 DOI: 10.3390/molecules27206907] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Studies have shown an inverse correlation among age-related illnesses like coronary heart disease and cancer and intake of fruit and vegetable. Given the probable health benefits of natural antioxidants from plants, research on them has increased. Dactylorhiza osmanica is consumed as a food and traditional medicine plant in some regions of Turkey, so evaluation of the biological ability of this species is important. In this study, the amount of phenolic content (LC-HRMS), antioxidant activities and enzyme inhibitory properties of an endemic plant, D. osmanica, were investigated. The antioxidant capacities of an ethanol extract of D. osmanica aerial parts (EDOA) and roots (EDOR) were evaluated with various antioxidant methods. Additionally, the enzyme inhibitory effects of EDOA and EDOR were examined against acetylcholinesterase (AChE), α-glycosidase, and α-amylase enzymes, which are associated with common and global Alzheimer's disease and diabetes mellitus. The IC50 values of EDOA against the enzymes were found to be 1.809, 1.098, and 0.726 mg/mL, respectively; and the IC50 values of EDOR against the enzymes were found to be 2.466, 0.442, and 0.415 mg/mL, respectively. Additionally, LC-HRMS analyses revealed p-Coumaric acid as the most plentiful phenolic in both EDOA (541.49 mg/g) and EDOR (559.22 mg/g). Furthermore, the molecular docking interaction of p-coumaric acid, quercitrin, and vanillic acid, which are the most plentiful phenolic compounds in the extracts, with AChE, α-glucosidase, and α-amylase, were evaluated using AutoDock Vina software. The rich phenolic content and the effective antioxidant ability and enzyme inhibition potentials of EDOA and EDOR may support the plant's widespread food and traditional medicinal uses.
Collapse
Affiliation(s)
- Hatice Kiziltas
- Department of Pharmacy Services, Vocational School of Health Services, Van Yuzuncu Yil University, Van 65080, Turkey
| | - Ahmet Ceyhan Goren
- Department Chemistry, Faculty of Sciences, Gebze Technical University, Kocaeli 41400, Turkey
| | - Saleh H. Alwasel
- Department of Zoology, College of Science, King Saud University, Riyadh 11362, Saudi Arabia
| | - İlhami Gulcin
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum 25240, Turkey
| |
Collapse
|
11
|
Anil DA, Polat MF, Saglamtas R, Tarikogullari AH, Alagoz MA, Gulcin I, Algul O, Burmaoglu S. Exploring enzyme inhibition profiles of novel halogenated chalcone derivatives on some metabolic enzymes: Synthesis, characterization and molecular modeling studies. Comput Biol Chem 2022; 100:107748. [DOI: 10.1016/j.compbiolchem.2022.107748] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/19/2022] [Accepted: 07/26/2022] [Indexed: 12/27/2022]
|
12
|
de Siqueira FC, Barbosa-Carvalho APP, Costa Leitão DDST, Furtado KF, Chagas-Junior GCA, Lopes AS, Chisté RC. Scavenging Capacity of Extracts of Arrabidaea chica Leaves from the Amazonia against ROS and RNS of Physiological and Food Relevance. Antioxidants (Basel) 2022; 11:1909. [PMID: 36290636 PMCID: PMC9598737 DOI: 10.3390/antiox11101909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/21/2022] Open
Abstract
Arrabidaea chica, a medicinal plant found in the Amazon rainforest, is a promising source of bioactive compounds which can be used to inhibit oxidative damage in both food and biological systems. In this study, the in vitro scavenging capacity of characterized extracts of A. chica leaves, obtained with green solvents of different polarities [water, ethanol, and ethanol/water (1:1, v/v)] through ultrasound-assisted extraction, was investigated against reactive oxygen (ROS) and nitrogen (RNS) species, namely superoxide anion radicals (O2•-), hydrogen peroxide (H2O2), hypochlorous acid (HOCl), and peroxynitrite anion (ONOO-). The extract obtained with ethanol-water presented about three times more phenolic compound contents (11.8 mg/g) than ethanol and water extracts (3.8 and 3.6 mg/g, respectively), with scutellarein being the major compound (6.76 mg/g). All extracts showed high scavenging efficiency against the tested ROS and RNS, in a concentration-dependent manner with low IC50 values, and the ethanol-water extract was the most effective one. In addition, all the extracts were five times more efficient against ROO• than Trolox. Therefore, the extracts from A. chica leaves exhibited high promising antioxidant potential to be used against oxidative damage in food and physiological systems.
Collapse
Affiliation(s)
- Francilia Campos de Siqueira
- Graduate Program of Food Science and Technology, Institute of Technology, Federal University of Pará (UFPA), Belém 66075-110, Brazil
| | | | | | - Kalebe Ferreira Furtado
- School of Biotechnology, Institute of Biological Sciences (ICB), Federal University of Pará (UFPA), Belém 66075-110, Brazil
| | | | - Alessandra Santos Lopes
- Graduate Program of Food Science and Technology, Institute of Technology, Federal University of Pará (UFPA), Belém 66075-110, Brazil
- School of Food Engineering, Institute of Technology, Federal University of Pará (UFPA), Belém 66075-110, Brazil
| | - Renan Campos Chisté
- Graduate Program of Food Science and Technology, Institute of Technology, Federal University of Pará (UFPA), Belém 66075-110, Brazil
- School of Food Engineering, Institute of Technology, Federal University of Pará (UFPA), Belém 66075-110, Brazil
- Renan Campos Chisté, Faculdade de Engenharia de Alimentos (FEA), Instituto de Tecnologia (ITEC), Federal University of Pará (UFPA), Rua Augusto Corrêa, 01-Guamá, Belém 66075-110, Brazil
| |
Collapse
|
13
|
Topal M, Gulcin İ. Evaluation of the in vitro antioxidant, antidiabetic and anticholinergic properties of rosmarinic acid from rosemary (Rosmarinus officinalis L.). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
14
|
Özaslan MS, Sağlamtaş R, Demir Y, Genç Y, Saraçoğlu İ, Gülçin İ. Isolation of Some Phenolic Compounds from Plantago subulata L. and Determination of Their Antidiabetic, Anticholinesterase, Antiepileptic and Antioxidant Activity. Chem Biodivers 2022; 19:e202200280. [PMID: 35796520 DOI: 10.1002/cbdv.202200280] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/27/2022] [Indexed: 02/01/2023]
Abstract
In the current study, some phenolic compounds, including acteoside, isoacteoside, echinacoside, and arenarioside purified and characterized from Plantago subulata. These compounds were tested for its antioxidant potential, including Fe3+ and Cu2+ reductive ability and Fe2+ chelating effects. The inhibitory effects of isolated phenolic compounds were tested towards human carbonic anhydrase I and II isoenzymes (hCA I and hCA II), butyrylcholinesterase (BChE) acetylcholinesterase (AChE), aldose reductase (AR) and α-glycosidase (α-gly). Ki values were found these compounds in range of 0.24±0.05-1.38±0.34 μM against hCA I, 0.194±0.018-1.03±0.06 μM against hCA II, 0.043±0.01-0.154±0.02 μM against AChE, 3.92±1.08-11.93±4.45 μM against BChE, 0.082±0.0008-1.68±0.42 μM against AR, and 6.93±2.74-17.17±6.70 μM against α-glycosidase. As a result, isolated compounds displayed inhibition effects against studied all metabolic enzymes. They are promising candidates for treating disorders like Alzheimer's disease, diabetes mellitus, glaucoma, leukemia, and epilepsy.
