1
|
Omar MH, Emam SH, Mikhail DS, Elmeligie S. Combretastatin A-4 based compounds as potential anticancer agents: A review. Bioorg Chem 2024; 153:107930. [PMID: 39504638 DOI: 10.1016/j.bioorg.2024.107930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/13/2024] [Accepted: 10/27/2024] [Indexed: 11/08/2024]
Abstract
The current review discusses the importance of combretastatin A-4 (CA-4) as a lead compound of microtubule targeting agents. CA-4 holds a unique place among naturally occurring compounds having cytotoxic activity. In this review an overall picture of design strategies, structure-activity relationship, synthesis, cytotoxic activity, and binding interactions of promising CA-4 analogues, are discussed and arranged chronologically from 2016 to early 2023. Also, this review emphasizes their biological activity as anticancer agents, within an overview of clinical application limitation and suggested strategies to overcome. Dual targeting tubulin inhibitors showed highpotentialto surpass medication resistance and provide synergistic efficacy. Linking platinum (IV), amino acids, and HDAC targeting moieties to active tubulin inhibitorsproduced potent active compounds. Analogues of CA-4 bridged with azetidin-2-one, pyrazole, sulfide, or carrying selenium atom exhibited cytotoxic action against a variety of malignant cell lines through different pathways.
Collapse
Affiliation(s)
- Mai H Omar
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Soha H Emam
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Demiana S Mikhail
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Salwa Elmeligie
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
2
|
Mahmoud E, Abdelhamid D, Youssif BGM, Gomaa HAM, Hayallah AM, Abdel-Aziz M. Design, synthesis, and antiproliferative activity of new indole/1,2,4-triazole/chalcone hybrids as EGFR and/or c-MET inhibitors. Arch Pharm (Weinheim) 2024; 357:e2300562. [PMID: 39219313 DOI: 10.1002/ardp.202300562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 09/04/2024]
Abstract
A novel group of indolyl-1,2,4-triazole-chalcone hybrids was designed, synthesized, and assessed for their anticancer activity. The synthesized compounds exhibited significant antiproliferative activity. Compounds 9a and 9e exhibited significant cancer inhibition with GI50 ranging from 3.69 to 20.40 µM and from 0.29 to >100 µM, respectively. Both compounds displayed a broad spectrum of anticancer activity with selectivity ratios ranging between 0.50-2.78 and 0.25-2.81 at the GI50 level, respectively. The synthesized compounds were also screened for their cytotoxicity by 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazol (MTT) assay and for inhibition of epidermal growth factor receptor (EGFR) and c-MET (mesenchymal-epithelial transition factor). Some of the tested compounds exhibited significant inhibition against EGFR and/or c-MET. Compound 9b showed the highest c-MET inhibition (IC50 = 4.70 nM) compared to foretinib (IC50 = 2.5 nM). Compound 9d showed equipotent activity compared with erlotinib against EGFR (IC50 = 0.052 µM) and displayed significant c-MET inhibition with an IC50 value of 4.90 nM.
Collapse
Affiliation(s)
- Esraa Mahmoud
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Dalia Abdelhamid
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
- Raabe College of Pharmacy, Ohio Northern University, Ohio, USA
| | - Bahaa G M Youssif
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Hesham A M Gomaa
- Pharmacology Department, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Alaa M Hayallah
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sphinx University, New-Assiut, Egypt
| | - Mohamad Abdel-Aziz
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
3
|
Maji L, Teli G, Raghavendra NM, Sengupta S, Pal R, Ghara A, Matada GSP. An updated literature on BRAF inhibitors (2018-2023). Mol Divers 2024; 28:2689-2730. [PMID: 37470921 DOI: 10.1007/s11030-023-10699-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023]
Abstract
BRAF is the most common serine-threonine protein kinase and regulates signal transduction from RAS to MEK inside the cell. The BRAF is a highly active isoform of RAF kinase. BRAF has two domains such as regulatory and kinase domains. The BRAF inhibitors bind in the c-terminus of the kinase domain and inhibit the downstream pathways. The mutation occurs mainly in the A-loop of the kinase domain. The mutation occurs due to a conversion of valine to glutamate/lysine/arginine/aspartic acid at 600th position. Among the diverse mutations, BRAFV600E is the most common and responsible for numerous cancer such as melanoma, colorectal, ovarian, and thyroid cancer. Due to mutations in RAC1, loss of PTEN, NF1, CCND1, USP28-FBW7 complex, COT overexpression, and CCND1 amplification, the BRAF kinase enzyme developed resistance over the commercially available BRAF inhibitors. There is still unmute urgence for the development of BRAF inhibitors to overcome the persistent limitation such as resistance, mutation, and adverse effects of drugs. In the current study, we described the structure, activation, downstream signaling pathway, and mutation of BRAF. Our group also provided a detailed review of BRAF inhibitors from the last five years (2018-2023) highlighting the structure-activity relationship, mechanistic study, and molecular docking studies. We hope that the current analysis will be a useful resource for researchers and provide chemists a glimpse into the future as design and development of more effective and secure BRAF kinase inhibitors.