Collapse
Affiliation(s)
- Muhammet Serhat Özaslan
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, 75700, Turkey
| | - Rüya Sağlamtaş
- Central Research & Application Laboratory, Agri Ibrahim Cecen University, Agri, Turkey.,Medical Services and Techniques Department, Vocational School of Health Services, Agri Ibrahim Cecen University, Agri, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, 75700, Turkey
| | - Yasin Genç
- Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - İclal Saraçoğlu
- Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| |
Collapse
|
15
|
Isolation and Characterization of Flavonoids from Fermented Dandelion (Taraxacum mongolicum Hand.-Mazz.), and Assessment of Its Antioxidant Actions In Vitro and In Vivo. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8070306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Flavonoids are famous for their diverse sources, strong biological activity, and low toxicity and could be used as a natural antioxidant in animal husbandry. In this study, the purification process and antioxidant activity of flavonoids from fermented dandelion were investigated. The adsorption and desorption characterizations of AB-8 macroporous resin for flavonoids from fermented dandelion (FD) were determined and purification parameters were optimized. Qualitative analysis using UPLC-MS/MS analysis was explored to identify the components of the purified flavonoids of FD (PFDF). The antioxidant activity of PFDF in vitro and in vivo was analyzed. The optimum purification parameters were as follows: a sample concentration of 2 mg/mL, 120 mL of the sample volume, a pH of 2.0, and eluted with 90 mL of 70% ethanol (pH 5). After purification, the concentration of the flavonoids in PFDF was 356.08 mg/mL. By comparison with reference standards or the literature data, 135 kinds of flavonoids in PFDF were identified. Furthermore, PFDF had a strong reducing power and scavenging ability against 8-hydroxy radical and DPPH radical. PFDF can effectively reduce the oxidative stress of zebrafish embryos and IPCE-J2 cells by modulating antioxidant enzyme activities. In summary, the purified flavonoids from fermented dandelion have good antioxidant activity and display superior potential as a natural antioxidant in animal husbandry.
Collapse
|
16
|
Assessment of antimicrobial and enzymes inhibition effects of Allium kastambulense with in silico studies: Analysis of its phenolic compounds and flavonoid contents. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
17
|
Onder S, Schopfer LM, Jiang W, Tacal O, Lockridge O. Butyrylcholinesterase in SH-SY5Y human neuroblastoma cells. Neurotoxicology 2022; 90:1-9. [PMID: 35189179 PMCID: PMC9124689 DOI: 10.1016/j.neuro.2022.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 10/19/2022]
Abstract
Cultured SH-SY5Y human neuroblastoma cells are used in neurotoxicity assays. These cells express markers of the cholinergic and dopaminergic systems. Acetylcholinesterase (AChE) activity has been reported in these cells. Neurotoxic organophosphate compounds that inhibit AChE, also inhibit butyrylcholinesterase (BChE). We confirmed the presence of AChE in the cell lysate by activity assays, Western blot, and liquid chromatography-tandem mass spectrometry (LC-MS/MS) of immunopurified AChE. A nondenaturing gel stained for AChE activity identified the catalytically active AChE in SH-SY5Y cells as the unstable monomer. We also identified immature BChE in the cell lysate. The concentration of active BChE protein was similar to that of active AChE protein. The rate of substrate hydrolysis by AChE was 10-fold higher than substrate hydrolysis by BChE. The higher rate was due to the 10-fold higher specific activity of AChE over BChE (5000 units/mg for AChE; 500 units/mg for BChE). Neither cholinesterase was secreted. Tryptic peptides of immunopurified AChE and BChE were identified by LC-MS/MS on an Orbitrap Lumos Fusion mass spectrometer. The unfolded protein chaperone, binding immunoglobulin protein BiP/GRP78, was identified in the mass spectral data from all cholinesterase samples, suggesting that BiP was co-extracted with cholinesterase. This suggests that the cytoplasmic cholinesterases are immature forms of AChE and BChE that bind to BiP. It was concluded that SH-SY5Y cells express active AChE and active BChE, but the proteins do not mature to glycosylated tetramers.
Collapse
|
18
|
Yiğit M, Demir Y, Arınç A, Yiğit B, Koca M, Özdemir İ, Gulcin I. Synthesis and Enzyme Inhibitory Properties of Quinoxaline Bridged Bis(imidazolium) Salts. HETEROCYCLES 2022. [DOI: 10.3987/com-22-14668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Huseynova M, Farzaliyev V, Medjidov A, Aliyeva M, Özdemir M, Taslimi P, Zorlu Y, Yalçın B, Şahin O. Synthesis, biological and theoretical properties of crystal zinc complex with thiosemicarbazone of glyoxylic acid. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
20
|
Yavari MA, Taslimi P, Bayrak C, Taskin‐Tok T, Menzek A. 1,
3‐dipolar
cycloaddition reactions of the compound obtaining from
cyclopentadiene‐PTAD
and biological activities of adducts formed selectively. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Mirali Akbar Yavari
- Department of Chemistry, Faculty of Science Ataturk University Erzurum Turkey
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science Bartin University Bartin Turkey
- Department of Chemistry, Faculty of Science Istinye University Istanbul Turkey
| | - Cetin Bayrak
- Department of Chemistry, Faculty of Science Ataturk University Erzurum Turkey
- Dogubayazit Ahmed‐i Hani Vocational School Agri Ibrahim Cecen University Agri Turkey
| | - Tugba Taskin‐Tok
- Department of Chemistry, Faculty of Arts and Sciences Gaziantep University Gaziantep Turkey
- Department of Bioinformatics and Computational Biology, Institute of Health Sciences Gaziantep University Gaziantep Turkey
| | - Abdullah Menzek
- Department of Chemistry, Faculty of Science Ataturk University Erzurum Turkey
| |
Collapse
|
21
|
Wan MC, Qin W, Lei C, Li QH, Meng M, Fang M, Song W, Chen JH, Tay F, Niu LN. Biomaterials from the sea: Future building blocks for biomedical applications. Bioact Mater 2021; 6:4255-4285. [PMID: 33997505 PMCID: PMC8102716 DOI: 10.1016/j.bioactmat.2021.04.028] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 02/08/2023] Open
Abstract
Marine resources have tremendous potential for developing high-value biomaterials. The last decade has seen an increasing number of biomaterials that originate from marine organisms. This field is rapidly evolving. Marine biomaterials experience several periods of discovery and development ranging from coralline bone graft to polysaccharide-based biomaterials. The latter are represented by chitin and chitosan, marine-derived collagen, and composites of different organisms of marine origin. The diversity of marine natural products, their properties and applications are discussed thoroughly in the present review. These materials are easily available and possess excellent biocompatibility, biodegradability and potent bioactive characteristics. Important applications of marine biomaterials include medical applications, antimicrobial agents, drug delivery agents, anticoagulants, rehabilitation of diseases such as cardiovascular diseases, bone diseases and diabetes, as well as comestible, cosmetic and industrial applications.
Collapse
Affiliation(s)
- Mei-chen Wan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Wen Qin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Chen Lei
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Qi-hong Li
- Department of Stomatology, The Fifth Medical Centre, Chinese PLA General Hospital (Former 307th Hospital of the PLA), Dongda Street, Beijing, 100071, PR China
| | - Meng Meng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Ming Fang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Wen Song
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Ji-hua Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Franklin Tay
- College of Graduate Studies, Augusta University, Augusta, GA, 30912, USA
| | - Li-na Niu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453000, PR China
| |
Collapse
|
22
|
Biological evaluation and molecular docking studies of 4-aminobenzohydrazide derivatives as cholinesterase inhibitors. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130918] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Novel hypervalent iodine catalyzed synthesis of α-sulfonoxy ketones: Biological activity and molecular docking studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130492] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Mermer A. The Importance of Rhodanine Scaffold in Medicinal Chemistry: A Comprehensive Overview. Mini Rev Med Chem 2021; 21:738-789. [PMID: 33334286 DOI: 10.2174/1389557521666201217144954] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/21/2020] [Accepted: 10/07/2020] [Indexed: 11/22/2022]
Abstract
After the clinical use of epalrestat that contains a rhodanine ring, in type II diabetes mellitus and diabetic complications, rhodanin-based compounds have become an important class of heterocyclic in the field of medicinal chemistry. Various modifications to the rhodanine ring have led to a broad spectrum of biological activity of these compounds. Synthesis of rhodanine derivatives, depended on advenced throughput scanning hits, frequently causes potent and selective modulators of targeted enzymes or receptors, which apply their pharmacological activities through different mechanisms of action. Rhodanine-based compounds will likely stay a privileged scaffold in drug discovery because of different probability of chemical modifications of the rhodanine ring. We have, therefore reviewed their biological activities and structure activity relationship.
Collapse
Affiliation(s)
- Arif Mermer
- Department of Biotechnology, Hamidiye Health Science Institute, University of Health Sciences Turkey, 34668, İstanbul, Turkey
| |
Collapse
|
25
|
Riaz MT, Yaqub M, Shafiq Z, Ashraf A, Khalid M, Taslimi P, Tas R, Tuzun B, Gulçin İ. Synthesis, biological activity and docking calculations of bis-naphthoquinone derivatives from Lawsone. Bioorg Chem 2021; 114:105069. [PMID: 34134033 DOI: 10.1016/j.bioorg.2021.105069] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/31/2021] [Accepted: 06/05/2021] [Indexed: 12/14/2022]
Abstract
Some metabolic enzyme inhibitors can be used as Multi-target-Directed-Ligands (MTDL) in Medicinal chemistry therefore, synthesis and determination of alternative inhibitors are essential. In this study, novel bis-napthoquinone derivatives (5a-o) were synthesized through a multi-component cascade reaction of two molecules of 2-hydroxy-1,4-naphthoquinone with an aromatic aldehyde in basic media using triethylamine as a catalyst. This novel heterocyclic derivatives (5a-o) are applied to inhibit the carbonic anhydrase (hCA I and hCA II) isoform in low levels of nano molecules with Ki values exist between 4.62 ± 1.01 to 70.45 ± 9.03 nM for hCA I and for hCA II which is physiologically dominant Kis values are in the range of 5.61 ± 1.04 to 73.26 ± 10.25 nM. Further these novel derivatives (5a-o) efficiently inhibit AChE with Ki values in the range of 0.13 ± 0.02 to 3.16 ± 0.56 nM. The compounds are also applied for BChE with Ki values varying between 0.50 ± 0.10 to 9.23 ± 1.15 nM. For α-glycosidase, the most efficient Ki values of 5e and 5f are 76.14 ± 9.60 and 95.27 ± 12.55 nM respectively. Finally, molecular docking calculations against enzymes (acetylcholinesterase, butyrylcholinesterase, and the human carbonic anhydrase I and II) are compared using biological activities of heterocyclic derivatives. After these calculations, an ADME/T analysis is performed to study the future medicinal use of heterocyclic derivatives from lawsone.
Collapse
Affiliation(s)
- Muhammad Tariq Riaz
- Institute of Chemical Sciences, Organic Chemistry Division, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Yaqub
- Institute of Chemical Sciences, Organic Chemistry Division, Bahauddin Zakariya University, Multan 60800, Pakistan.
| | - Zahid Shafiq
- Institute of Chemical Sciences, Organic Chemistry Division, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Abida Ashraf
- Institute of Chemical Sciences, Organic Chemistry Division, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Khalid
- Department of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, 74100 Bartin, Turkey; Department of Chemistry, Faculty of Science, Istinye University, Istanbul, Turkey
| | - Recep Tas
- Department of Biotechnology, Faculty of Science, Bartin University, 74100 Bartin, Turkey
| | - Burak Tuzun
- Department of Chemistry, Faculty of Science, Cumhuriyet University, 58140 Sivas, Turkey
| | - İlhami Gulçin
- Department of Chemistry, Faculty of Science, Ataturk University, 25240 Erzurum, Turkey
| |
Collapse
|
26
|
Naturally occurring ureidobromophenols with potent antioxidant activities from the marine red alga Rhodomela confervoides. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Hawas UW, Abou El-Kassem LT, Al-Farawati R, Shaher FM. Halo-phenolic metabolites and their in vitro antioxidant and cytotoxic activities from the Red Sea alga Avrainvillea amadelpha. ACTA ACUST UNITED AC 2021; 76:213-218. [PMID: 33544553 DOI: 10.1515/znc-2020-0221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 01/10/2021] [Indexed: 11/15/2022]
Abstract
From the green alga Avrainvillea amadelpha, two new naturally halo-benzaldehyde derivatives were isolated by various chromatographic methods along with 10 known metabolites of bromophenols, sulfonoglycolipid, and steroids. Based on the 1D and 2D NMR spectra as well as on MS data, the structures of the new compounds were identified as 5-bromo-2-(3-bromo-4-hydroxybenzyl)-3,4-dihydroxybenzaldehyde named avrainvilleal (1), and 3-iodo-4-hydroxy-benzaldehyde (2). Using SRB assay, both compounds showed mild and weak cytotoxic activity against HeLa and MCF-7 cancer cell lines, compared to the good activity of their extract (IC50 values 3.1 and 4.3 μg/mL, respectively). However, avrainvilleal (1) displayed an effective scavenged DPPH radical activity with IC50 value 3.5 μM, compared to the antioxidant quercetin with IC50 value 1.5 μM.
Collapse
Affiliation(s)
- Usama W Hawas
- Marine Chemistry Department, Faculty of Marine Sciences, King Abdulaziz University, Jeddah21589, Kingdom of Saudi Arabia
- Chemistry Department, Faculty of Science & Arts in Rabigh, King Abdulaziz University, Rabigh21911, Kingdom of Saudi Arabia
| | - Lamia T Abou El-Kassem
- Chemistry Department, Faculty of Science & Arts in Rabigh, King Abdulaziz University, Rabigh21911, Kingdom of Saudi Arabia
| | - Radwan Al-Farawati
- Marine Chemistry Department, Faculty of Marine Sciences, King Abdulaziz University, Jeddah21589, Kingdom of Saudi Arabia
| | - Fekri M Shaher
- Marine Chemistry Department, Faculty of Marine Sciences, King Abdulaziz University, Jeddah21589, Kingdom of Saudi Arabia
| |
Collapse
|
28
|
Xing H. Citrus aurantifulia
extract as a capping agent to biosynthesis of gold nanoparticles: Characterization and evaluation of cytotoxicity, antioxidant, antidiabetic, anticholinergics, and anti‐bladder cancer activity. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Haixia Xing
- Department of Oncology, Pharmacy Zhumadian Central Hospital Zhumadian China
| |
Collapse
|
29
|
Cabral EM, Oliveira M, Mondala JRM, Curtin J, Tiwari BK, Garcia-Vaquero M. Antimicrobials from Seaweeds for Food Applications. Mar Drugs 2021; 19:md19040211. [PMID: 33920329 PMCID: PMC8070350 DOI: 10.3390/md19040211] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/28/2022] Open
Abstract
The exponential growth of emerging multidrug-resistant microorganisms, including foodborne pathogens affecting the shelf-life and quality of foods, has recently increased the needs of the food industry to search for novel, natural and eco-friendly antimicrobial agents. Macroalgae are a bio-diverse group distributed worldwide, known to produce multiple compounds of diverse chemical nature, different to those produced by terrestrial plants. These novel compounds have shown promising health benefits when incorporated into foods, including antimicrobial properties. This review aims to provide an overview of the general methods and novel compounds with antimicrobial properties recently isolated and characterized from macroalgae, emphasizing the molecular pathways of their antimicrobial mechanisms of action. The current scientific evidence on the use of macroalgae or macroalgal extracts to increase the shelf-life of foods and prevent the development of foodborne pathogens in real food products and their influence on the sensory attributes of multiple foods (i.e., meat, dairy, beverages, fish and bakery products) will also be discussed, together with the main challenges and future trends of the use of marine natural products as antimicrobials.