Collapse
Affiliation(s)
- Lalmohan Maji
- Department of Pharmaceutical Chemistry, Integrated Drug Discovery Centre, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | - Ghanshyam Teli
- Department of Pharmaceutical Chemistry, Integrated Drug Discovery Centre, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | | | - Sindhuja Sengupta
- Department of Pharmaceutical Chemistry, Integrated Drug Discovery Centre, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | - Rohit Pal
- Department of Pharmaceutical Chemistry, Integrated Drug Discovery Centre, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | - Abhishek Ghara
- Department of Pharmaceutical Chemistry, Integrated Drug Discovery Centre, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | | |
Collapse
|
4
|
Gomha SM, El-Sayed AAAA, Zaki MEA, Alrehaily A, Elbadawy HM, Al-Shahri ABA, Alsenani SR, Abouzied AS. Synthesis, In vitro and In silico Studies of Novel Bis-triazolopyridopyrimidines from Curcumin Analogues as Potential Aromatase Agents. Chem Biodivers 2024; 21:e202400701. [PMID: 38829745 DOI: 10.1002/cbdv.202400701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
Breast cancer remains a major global health issue, particularly affecting women and contributing significantly to mortality rates. Current treatments for estrogen receptor-positive breast cancers, such as aromatase inhibitors, are effective but often come with side effects and resistance issues. This study addresses these gaps by targeting aromatase, an enzyme crucial for estrogen synthesis, which plays a pivotal role in breast cancer progression. The innovative approach involves synthesizing novel bis-triazolopyridopyrimidines, designed to leverage the combined pharmacological benefits of pyridopyrimidine and 1,2,4-triazole structures, known for their potent aromatase inhibition and anti-cancer properties. These compounds were synthesized and characterized using 1H-NMR, 13C-NMR, and MS spectral analyses, and their anticancer efficacy was evaluated through MTT assays against MCF-7 breast cancer cell lines in vitro. Molecular docking analyses revealed strong binding energies with aromatase, particularly for compounds 5 b, 5 c, 10 a, and 10 b, indicating their potential as effective aromatase inhibitors. The study highlights these compounds as promising candidates for further development as therapeutic agents against breast cancer.
Collapse
Affiliation(s)
- Sobhi M Gomha
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah, 42351, Saudi Arabia
| | - Abdel-Aziz A A El-Sayed
- Biology Department, Faculty of Science, Islamic University of Madinah, Madinah, 42351, Saudi Arabia
| | - Magdi E A Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammed Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Abdulwahed Alrehaily
- Biology Department, Faculty of Science, Islamic University of Madinah, Madinah, 42351, Saudi Arabia
| | - Hossein M Elbadawy
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Madinah, 41477, Saudi Arabia
| | - Ahmad Bin Ali Al-Shahri
- Department of Jurisprudence of Sunnah and Its Sources, Faculty of the Noble Hadith, Islamic University of Madinah., Madinah, 41477, Saudi Arabia
| | - Saleh Rashed Alsenani
- Biology Department, Faculty of Science, Islamic University of Madinah, Madinah, 42351, Saudi Arabia
| | - Amr S Abouzied
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, 81442, Saudi Arabia
- Department of Pharmaceutical Chemistry, National Organization for Drug Control and Research (NODCAR), Giza, 12311, Egypt
| |
Collapse
|
5
|
Luo M, Shen Q, Su H, Li JM, Chan CM, Yu WY. A Metal-Free Cycloaddition of α-Diazoacetates with Amino Acid-Derived NHPI Esters for the Facile Synthesis of 1,2,4-Triazoles. Org Lett 2024; 26:5511-5516. [PMID: 38904436 DOI: 10.1021/acs.orglett.4c01852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
1,2,4-Triazoles are privileged scaffolds for many pharmaceuticals, and methods for structurally diverse compound libraries are of current interest. Here we report an efficient coupling of α-diazoacetates with amino acid-derived alkyl N-hydroxy phthalimide esters, under metal-free conditions involving 1,8-diazabicyclo(5.4.0)undec-7-ene as the base, with which highly functionalized 1,2,4-triazoles can be obtained in excellent yields with remarkable functional group tolerance. Preliminary studies revealed that 1,2,4-triazole 3a exhibits potent inhibition of tyrosinase activities in melanoma B16F10 cell lines, demonstrating promising skin-whitening properties.