Collapse
Affiliation(s)
- Eduarda M. Cabral
- Teagasc, Food Research Centre, Ashtown, 15 Dublin, Ireland; (E.M.C.); (B.K.T.)
| | - Márcia Oliveira
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, University of León, 24071 León, Spain;
| | - Julie R. M. Mondala
- School of Food Science & Environmental Health, College of Sciences & Health, Technological University Dublin-City Campus, 7 Dublin, Ireland; (J.R.M.M.); (J.C.)
| | - James Curtin
- School of Food Science & Environmental Health, College of Sciences & Health, Technological University Dublin-City Campus, 7 Dublin, Ireland; (J.R.M.M.); (J.C.)
| | - Brijesh K. Tiwari
- Teagasc, Food Research Centre, Ashtown, 15 Dublin, Ireland; (E.M.C.); (B.K.T.)
| | - Marco Garcia-Vaquero
- School of Agriculture and Food Science, University College Dublin, Belfield, 4 Dublin, Ireland
- Correspondence:
| |
Collapse
|
30
|
Sertçelik M, Öztürkkan Özbek FE, Taslimi P, Necefoglu H, Hökelek T. Supramolecular complexes of Ni (II) and Co (II) 4‐aminobenzoate with 3‐cyanopyridine: Synthesis, spectroscopic characterization, crystal structure, and enzyme inhibitory properties. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Mustafa Sertçelik
- Department of Chemical Engineering, Faculty of Engineering and Architecture Kafkas University Kars 36300 Turkey
| | - Füreya Elif Öztürkkan Özbek
- Department of Chemical Engineering, Faculty of Engineering and Architecture Kafkas University Kars 36300 Turkey
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science Bartin University Bartin 74100 Turkey
| | - Hacali Necefoglu
- Department of Chemistry, Faculty of Sciences and Arts Kafkas University Kars 36300 Turkey
- International Scientific Research Centre Baku State University Baku 1148 Azerbaijan
| | - Tuncer Hökelek
- Department of Physics Hacettepe University 06800 Beytepe Ankara Turkey
| |
Collapse
|
31
|
Bal S, Demirci Ö, Şen B, Taslimi P, Aktaş A, Gök Y, Aygün M, Gülçin İ. Synthesis, characterization, crystal structure, α-glycosidase, and acetylcholinesterase inhibitory properties of 1,3-disubstituted benzimidazolium salts. Arch Pharm (Weinheim) 2021; 354:e2000422. [PMID: 33427318 DOI: 10.1002/ardp.202000422] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 10/22/2022]
Abstract
Chloro-/fluorobenzyl-substituted benzimidazolium salts were synthesized from the reaction of 4-fluorobenzyl/2-chloro-4-fluorobenzyl-substituted benzimidazole and chlorinated aromatic hydrocarbons. They were characterized using various spectroscopic techniques (Fourier-transform infrared and nuclear magnetic resonance) and elemental analysis. In addition, the crystal structures of the complexes 1a -d and 2b were determined by single-crystal X-ray diffraction methods. These compounds were crystallized in the triclinic crystal system with a P-1 space group. The crystal packing of all complexes is dominated by O-H⋯Cl hydrogen bonds, which link the water molecules and chloride anions, forming a chloride-water tetrameric cluster. These synthesized salts were found to be effective inhibitors for α-glycosidase and acetylcholinesterase (AChE), with Ki values ranging from 45.77 ± 6.83 to 102.61 ± 11.56 µM for α-glycosidase and 0.94 ± 0.14 to 10.24 ± 1.58 µM for AChE. AChE converts acetylcholine into choline and acetic acid, thus causing the return of a cholinergic neuron to its resting state. Discovering AChE and α-glycosidase inhibitors is one of the important ways to develop new drugs for the treatment of Alzheimer's disease and diabetes.
Collapse
Affiliation(s)
- Selma Bal
- Department of Chemistry, Faculty of Science and Arts, University of Kahramanmaraş Sütçü Imam, Kahramanmaraş, Turkey
| | - Özlem Demirci
- Department of Chemistry, Faculty of Science and Arts, Inonu University, Malatya, Turkey
| | - Betül Şen
- Department of Physics, Faculty of Science, Dokuz Eylül University, İzmir, Turkey
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Turkey
| | - Aydın Aktaş
- Department of Chemistry, Faculty of Science and Arts, Inonu University, Malatya, Turkey.,Vocational School of Health Service, Faculty of Science, Inonu University, Malatya, Turkey
| | - Yetkin Gök
- Department of Chemistry, Faculty of Science and Arts, Inonu University, Malatya, Turkey
| | - Muhittin Aygün
- Department of Physics, Faculty of Science, Dokuz Eylül University, İzmir, Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| |
Collapse
|
32
|
Synthesis, characterization and bioactivities of dative donor ligand N-heterocyclic carbene (NHC) precursors and their Ag(I)NHC coordination compounds. Polyhedron 2021. [DOI: 10.1016/j.poly.2020.114866] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
Sepehri N, Mohammadi-Khanaposhtani M, Asemanipoor N, Hosseini S, Biglar M, Larijani B, Mahdavi M, Hamedifar H, Taslimi P, Sadeghian N, Norizadehtazehkand M, Gulcin I. Novel quinazolin-sulfonamid derivatives: synthesis, characterization, biological evaluation, and molecular docking studies. J Biomol Struct Dyn 2020; 40:3359-3370. [PMID: 33222620 DOI: 10.1080/07391102.2020.1847193] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In the design of novel drugs, the formation of hybrid molecules via the combination of several pharmacophores can give rise to compounds with interesting biochemical profiles. A series of novel quinazolin-sulfonamid derivatives (9a-m) were synthesized, characterized and evaluated for their in vitro antidiabetic, anticholinergics, and antiepileptic activity. These synthesized novel quinazolin-sulfonamid derivatives (9a-m) were found to be effective inhibitor molecules for the α-glycosidase, human carbonic anhydrase I and II (hCA I and hCA II), butyrylcholinesterase (BChE) and acetylcholinesterase (AChE) enzyme, with Ki values in the range of 100.62 ± 13.68-327.94 ± 58.21 nM for α-glycosidase, 1.03 ± 0.11-14.87 ± 2.63 nM for hCA I, 1.83 ± 0.24-15.86 ± 2.57 nM for hCA II, 30.12 ± 3.81-102.16 ± 13.87 nM for BChE, and 26.16 ± 3.63-88.52 ± 20.11 nM for AChE, respectively. In the last step, molecular docking calculations were made to compare biological activities of molecules against enzymes which are achethylcholinesterase, butyrylcholinesterase and α-glycosidase.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nima Sepehri
- Nano Alvand Company, Avicenna Tech Park, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mohammadi-Khanaposhtani
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Nafise Asemanipoor
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mahmood Biglar
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Haleh Hamedifar
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Turkey
| | - Nastaran Sadeghian
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Mostafa Norizadehtazehkand
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| | - Ilhami Gulcin
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, Turkey
| |
Collapse
|
34
|
Akıncıoğlu H, Gülçin İ. Potent Acetylcholinesterase Inhibitors: Potential Drugs for Alzheimer's Disease. Mini Rev Med Chem 2020; 20:703-715. [PMID: 31902355 DOI: 10.2174/1389557520666200103100521] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/30/2018] [Accepted: 10/19/2019] [Indexed: 02/05/2023]
Abstract
Alzheimer's disease (AD) is one of the cognitive or memory-related impairments occurring with advancing age. Since its exact mechanism is not known, the full therapy has still not been found. Acetylcholinesterase (AChE) has been reported to be a viable therapeutic target for the treatment of AD and other dementias. To this end, acetylcholinesterase inhibitors (AChEIs) are commonly used. AChE is a member of the hydrolase enzyme family. A hydrolase is an enzyme that catalyzes the hydrolysis of a chemical bond. AChE is useful for the development of novel and mechanism-based inhibitors. It has a role in the breakdown of acetylcholine (ACh) neurotransmitters, such as acetylcholinemediated neurotransmission. AChEIs are the most effective approaches to treat AD. AChE hydrolyzes ACh to acetate and choline, as an important neurotransmitter substance. Recently, Gülçin and his group explored new AChEIs. The most suggested mechanism for AD is the deficiency of ACh, which is an important neurotransmitter. In this regard, AChEIs are commonly used for the symptomatic treatment of AD. They act in different ways, such as by inhibiting AChE, protecting cells from free radical toxicity and β-amyloid-induced injury or inhibiting the release of cytokines from microglia and monocytes. This review focuses on the role of AChEIs in AD using commonly available drugs. Also, the aim of this review is to research and discuss the role of AChEIs in AD using commonly available drugs. Therefore, in our review, related topics like AD and AChEIs are highlighted. Also, the latest work related to AChEIs is compiled. In recent research studies, novel natural and synthetic AChEIs, used for AD, are quite noteworthy. These studies can be very promising in detecting potent drugs against AD.