Collapse
Affiliation(s)
- Mingyu Luo
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Qiushi Shen
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Heyi Su
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Jian Mei Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Chun-Ming Chan
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Wing-Yiu Yu
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| |
Collapse
|
6
|
Ajmal M, Mahato AK, Khan M, Rawat S, Husain A, Almalki EB, Alzahrani MA, Haque A, Hakme MJM, Albalawi AS, Rashid M. Significance of Triazole in Medicinal Chemistry: Advancement in Drug Design, Reward and Biological Activity. Chem Biodivers 2024; 21:e202400637. [PMID: 38740555 DOI: 10.1002/cbdv.202400637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024]
Abstract
One of the triazole tautomers, 1,2,4-triazole derivatives, has a wide range of biological activities that suggest its potential therapeutic utility in medicinal chemistry. These actions include anti-inflammatory, anti-cancer, anti-bacterial, anti-tuberculosis, and anti-diabetic effects. Using computational simulations and models, we investigate the structure-activity relationships of 1,2,4-triazoles, showing how various modifications to the triazole core yield a variety of clinical therapeutic benefits. The review highlights the anti-inflammatory effect of 1,2,4-triazoles in relation to their ability to disrupt significant inflammatory mediators and pathways. We present in-silico data that illuminate the triazoles' capacity to inhibit cell division, encourage apoptosis, and stop metastasis in a range of cancer models. This review looks at the bactericidal and bacteriostatic properties of 1,2,4-triazole derivatives, with a focus on their potential efficacy against multi-drug resistant bacterial infections and their usage in tuberculosis therapy. In order to better understand these substances' potential anti-diabetic benefits, this review also looks at how they affect glucose metabolism regulation and insulin responsiveness. Coordinated efforts are required to translate the efficacy of 1,2,4-triazole compounds in preclinical models into practical therapeutic benefits. Based on the information provided, it can be concluded that 1,2,4-triazole derivatives are a promising class of diverse therapeutic agents with potential utility in a range of disorders. Their development and improvement might herald a new era of medical care that will be immensely advantageous to both patients and the medical community as a whole. This comprehensive research, which is further reinforced by in-silico investigations, highlights the great medicinal potential of 1,2,4-triazoles. Additionally, this study encourages more research into these substances and their enhancement for use in pharmaceutical development.
Collapse
Affiliation(s)
- Mohammad Ajmal
- School of Pharmaceutical Sciences & Technology, Sardar Bhagwan Singh University, Dehradun, 248001, Uttarakhand, India
| | - Arun Kumar Mahato
- School of Pharmaceutical Sciences & Technology, Sardar Bhagwan Singh University, Dehradun, 248001, Uttarakhand, India
| | - Mausin Khan
- School of Pharmaceutical Sciences & Technology, Sardar Bhagwan Singh University, Dehradun, 248001, Uttarakhand, India
| | - Shivani Rawat
- School of Pharmaceutical Sciences & Technology, Sardar Bhagwan Singh University, Dehradun, 248001, Uttarakhand, India
| | - Asif Husain
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110064, India
| | | | | | - Anzarul Haque
- Central Laboratories Unit, Qatar University, Doha, 2713, Qatar
| | | | - Ahmed Suleman Albalawi
- Tabuk Health Cluster, Erada Mental Health Complex, Tabuk, 47717, Kingdom of Saudi Arabia
| | - Mohammad Rashid
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Dentistry and Pharmacy, Buraydah Private Colleges, Buraydah, 51418, Saudi Arabia
| |
Collapse
|
7
|
Ahmad G, Sohail M, Bilal M, Rasool N, Qamar MU, Ciurea C, Marceanu LG, Misarca C. N-Heterocycles as Promising Antiviral Agents: A Comprehensive Overview. Molecules 2024; 29:2232. [PMID: 38792094 PMCID: PMC11123935 DOI: 10.3390/molecules29102232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/22/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Viruses are a real threat to every organism at any stage of life leading to extensive infections and casualties. N-heterocycles can affect the viral life cycle at many points, including viral entrance into host cells, viral genome replication, and the production of novel viral species. Certain N-heterocycles can also stimulate the host's immune system, producing antiviral cytokines and chemokines that can stop the reproduction of viruses. This review focused on recent five- or six-membered synthetic N-heterocyclic molecules showing antiviral activity through SAR analyses. The review will assist in identifying robust scaffolds that might be utilized to create effective antiviral drugs with either no or few side effects.