Collapse
Affiliation(s)
- Hulya Akıncıoğlu
- Faculty of Science and Arts, Agri Ibrahim Cecen University, 04100-Agri, Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Science, Ataturk University, 25240-Erzurum, Turkey
| |
Collapse
|
35
|
Gülçin İ, Trofimov B, Kaya R, Taslimi P, Sobenina L, Schmidt E, Petrova O, Malysheva S, Gusarova N, Farzaliyev V, Sujayev A, Alwasel S, Supuran CT. Synthesis of nitrogen, phosphorus, selenium and sulfur-containing heterocyclic compounds - Determination of their carbonic anhydrase, acetylcholinesterase, butyrylcholinesterase and α-glycosidase inhibition properties. Bioorg Chem 2020; 103:104171. [PMID: 32891857 DOI: 10.1016/j.bioorg.2020.104171] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/13/2020] [Accepted: 08/25/2020] [Indexed: 12/25/2022]
Abstract
Sulfur-containing pyrroles (1-3), tris(2-pyridyl)phosphine(selenide) sulfide (4-5) and 4-benzyl-6-(thiophen-2-yl)pyrimidin-2-amine (6) were synthesized and characterized by elemental analysis, IR and NMR spectra. In this study, the synthesized compounds of nitrogen, phosphorus, selenium and sulfur-containing heterocyclic compounds (1-6) were evaluated against the human erythrocyte carbonic anhydrase I, and II isoenzymes, acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and α-glycosidase enzymes. The synthesized heterocyclic compounds showed IC50 values in range of 33.32-60.79 nM against hCA I, and 37.05-66.64 nM against hCA II closely associated with various physiological and pathological processes. On the other hand, IC50 values were found in range of 13.13-22.21 nM against AChE, 0.54-31.22 nM against BChE, and 13.51-26.55 nM against α-glycosidase as a hydrolytic enzyme. As a result, nitrogen, phosphorus, selenium and sulfur-containing heterocyclic compounds (1-6) demonstrated potent inhibition profiles against indicated metabolic enzymes. Therefore, we believe that these results may contribute to the development of new drugs particularly in the treatment of some global disorders including glaucoma, Alzheimer's disease and diabetes.
Collapse
Affiliation(s)
- İlhami Gülçin
- Atatürk University, Faculty of Sciences, Department of Chemistry, 25240 Erzurum, Turkey.
| | - Boris Trofimov
- Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia
| | - Ruya Kaya
- Atatürk University, Faculty of Sciences, Department of Chemistry, 25240 Erzurum, Turkey; Central Research and Application Laboratory, Agri Ibrahim Cecen University, 04100 Agri, Turkey
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, 74100 Bartin, Turkey
| | - Lyubov Sobenina
- Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia
| | - Elena Schmidt
- Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia
| | - Olga Petrova
- Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia
| | - Svetlana Malysheva
- Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia
| | - Nina Gusarova
- Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia
| | - Vagif Farzaliyev
- Institute of Chemistry of Additives, Azerbaijan National Academy of Sciences, 1029 Baku, Azerbaijan
| | - Afsun Sujayev
- Institute of Chemistry of Additives, Azerbaijan National Academy of Sciences, 1029 Baku, Azerbaijan
| | - Saleh Alwasel
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Claudiu T Supuran
- Dipartimento di Chimica Ugo Schiff, Universita degli Studi di Firenze, Sesto Fiorentino, Firenze, Italy; Neurofarba Department and Laboratorio di Chimica Bioinorganica Universita' degli Studi di Firenze, Sesto Fiorentino, Italy
| |
Collapse
|
36
|
Artabe AE, Cunha-Silva H, Barranco A. Enzymatic assays for the assessment of toxic effects of halogenated organic contaminants in water and food. A review. Food Chem Toxicol 2020; 145:111677. [PMID: 32810589 DOI: 10.1016/j.fct.2020.111677] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/05/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022]
Abstract
Halogenated organic compounds are a particular group of contaminants consisting of a large number of substances, and of great concern due to their persistence in the environment, potential for bioaccumulation and toxicity. Some of these compounds have been classified as persistent organic pollutants (POPs) under The Stockholm Convention and many toxicity assessments have been conducted on them previously. In this work we provide an overview of enzymatic assays used in these studies to establish toxic effects and dose-response relationships. Studies in vivo and in vitro have been considered with a particular emphasis on the impact of halogenated compounds on the activity of relevant enzymes to the humans and the environment. Most information available in the literature focuses on chlorinated compounds, but brominated and fluorinated molecules are also the target of increasing numbers of studies. The enzymes identified can be classified as enzymes: i) the activities of which are affected by the presence of halogenated organic compounds, and ii) those involved in their metabolisation/detoxification resulting in increased activities. In both cases the halogen substituent seems to have an important role in the effects observed. Finally, the use of these enzymes in biosensing tools for monitoring of halogenated compounds is described.
Collapse
Affiliation(s)
- Amaia Ereño Artabe
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Bizkaia, Spain
| | - Hugo Cunha-Silva
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Bizkaia, Spain
| | - Alejandro Barranco
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Bizkaia, Spain.
| |
Collapse
|
37
|
Dong H, Dong S, Erik Hansen P, Stagos D, Lin X, Liu M. Progress of Bromophenols in Marine Algae from 2011 to 2020: Structure, Bioactivities, and Applications. Mar Drugs 2020; 18:E411. [PMID: 32759739 PMCID: PMC7459620 DOI: 10.3390/md18080411] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 12/11/2022] Open
Abstract
Marine algae contain various bromophenols that have been shown to possess a variety of biological activities, including antiradical, antimicrobial, anticancer, antidiabetic, anti-inflammatory effects, and so on. Here, we briefly review the recent progress of these marine algae biomaterials and their derivatives from 2011 to 2020, with respect to structure, bioactivities, and their potential application as pharmaceuticals.
Collapse
Affiliation(s)
- Hui Dong
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (H.D.); (S.D.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Songtao Dong
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (H.D.); (S.D.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Poul Erik Hansen
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark;
| | - Dimitrios Stagos
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, Biopolis, 41500 Larissa, Greece;
| | - Xiukun Lin
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, 319 Zhongshan Road, Jiangyang, Luzhou 646000, China;
| | - Ming Liu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (H.D.); (S.D.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
38
|
Hosseinpoor H, Iraji A, Edraki N, Pirhadi S, Attarroshan M, Khoshneviszadeh M, Khoshneviszadeh M. A Series of Benzylidenes Linked to Hydrazine-1-carbothioamide as Tyrosinase Inhibitors: Synthesis, Biological Evaluation and Structure-Activity Relationship. Chem Biodivers 2020; 17:e2000285. [PMID: 32478439 DOI: 10.1002/cbdv.202000285] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 05/28/2020] [Indexed: 12/19/2022]
Abstract
Tyrosinase is a type 3 copper enzyme responsible for skin pigmentation disorders, skin cancer, and enzymatic browning of vegetables and fruits. In the present article, 12 small molecules of 2-benzylidenehydrazine-1-carbothioamide were designed, synthesized and evaluated for their anti-tyrosinase activities followed by molecular docking and pharmacophore-based screening. Among synthesized thiosemicarbazone derivatives, one compound, (2E)-2-[(4-nitrophenyl)methylidene]hydrazine-1-carbothioamide, is the strongest inhibitor of mushroom tyrosinase with IC50 of 0.05 μM which demonstrated a 128-fold increase in potency compared to the positive control. Kinetic studies also revealed mix type inhibition by this compound. Docking studies confirmed the complete fitting of the synthesized compounds into the tyrosinase active site. The results underline the potential of 2-benzylidenehydrazine-1-carbothioamides as potent pharmacophore to extend the tyrosinase inhibition in drug discovery.
Collapse
Affiliation(s)
- Hona Hosseinpoor
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, 71348, Shiraz, Iran.,Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, 71345, Shiraz, Iran
| | - Aida Iraji
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, 71348, Shiraz, Iran.,Central Research Laboratory, Shiraz University of Medical Sciences, 71468, Shiraz, Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, 71348, Shiraz, Iran
| | - Somayeh Pirhadi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, 71348, Shiraz, Iran
| | - Mahshid Attarroshan
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, 71348, Shiraz, Iran
| | - Mahsima Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, 71348, Shiraz, Iran
| | - Mehdi Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, 71348, Shiraz, Iran.,Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, 71345, Shiraz, Iran
| |
Collapse
|
39
|
Haider K, Haider MR, Neha K, Yar MS. Free radical scavengers: An overview on heterocyclic advances and medicinal prospects. Eur J Med Chem 2020; 204:112607. [PMID: 32721784 DOI: 10.1016/j.ejmech.2020.112607] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/08/2020] [Accepted: 06/19/2020] [Indexed: 12/22/2022]
Abstract
In the present scenario, there has been a lot of consideration toward the field of free radical chemistry. Free radicals responsive oxygen species are produced by different endogenous frameworks, exposure to various physicochemical conditions, radiation, toxins, metabolized drug by-product, and pathological states. On the off chance that free radical overpowers the body's capacity, it generates a condition known as oxidative stress, which can alter physiological conditions of the body and results in several diseases. For appropriate physiological function, it is necessary to have a proper balance between free radicals and antioxidants. Antioxidants chemically inhibit the oxidation process; they are also known as free radical scavengers. For tackling the problem of oxidative stress application of an external source of antioxidant is helpful. A lot of antioxidants of natural, semi-synthetic and synthetic origin are in use, with time search of more effective, nontoxic, safe antioxidant is intensified. The present review, discuss different synthetic derivatives bearing various heterocyclic scaffolds as radical scavengers.
Collapse
Affiliation(s)
- Kashif Haider
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Md Rafi Haider
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Kumari Neha
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - M Shahar Yar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
40
|
Polat Kose L, Bingol Z, Kaya R, Goren AC, Akincioglu H, Durmaz L, Koksal E, Alwasel SH, Gülçin İ. Anticholinergic and antioxidant activities of avocado (Folium perseae) leaves – phytochemical content by LC-MS/MS analysis. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2020. [DOI: 10.1080/10942912.2020.1761829] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Leyla Polat Kose
- Vocational School, Department of Pharmacy Services, Beykent University, Buyukcekmece, Istanbul, Turkey
| | - Zeynebe Bingol
- Faculty of Sciences, Department of Chemistry, Atatürk University, Erzurum, Turkey
| | - Ruya Kaya
- Faculty of Sciences, Department of Chemistry, Atatürk University, Erzurum, Turkey
- Central Research and Application Laboratory, Agri Ibrahim Cecen University, Agri, Turkey
| | - Ahmet C. Goren
- Department of Analytical Chemistry, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul, Turkey
- Drug Application and Research Center, Bezmialem Vakif University, Istanbul, Turkey
| | - Hulya Akincioglu
- Department of Chemistry, Faculty of Sciences and Arts, Agri Ibrahim Cecen University, Agri, Turkey
| | - Lokman Durmaz
- Department of Medical Services and Technology, Cayirli Vocational School, Erzincan Binali Yildirim University, Cayirli, Erzincan, Turkey
| | - Ekrem Koksal
- Faculty of Sciences and Arts, Department of Chemistry, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Saleh H. Alwasel
- King Saud University, Department of Zoology, College of Science, Saudi Arabia
| | - İlhami Gülçin
- Faculty of Sciences, Department of Chemistry, Atatürk University, Erzurum, Turkey
| |
Collapse
|
41
|
Sertçelik M. Synthesis, spectroscopic properties, crystal structures, DFT studies, and the antibacterial and enzyme inhibitory properties of a complex of Co(II) 3,5-difluorobenzoate with 3-pyridinol. JOURNAL OF CHEMICAL RESEARCH 2020. [DOI: 10.1177/1747519820924636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A new complex, [Co(DFB)2(3-Pyr)2(H2O)2] (where DFB = 3,5-difluorobenzoate, 3-Pyr = 3-pyridinol), is synthesized and characterized using different techniques (elemental analysis, Fourier transform infrared spectroscopy, and single-crystal X-ray diffraction). Looking at the crystal structure of the complexes, the cobalt atom is coordinated by two nitrogen atoms from two 3-Pyr ligands, two carboxylate oxygen atoms from two DFB anions, and two oxygen atoms from two water molecules. The complex has distorted octahedral geometry around the cobalt atom center complex and crystallizes in the P21/n space group (monoclinic system). Geometry optimization, frequency analysis, and energy quantum chemical calculations on the complex are performed by Density Functional Theory [B3LYP/6-31G (d,p) basis set] to predict the molecular properties. The novel complex is tested against the metabolic isoenzymes human carbonic anhydrases I and II. The novel complex shows Ki values of 317.26 ± 23.25 µM against hCA I and 255.41 ± 48.05 µM against hCA II; the IC50 values for these isoenzymes are 274.37 and 204.33 µM.
Collapse
Affiliation(s)
- Mustafa Sertçelik
- Department of Chemical Engineering, Faculty of Engineering and Architecture, Kafkas University, Kars, Turkey
| |
Collapse
|
42
|
Antioxidant and Neuroprotective Effects Induced by Cannabidiol and Cannabigerol in Rat CTX-TNA2 Astrocytes and Isolated Cortexes. Int J Mol Sci 2020; 21:ijms21103575. [PMID: 32443623 PMCID: PMC7279038 DOI: 10.3390/ijms21103575] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/11/2020] [Accepted: 05/15/2020] [Indexed: 12/19/2022] Open
Abstract
Cannabidiol (CBD) and cannabigerol (CBG) are Cannabis sativa terpenophenols. Although CBD’s effectiveness against neurological diseases has already been demonstrated, nothing is known about CBG. Therefore, a comparison of the effects of these compounds was performed in two experimental models mimicking the oxidative stress and neurotoxicity occurring in neurological diseases. Rat astrocytes were exposed to hydrogen peroxide and cell viability, reactive oxygen species production and apoptosis occurrence were investigated. Cortexes were exposed to K+ 60 mM depolarizing stimulus and serotonin (5-HT) turnover, 3-hydroxykinurenine and kynurenic acid levels were measured. A proteomic analysis and bioinformatics and docking studies were performed. Both compounds exerted antioxidant effects in astrocytes and restored the cortex level of 5-HT depleted by neurotoxic stimuli, whereas sole CBD restored the basal levels of 3-hydroxykinurenine and kynurenic acid. CBG was less effective than CBD in restoring the levels of proteins involved in neurotransmitter exocytosis. Docking analyses predicted the inhibitory effects of these compounds towards the neurokinin B receptor. Conclusion: The results in the in vitro system suggest brain non-neuronal cells as a target in the treatment of oxidative conditions, whereas findings in the ex vivo system and docking analyses imply the potential roles of CBD and CBG as neuroprotective agents.