Collapse
Affiliation(s)
- Gulraiz Ahmad
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (G.A.); (M.S.)
| | - Maria Sohail
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (G.A.); (M.S.)
| | - Muhammad Bilal
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China;
| | - Nasir Rasool
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (G.A.); (M.S.)
| | - Muhammad Usman Qamar
- Institute of Microbiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan;
- Division of Infectious Diseases, Geneva University Hospitals, 1205 Geneva, Switzerland
- Department of Microbiology and Molecular Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Codrut Ciurea
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (L.G.M.)
| | - Luigi Geo Marceanu
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (L.G.M.)
| | - Catalin Misarca
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (L.G.M.)
| |
Collapse
|
8
|
Gulati HK, Khanna A, Kumar N, Sharma A, Rupali, Jyoti, Singh J, Bhagat K, Bedi PMS. Triazole derivatives as potential xanthine oxidase inhibitors: Design, enzyme inhibition potential, and docking studies. Arch Pharm (Weinheim) 2024; 357:e2300296. [PMID: 38196114 DOI: 10.1002/ardp.202300296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/12/2023] [Accepted: 12/16/2023] [Indexed: 01/11/2024]
Abstract
Considerable ingenuity has been shown in the recent years in the discovery of novel xanthine oxidase (XO) inhibitors that fall outside the purine scaffold. The triazole nucleus has been the cornerstone for the development of many enzyme inhibitors for the clinical management of several diseases, where hyperuricemia is one of them. Here, we give a critical overview of significant research on triazole-based XO inhibitors, with respect to their design, synthesis, inhibition potential, toxicity, and docking studies, done till now. Based on these literature findings, we can expect a burst of modifications on triazole-based scaffolds in the near future by targeting XO, which will treat hyperuricemics, that is, painful conditions like gout that at present are hard to deal with.
Collapse
Affiliation(s)
- Harmandeep Kaur Gulati
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
- Dasmesh College of Pharmacy, Faridkot, Punjab, India
| | - Aanchal Khanna
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Nitish Kumar
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Anchal Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Rupali
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Jyoti
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Jatindervir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | | | | |
Collapse
|
9
|
Irfan I, Uddin A, Jain R, Gupta A, Gupta S, Napoleon JV, Hussain A, Alajmi MF, Joshi MC, Hasan P, Kumar P, Abid M, Singh S. Biological evaluation of novel side chain containing CQTrICh-analogs as antimalarials and their development as PfCDPK1 kinase inhibitors. Heliyon 2024; 10:e25077. [PMID: 38327451 PMCID: PMC10847618 DOI: 10.1016/j.heliyon.2024.e25077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/09/2024] Open
Abstract
The rapid emergence of resistance to existing frontline antimalarial drugs emphasizes a need for the development of target-oriented molecules with novel modes of action. Given the importance of a plant-like Calcium-Dependent Protein Kinase 1 (PfCDPK1) as a stand-alone multistage signalling regulator of P. falciparum, we designed and synthesized 7-chloroquinoline-indole-chalcones tethered with a triazole (CQTrICh-analogs 7 (a-s) and 9) directed towards PfCDPK1. This was accomplished by reacting substituted 1-phenyl-3-(1-(prop-2-yn-1-yl)-1H-indol-3-yl) prop-2-en-1-one and 1-(prop-2-yn-1-yl)-1H-indole-3-carbaldehyde with 4-azido-7-chloroquinoline, respectively via a 'click' reaction. The selected CQTrICh-analogs: 7l and 7r inhibited the growth of chloroquine-sensitive 3D7 strain and -resistant RKL-9 isolate of Plasmodium falciparum, with IC50 values of 2.4 μM & 1.8 μM (7l), and 3.5 μM & 2.7 μM (7r), respectively, and showed no apparent hemolytic activity and cytotoxicity in mammalian cells. Intra-erythrocytic progression studies revealed that the active hybrids: 7l and 7r are effective against the mature stages of the parasite. 7l and 7r were found to stably interact with the catalytically active ATP-binding pocket of PfCDPK1 via energetically favourable H-bonds. The interaction was confirmed in vitro by microscale thermophoresis and kinase assays, which demonstrated that the active hybrids interact with PfCDPK1 and inhibit its kinase activity which is presumably responsible for the parasite growth inhibition. Interestingly, 7l and 7r showed no inhibitory effect on the human kinases, indicating their selectivity for the parasite kinase. We report the antiplasmodial potential of novel kinase-targeting bio-conjugates, a step towards developing pan-kinase inhibitors which is a prerequisite for multistage anti-malarial protection.