Collapse
|
43
|
Artunc T, Menzek A, Taslimi P, Gulcin I, Kazaz C, Sahin E. Synthesis and antioxidant activities of phenol derivatives from 1,6-bis(dimethoxyphenyl)hexane-1,6-dione. Bioorg Chem 2020; 100:103884. [PMID: 32388430 DOI: 10.1016/j.bioorg.2020.103884] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 12/14/2022]
Abstract
Starting from the compound (3,4-dimethoxyphenyl)(2-(3,4-dimethoxyphenyl)cyclopent-1-en-1-yl)methanone (4), two diols and three tetrol derivatives were synthesised. Morover, from the reactions of 1,3-dimethoxybenzene and 1,4-dimethoxybenzene with adipoyl chloride, fifteen new along with nine known compounds were obtained. For the characterizations of compounds, spectroscopic methods such as NMR including DEPT, COSY, HMQC and HMBC experiments and X-ray diffraction were used. The antioxidant activities of novel synthesized seventeen molecules were investigated by analytical methods like ABTS•+ and DPPH• scavenging. Also, reducing power these molecules were investigated by Fe3+, Cu2+, and [Fe3+-(TPTZ)2]3+. Some of the molecules record powerful antioxidant profile when compared to putative standards. The inhibition effects of the phenols compounds against AChE and BChE activities were analysed. Also, these phenols were found as effective inhibitors for AChE, hCA I, hCA II, and BChE with Kis in the range of 122.95 ± 18.41-351.31 ± 69.12 nM for hCA I, 62.35 ± 9.03-363.17 ± 180.1 nM for hCA II, 134.57 ± 3.99-457.43 ± 220.10 nM for AChE, and 27.06 ± 9.12-72.98 ± 9.53 nM for BChE, respectively.
Collapse
Affiliation(s)
- Tekin Artunc
- Department of Chemistry, Faculty of Science, Ataturk University, 25240 Erzurum, Turkey
| | - Abdullah Menzek
- Department of Chemistry, Faculty of Science, Ataturk University, 25240 Erzurum, Turkey.
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, 74100 Bartin, Turkey
| | - Ilhami Gulcin
- Department of Chemistry, Faculty of Science, Ataturk University, 25240 Erzurum, Turkey
| | - Cavit Kazaz
- Department of Chemistry, Faculty of Science, Ataturk University, 25240 Erzurum, Turkey
| | - Ertan Sahin
- Department of Chemistry, Faculty of Science, Ataturk University, 25240 Erzurum, Turkey
| |
Collapse
|
44
|
Caglayan C, Taslimi P, Türk C, Gulcin İ, Kandemir FM, Demir Y, Beydemir Ş. Inhibition effects of some pesticides and heavy metals on carbonic anhydrase enzyme activity purified from horse mackerel (Trachurus trachurus) gill tissues. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:10607-10616. [PMID: 31942715 DOI: 10.1007/s11356-020-07611-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 01/01/2020] [Indexed: 06/10/2023]
Abstract
The gill tissue is the main site of metabolic enzymes or compensation, with the kidney tissue playing a supporting role. At the gill tissue, carbonic anhydrase enzymes (CAs) catalyze the hydration of CO2 to HCO3- and H+ for production to the H2O. In this work, the CA enzyme was purified from horse mackerel (Trachurus trachurus) gill with a specific activity of 21,381.42 EU/mg, purification fold of 150.61, total activity of 2347.68 EU/mL, and a yield of 16.13% using sepharose 4B-L-tyrosine-sulfanilamide affinity gel chromatography. For recording the enzyme purity, gel electrophoresis was performed, and single band was seen. The molecular weight of this enzyme was found approximately 35 kDa. Also, the inhibitory effects of different pesticides such as thiram, clofentezine, propineb, deltamethrin, azoxystrobin, and thiophanate and heavy metal ions such as Fe2+, Cu2+, Co2+, Pb2+ Hg2+, and As3+ on horse mackerel gill tissue CA enzyme activities were investigated. Our results indicated that these pesticides and metal ions showed inhibitory effects at low nanomolar and millimolar concentrations for fish gill CA enzymes, respectively.
Collapse
Affiliation(s)
- Cuneyt Caglayan
- Department of Biochemistry, Faculty of Veterinary Medicine, Bingol University, 12000, Bingol, Turkey.
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, 74100, Bartin, Turkey
| | - Cebrahil Türk
- Department of Fisheries, Genç Vocational School, Bingol University, 12500, Bingol, Turkey
| | - İlhami Gulcin
- Department of Chemistry, Faculty of Science, Atatürk University, 25240, Erzurum, Turkey
| | - Fatih Mehmet Kandemir
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, 25240, Erzurum, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, 75700, Ardahan, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, 26210, Eskişehir, Turkey
| |
Collapse
|
45
|
Zheng T, Qian C. Influencing factors and formation mechanism of CaCO3 precipitation induced by microbial carbonic anhydrase. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.12.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Antioxidants and antioxidant methods: an updated overview. Arch Toxicol 2020; 94:651-715. [PMID: 32180036 DOI: 10.1007/s00204-020-02689-3] [Citation(s) in RCA: 741] [Impact Index Per Article: 185.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 02/24/2020] [Indexed: 02/07/2023]
Abstract
Antioxidants had a growing interest owing to their protective roles in food and pharmaceutical products against oxidative deterioration and in the body and against oxidative stress-mediated pathological processes. Screening of antioxidant properties of plants and plant-derived compounds requires appropriate methods, which address the mechanism of antioxidant activity and focus on the kinetics of the reactions including the antioxidants. Many studies evaluating the antioxidant activity of various samples of research interest using different methods in food and human health have been conducted. These methods are classified, described, and discussed in this review. Methods based on inhibited autoxidation are the most suited for termination-enhancing antioxidants and for chain-breaking antioxidants, while different specific studies are needed for preventive antioxidants. For this purpose, the most common methods used in vitro determination of antioxidant capacity of food constituents were examined. Also, a selection of chemical testing methods was critically reviewed and highlighted. In addition, their advantages, disadvantages, limitations and usefulness were discussed and investigated for pure molecules and raw extracts. The effect and influence of the reaction medium on the performance of antioxidants are also addressed. Hence, this overview provides a basis and rationale for developing standardized antioxidant methods for the food, nutraceuticals, and dietary supplement industries. In addition, the most important advantages and shortcomings of each method were detected and highlighted. The chemical principles of these methods are outlined and critically discussed. The chemical principles of methods of 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulphonate) radical (ABTS·+) scavenging, 1,1-diphenyl-2-picrylhydrazyl (DPPH·) radical scavenging, Fe3+-Fe2+ transformation assay, ferric reducing antioxidant power (FRAP) assay, cupric ions (Cu2+) reducing power assay (Cuprac), Folin-Ciocalteu reducing capacity (FCR assay), peroxyl radical (ROO·), superoxide radical anion (O2·-), hydrogen peroxide (H2O2) scavenging assay, hydroxyl radical (OH·) scavenging assay, singlet oxygen (1O2) quenching assay, nitric oxide radical (NO·) scavenging assay and chemiluminescence assay are outlined and critically discussed. Also, the general antioxidant aspects of main food components were discussed by a number of methods, which are currently used for the detection of antioxidant properties of food components. This review consists of two main sections. The first section is devoted to the main components in the food and pharmaceutical applications. The second general section comprises some definitions of the main antioxidant methods commonly used for the determination of the antioxidant activity of components. In addition, some chemical, mechanistic and kinetic basis, and technical details of the used methods are given.