Collapse
Affiliation(s)
- Iram Irfan
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Amad Uddin
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ravi Jain
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Aashima Gupta
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sonal Gupta
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | | | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed F. Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mukesh C. Joshi
- Department of Chemistry, Kirori Mal College, University of Delhi, Delhi 110007, India
| | - Phool Hasan
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Purnendu Kumar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Mohammad Abid
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
10
|
Rao VK, Ashtam A, Panda D, Guchhait SK. Natural-Product-Inspired Discovery of Trimethoxyphenyl-1,2,4-triazolosulfonamides as Potent Tubulin Polymerization Inhibitors. ChemMedChem 2024; 19:e202300562. [PMID: 37975190 DOI: 10.1002/cmdc.202300562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023]
Abstract
An approach of natural product-inspired strategy and incorporation of an NP-privileged motif has been investigated for the discovery of new tubulin polymerization inhibitors. Two series, N-Arylsulfonyl-3-arylamino-5-amino-1,2,4-triazole derivatives, and their isomers were considered. The compounds were synthesized by construction of the N-aryl-1,2,4-triazole-3,5-diamine motif and sulfonylation. Although the chemo- and regioselectivity in sulfonylation were challenging due to multiple ring-tautomerizable-NH and exocyclic NH2 functionalities present in the molecular motifs, the developed synthetic method enabled the preparation of designed molecular skeletons with biologically important motifs. The approach also led to explore interesting molecular regio- and stereochemical aspects valuable for activity. The X-ray crystallography study indicated that the hydrogen bonding between the arylamine-NH and the arylsulfonyl-"O" unit and appropriate molecular-functionality topology allowed the cis-locking of two aryls, which is important for tubulin-binding and antiproliferative properties. All synthesized compounds majorly showed characteristic antiproliferative effects in breast cancer cells (MCF-7), and four compounds exhibited potent antiproliferative activity. One compound potently bound to tubulin at the colchicine site and inhibited tubulin polymerization in vitro. The compound significantly depolymerized microtubules in MCF-7 cells, arrested the cells at the G2/M phase, and induced cell death. This study represents the importance of the design strategy in medicinal chemistry and the molecular structural features relevant to anticancer anti-tubulin properties. The explored molecules have the potential for further development.
Collapse
Affiliation(s)
- Vajja Krishna Rao
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), 160062, S.A.S. Nagar, India
| | - Anvesh Ashtam
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, 400076, Mumbai, India
| | - Dulal Panda
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), 160062, S.A.S. Nagar, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, 400076, Mumbai, India
| | - Sankar K Guchhait
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), 160062, S.A.S. Nagar, India
| |
Collapse
|
11
|
Wang C, Zhang Y, Zhang T, Xu J, Yan S, Liang B, Xing D. Epidermal growth factor receptor dual-target inhibitors as a novel therapy for cancer: A review. Int J Biol Macromol 2023; 253:127440. [PMID: 37839594 DOI: 10.1016/j.ijbiomac.2023.127440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
Overexpression of the epidermal growth factor receptor (EGFR) has been linked to several human cancers, including esophageal cancer, pancreatic cancer, anal cancer, breast cancer, and lung cancer, particularly non-small cell lung cancer (NSCLC). Therefore, EGFR has emerged as a critical target for treating solid tumors. Many 1st-, 2nd-, 3rd-, and 4th-generation EGFR single-target inhibitors with clinical efficacy have been designed and synthesized in recent years. Drug resistance caused by EGFR mutations has posed a significant challenge to the large-scale clinical application of EGFR single-target inhibitors and the discovery of novel EGFR inhibitors. Therapeutic methods for overcoming multipoint EGFR mutations are still needed in medicine. EGFR dual-target inhibitors are more promising than single-target inhibitors as they have a lower risk of drug resistance, higher efficacy, lower dosage, and fewer adverse events. EGFR dual-target inhibitors have been developed sequentially to date, providing new options for remission in patients with previously untreatable malignancies and laying the groundwork for a future generation of compounds. This paper introduces the EGFR family proteins and their synergistic effects with other anticancer targets, and provides a comprehensive review of the development of EGFR dual-target inhibitors in cancer, as well as the opportunities and challenges associated with those fields.
Collapse
Affiliation(s)
- Chao Wang
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China
| | - Yujing Zhang
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao University, Qingdao 266071, Shandong, China.
| | - Tingting Zhang
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China
| | - Jiazhen Xu
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China
| | - Saisai Yan
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China.
| | - Bing Liang
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China.
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
12
|
Al-Wahaibi LH, Mahmoud MA, Mostafa YA, Raslan AE, Youssif BGM. Novel piperine-carboximidamide hybrids: design, synthesis, and antiproliferative activity via a multi-targeted inhibitory pathway. J Enzyme Inhib Med Chem 2023; 38:376-386. [DOI: 10.1080/14756366.2022.2151593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Affiliation(s)
- Lamya H. Al-Wahaibi
- Department of Chemistry, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mohamed A. Mahmoud
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Yaser A. Mostafa
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Ali E. Raslan
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Bahaa G. M. Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| |
Collapse
|
13
|
Emamian S, Soleymani M. Synthesis of tetrazoles through a domino reaction: A molecular electron density theory study of energetics, selectivities, and molecular mechanistic aspects. J Mol Graph Model 2023; 125:108596. [PMID: 37597310 DOI: 10.1016/j.jmgm.2023.108596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/25/2023] [Accepted: 08/06/2023] [Indexed: 08/21/2023]
Abstract
This study corresponds to a molecular electron density theory (MEDT) investigation to shed light on the energetics, selectivities, and molecular mechanistic aspects of an experimental domino reaction. Theoretical evidences at the M06-2X/6-31G(d) level indicates that this domino reaction includes three different successive steps and is initialized by a stepwise HCl elimination from precursor chlorohydrazone NPCH to yield nitrile imine NI-2. A subsequent stepwise and highly regioselective [3 + 2] cycloaddition (32CA) reaction of NI-2 toward tetramethylguanidine TMG-3 affords corresponding formal [3 + 2] cycloadduct CA-1 as the sole product. Finally, a stepwise HNMe2 elimination experienced by CA-1 leads to amino triazole ATA as an aromatic five-membered target product. Computed rate constants reveal that the HCl elimination step should be considered as the bottleneck of this domino reaction. However, a topological analysis of electron localization function (ELF) of NI-2 demonstrates a zwitterionic type (zw-type) 32 C A reaction is expected between NI-2 and TMG-3. This 32CA reaction also displays an almost noticeable polar character arising from moderate electrophilicity and strong nucleophilicity of NI-2 and TMG-3, respectively. The regioselectivity of 32CA reaction can be explained via analysis of Parr functions values calculated at the reactive sites of reagents. The molecular mechanism of the 32CA reaction was explored through portraying bond forming/breaking patterns involved in this polar, stepwise, and zw-type reaction by means of the ELF analysis. Indeed, formation of both C-N single bonds along the first and second steps takes place through coupling of the corresponding pseudoradical centers.
Collapse
Affiliation(s)
- Saeedreza Emamian
- Chemistry Department, Shahrood Branch, Islamic Azad University, Shahrood, Iran.
| | - Mousa Soleymani
- Chemistry Department, Faculty of Science, Ayatollah Boroujerdi University, Boroujerd, Iran.
| |
Collapse
|
14
|
Seddik RG, Shoukry AA, Rashidi FB, Salah-Eldin DS. Investigation on CT-DNA and Protein Interaction of New Pd(II) Complexes Involving Ceftazidime and 3-Amino-1,2,3-triazole: Synthesis, Characterization, Biological Impact, Anticancer Evaluation, and Molecular Docking Approaches. Chem Biodivers 2023; 20:e202301170. [PMID: 37850505 DOI: 10.1002/cbdv.202301170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/12/2023] [Accepted: 10/15/2023] [Indexed: 10/19/2023]
Abstract
Two new palladium (II) complexes, [Pd(CAZ)(OH2 )2 ]2+ (1) and [Pd(3-AT)(OH2 )2 ]2+ (2), (CAZ=ceftazidime, and 3-AT=amitrole) were synthesized and studied for their potential as anticancer drugs with low toxicity and high potency. To fully characterize these complexes, we conducted elemental analysis and FT-IR studies. Furthermore, we irradiated the complexes with Indian 60 Co gamma rays and thoroughly evaluated their antimicrobial properties. Our results demonstrate that the inhibitory activity of complexes was significantly enhanced against (G+) bacteria and fungi. Additionally, we probed the complexes' interaction with CT-DNA and BSA using various techniques, including UV-vis spectroscopy, thermal denaturation, viscometry, gel electrophoresis, and molecular docking studies. Our findings conclusively demonstrate that these complexes possess a strong binding interaction with CT-DNA via minor groove binding and/or electrostatic interactions, as well as excellent binding affinity to BSA. Finally, we conducted a cytotoxicity assay that clearly indicates these complexes hold immense promise as cell growth inhibitors against MCF-7 and HCT-116.