Collapse
|
47
|
Vadabingi N, Avula VKR, Zyryanov GV, Vallela S, Anireddy JS, Pasupuleti VR, Mallepogu V, Chamarthi NR, Ponne VC. Multiple molecular targets mediated antioxidant activity, molecular docking, ADMET, QSAR and bioactivity studies of halo substituted urea derivatives of α-Methyl-l-DOPA. Bioorg Chem 2020; 97:103708. [PMID: 32146177 DOI: 10.1016/j.bioorg.2020.103708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/26/2020] [Accepted: 02/26/2020] [Indexed: 11/28/2022]
Abstract
A series of novel α-methyl-l-DOPA urea derivatives viz., 3-(3,4-dihydroxyphenyl)-2-methyl-2-(3-halo/trifluoromethyl substituted phenyl ureido)propanoic acids (6a-e) have been synthesized from the reaction of α-methyl-l-DOPA (3) with various aryl isocyanates (4a-e) by using triethylamine (5, TEA) as a base catalyst in THF at reflux conditions. The synthesized compounds are structurally characterized by spectral (IR, 1H &13C NMR and MASS) and elemental analysis studies and screened for their in-vitro antioxidant activity against DPPH, NO and H2O2 free radical scavenging assays and identified compounds 6c &6d as potential antioxidants. The acquired in vitro results were correlated with the results of molecular docking, ADMET, QSAR and bioactivity studies performed for them and predicted that the recorded in silico binding affinities are in good correlation with the in vitro antioxidant activity results. The molecular docking analysis has comprehended the strong hydrogen bonding interactions of 6a-e with 1CB4, 1N8Q, 3MNG, 1OG5, 1DNU, 3NRZ, 2CDU, 1HD2 and 2HCK proteins of their respective SOD, LO, PRXS5, CP450, MP, XO, NO, PRY5 and HCK enzymes. This has sustained the effective binding of 6a-e and resulted in functional inhibition of selective aminoacid residues to be pronounced as multiple molecular targets mediated antioxidant potent compounds. In addition, the evaluated toxicology risks of 6a-e are identified with in the potential limits of drug candidates. The conformational analysis of 6c & 6d prominently infers that urea moiety uniting α-methyl-l-DOPA with halo substituted aryl units into a distinctive orientation to comply good structure-activity to inhibit the proliferation of reactive oxygen species in vivo.
Collapse
Affiliation(s)
- Nagalakshmamma Vadabingi
- Department of Chemistry, Tirumala Tirupati Devasthanam's Sri Venkateswara Arts College, Tirupati 517502, Andhra Pradesh, India
| | - Vijaya Kumar Reddy Avula
- Chemical Engineering Institute, Ural Federal University, Yekaterinburg 620002, Russian Federation
| | - Grigory V Zyryanov
- Chemical Engineering Institute, Ural Federal University, Yekaterinburg 620002, Russian Federation; Ural Division of the Russian Academy of Sciences, I. Ya. Postovskiy Institute of Organic Synthesis, 22 S. Kovalevskoy Street, Yekaterinburg 620219, Russian Federation
| | - Swetha Vallela
- Centre for Chemical Science and Technology, Institute of Science and Technology, Jawaharlal Nehru Technological University Hyderabad, Hyderabad 500085, Telangana, India
| | - Jaya Shree Anireddy
- Centre for Chemical Science and Technology, Institute of Science and Technology, Jawaharlal Nehru Technological University Hyderabad, Hyderabad 500085, Telangana, India
| | - Visweswara Rao Pasupuleti
- Department of Biomedical Sciences and Therapeutics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Venkataswamy Mallepogu
- Department of Biochemistry, Sri Venkateswara University College of Sciences, Sri Venkateswara University, Tirupati 517502, Andhra Pradesh, India
| | - Naga Raju Chamarthi
- Department of Chemistry, Sri Venkateswara University College of Sciences, Sri Venkateswara University, Tirupati 517502, Andhra Pradesh, India.
| | - Venkata Chalapathi Ponne
- Department of Chemistry, Tirumala Tirupati Devasthanam's Sri Venkateswara Arts College, Tirupati 517502, Andhra Pradesh, India.
| |
Collapse
|
48
|
A Novel Ag-N-Heterocyclic Carbene Complex Bearing the Hydroxyethyl Ligand: Synthesis, Characterization, Crystal and Spectral Structures and Bioactivity Properties. CRYSTALS 2020. [DOI: 10.3390/cryst10030171] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this study, a novel silver N-heterocyclic carbene (Ag-NHC) complex bearing hydroxyethyl substituent has been synthesized from the hydroxyethyl-substituted benzimidazolium salt and silver oxide by using in-situ deprotonation method. A structure of the Ag-NHC complex was characterized by using UV-Vis, FTIR, 1H-NMR and 13C-NMR spectroscopies and elemental analysis techniques. Also, the crystal structure of the novel complex was determined by single-crystal X-ray diffraction method. In this paper, compound 1 showed excellent inhibitory effects against some metabolic enzymes. This complex had Ki of 1.14 0.26 µM against human carbonic anhydrase I (hCA I), 1.88±0.20 µM against human carbonic anhydrase II (hCA I), and 10.75±2.47 µM against α-glycosidase, respectively. On the other hand, the Ki value was found as 25.32±3.76 µM against acetylcholinesterase (AChE) and 41.31±7.42 µM against butyrylcholinesterase (BChE), respectively. These results showed that the complex had drug potency against some diseases related to using metabolic enzymes.
Collapse
|
49
|
Dar AA, Chen J, Shad A, Pan X, Yao J, Bin-Jumah M, Allam AA, Huo Z, Zhu F, Wang Z. A combined experimental and computational study on the oxidative degradation of bromophenols by Fe(VI) and the formation of self-coupling products. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113678. [PMID: 31796318 DOI: 10.1016/j.envpol.2019.113678] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/14/2019] [Accepted: 11/24/2019] [Indexed: 05/11/2023]
Abstract
In this study, the degradation of eight bromophenols (BPs), including monobromophenols (2-BP, 3-BP, and 4-BP), dibromophenols (2,4-DBP, 2,6-DBP, and 3,5-DBP), a tribromophenol (2,4,6-TBP) and a pentabromophenol (PBP), by a Fe(VI) reaction process at a pH of 8.0 was systematically studied. It was concluded that their degradation rates increased with increasing Fe(VI) concentrations in solution. The removal of 2,4,6-TBP, 2-BP, and 2,6-DBP was faster than that of the other five BPs, which could be attributed to the position of the substituting Br atom. Moreover, the direct oxidation and coupling reactions greatly influenced the reactivity of the bromophenols with Fe(VI). The electron paramagnetic resonance (EPR) analysis confirmed the presence of hydroxyl radicals in present system. The oxidation reaction products of PBP and 2-BP were recognized by an electrospray time-of-flight mass spectrometer; hydroxylation, hydroxyl substitution, the cleavage of the C-C bond, direct oxidation and polymerization via an end linking mechanism were noticeably found in the reaction process, resulting in the formation of polymerization products and causing hydroxylation to occur. Theoretical calculations further determined the possible oxidation sites of 2-BP and PBP. This study may provide comprehensive and important information on the remediation of BPs by Fe(VI).
Collapse
Affiliation(s)
- Afzal Ahmed Dar
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing, 210023, PR China
| | - Jing Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing, 210023, PR China.
| | - Asam Shad
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing, 210023, PR China
| | - Xiaoxue Pan
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing, 210023, PR China
| | - Jiayi Yao
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing, 210023, PR China
| | - May Bin-Jumah
- Biology Department, Faculty of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ahmed A Allam
- Department of Zoology, Faculty of Science, Beni-suef University, Beni-suef, 65211, Egypt
| | - Zongli Huo
- Jiangsu Provincial Center for Disease Control and Prevention, NO.172 Jiangsu Road, Jiangsu Nanjing, 210023, PR China
| | - Feng Zhu
- Jiangsu Provincial Center for Disease Control and Prevention, NO.172 Jiangsu Road, Jiangsu Nanjing, 210023, PR China
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing, 210023, PR China
| |
Collapse
|
50
|
Synthesis of novel β-amino carbonyl derivatives and their inhibition effects on some metabolic enzymes. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127453] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|