Collapse
Affiliation(s)
- Ramy G Seddik
- Biochemistry Division, Chemistry Department, Faculty of Science, Cairo University, 12613, Giza, Egypt
- Faculty of Basic Science, Galala University, 43511, Suze, Egypt
| | - Azza A Shoukry
- Inorganic Chemistry Division, Chemistry Department, Faculty of Science, Cairo University, 12613, Giza, Egypt
| | - Fatma B Rashidi
- Biochemistry Division, Chemistry Department, Faculty of Science, Cairo University, 12613, Giza, Egypt
| | - Doaa S Salah-Eldin
- Biochemistry Division, Chemistry Department, Faculty of Science, Cairo University, 12613, Giza, Egypt
| |
Collapse
|
15
|
Strzelecka M, Wiatrak B, Jawień P, Czyżnikowska Ż, Świątek P. New Schiff bases derived from dimethylpyridine-1,2,4-triazole hybrid as cytotoxic agents targeting gastrointestinal cancers: Design, synthesis, biological evaluation and molecular docking studies. Bioorg Chem 2023; 139:106758. [PMID: 37540951 DOI: 10.1016/j.bioorg.2023.106758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/13/2023] [Accepted: 07/29/2023] [Indexed: 08/06/2023]
Abstract
In this research, a series of novel hybrid structures of dimethylpyridine-1,2,4-triazole Schiff bases were designed, synthesized, and evaluated for their in vitro cytotoxic potency on several human gastrointestinal cancer cells (EPG, Caco-2, LoVo, LoVo/Dx, HT29) and normal colonic epithelial cells (CCD 841 CoN). Schiff base 4h was the most potent compound against gastric EPG cancer cells (CC50 = 12.10 ± 3.10 μM), being 9- and 21-fold more cytotoxic than 5-FU and cisplatin, respectively. Moreover, it was not toxic to normal cells. Regarding the cytotoxicity against colorectal cancer cells, compounds 4d and 4l exhibited good activity against HT29 cells (CC50 = 52.80 ± 2.80 μM and 61.40 ± 10.70 μM, respectively), and were comparable to or more potent than cisplatin and 5-FU. Also, they were less toxic to normal cells with a higher selectivity index (SI, CCD 841 CoN/HT29 = 4.20 and 2.85, respectively) than reference drugs (SI, CCD 841 CoN/HT29 < 1). Selected Schiff bases were subjected to the P-glycoprotein inhibition assay. Schiff bases 4d, 4e, and 4l influenced P-gp efflux function, significantly increasing the accumulation of rhodamine 123 in colon cancer cell lines. Further mechanistic studies showed that compound 4l induced apoptotic cell death through a caspase-dependent mechanism and by regulating the p53-MDM2 signaling pathway in HT29 cells. Also, physicochemical predictions of compounds 4d, 4e, 4h, and 4i were examined in silico. The results revealed that the compounds possessed promising drug-likeness profiles.
Collapse
Affiliation(s)
- Małgorzata Strzelecka
- Department of Medicinal Chemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland.
| | - Benita Wiatrak
- Department of Pharmacology, Wroclaw Medical University, J. Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland
| | - Paulina Jawień
- Department of Biostructure and Animal Physiology, Wroclaw University of Environmental and Life Sciences, Norwida 25/27, 50-375 Wroclaw, Poland
| | - Żaneta Czyżnikowska
- Department of Basic Chemical Sciences, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland
| | - Piotr Świątek
- Department of Medicinal Chemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland.
| |
Collapse
|
16
|
Draoui Y, Radi S, El Massaoudi M, Bahjou Y, Ouahhoud S, Mamri S, Ferbinteanu M, Benabbes R, Wolff M, Robeyns K, Garcia Y. Coordination Complexes Built from a Ditopic Triazole-Pyrazole Ligand with Antibacterial and Antifungal Performances. Molecules 2023; 28:6801. [PMID: 37836644 PMCID: PMC10574422 DOI: 10.3390/molecules28196801] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/23/2023] [Accepted: 09/24/2023] [Indexed: 10/15/2023] Open
Abstract
Four mononuclear complexes (H3O){[NiL3](ClO4)3} (1), [CoL3](ClO4)2·2H2O (2), [CdL2Cl2] (3) and [CuL3](NO3)2 (4) have been prepared employing a newly synthesized 1,2,4-triazole ligand: 3-(3,5-dimethyl-1H-pyrazol-1-yl)-1H-1,2,4-triazole (L). The structures of the complexes, which crystallized in P63/m (1), P-1 (2), P1 (3), and P21/c (4), are reviewed within the context of the cooperative effect of the hydrogen bonding network and counter anions on the supramolecular formations. Moreover, within the framework of biological activity examination, these compounds showed favorable antibacterial performances compared to those of various species of bacteria, including both Gram-positive and Gram-negative strains. Significant antifungal inhibitory activity towards Fusarium oxysporum f. sp. albedinis fungi was recorded for 3 and 4 over the ligand L.
Collapse
Affiliation(s)
- Youssef Draoui
- LCAE, Department of Chemistry, Faculty of Science, University Mohamed I, P.O. Box 524, Oujda 60 000, Morocco (M.E.M.)
| | - Smaail Radi
- LCAE, Department of Chemistry, Faculty of Science, University Mohamed I, P.O. Box 524, Oujda 60 000, Morocco (M.E.M.)
| | - Mohamed El Massaoudi
- LCAE, Department of Chemistry, Faculty of Science, University Mohamed I, P.O. Box 524, Oujda 60 000, Morocco (M.E.M.)
| | - Yousra Bahjou
- LCAE, Department of Chemistry, Faculty of Science, University Mohamed I, P.O. Box 524, Oujda 60 000, Morocco (M.E.M.)
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université Catholique de Louvain, Place Louis Pasteur 1, 1348 Louvain-la-Neuve, Belgium;
| | - Sabir Ouahhoud
- Laboratory of Biochemistry and Biotechnology, Department of Biology, Faculty of Science, University Mohamed I, P.O. Box 524, Oujda 60 000, Morocco
| | - Samira Mamri
- Laboratory of Biochemistry and Biotechnology, Department of Biology, Faculty of Science, University Mohamed I, P.O. Box 524, Oujda 60 000, Morocco
| | - Marilena Ferbinteanu
- Inorganic Chemistry Department, Faculty of Chemistry, University of Bucharest, Panduri Road, No. 90, 050663 Bucharest, Romania
| | - Redouane Benabbes
- Laboratory of Biochemistry and Biotechnology, Department of Biology, Faculty of Science, University Mohamed I, P.O. Box 524, Oujda 60 000, Morocco
| | - Mariusz Wolff
- Institute of Chemical Catalysis, Faculty of Chemistry, Universität Wien, Währinger Straße 38-42, 1090 Wien, Austria;
| | - Koen Robeyns
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université Catholique de Louvain, Place Louis Pasteur 1, 1348 Louvain-la-Neuve, Belgium;
| | - Yann Garcia
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université Catholique de Louvain, Place Louis Pasteur 1, 1348 Louvain-la-Neuve, Belgium;
| |
Collapse
|
17
|
Elsawi AE, Elbadawi MM, Nocentini A, Almahli H, Giovannuzzi S, Shaldam M, Salem R, Ibrahim TM, Abdel-Aziz HA, Supuran CT, Eldehna WM. 1,5-Diaryl-1,2,4-triazole Ureas as New SLC-0111 Analogues Endowed with Dual Carbonic Anhydrase and VEGFR-2 Inhibitory Activities. J Med Chem 2023; 66:10558-10578. [PMID: 37501287 DOI: 10.1021/acs.jmedchem.3c00721] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Presently, dual targeting by a single small molecule stands out as an effective cancer-fighting weapon. Carbonic anhydrase (CA) and vascular-endothelial growth factor (VEGF) are hypoxia-activatable genes that are implicated in tumorigenesis and progression of hypoxic tumors at different levels. Herein, we designed and synthesized 30 1,5-diaryl-1,2,4-triazole-tethered sulfonamides (11a-f, 12a-l, 13a-f, 15a-f) as novel SLC-0111 analogues with dual CA IX/XII and VEGFR-2 inhibitory activities. The 4-fluorophenyl SLC-0111 tail was replaced by substituted 1,5-diaryl-1,2,4-triazoles. Changing the sulfamoyl motif position provided regioisomers 11a-f and 12a-l. Elongation of the ureido linker yielded derivatives 15a-f. Inhibitory evaluations included a panel of hCAs (hCA I, II, IX, and XII) and screening against 60 cancer cell lines. Promising candidates were assessed for VEGFR-2 inhibition and selectivity and further evaluated on breast cancer cell lines (MCF-7 and T-47D) and the non-tumorigenic (MCF-10A) cells. Molecular docking studies explored the binding modes of the sulfonamides against hCA IX/XII and VEGFR-2 kinase.
Collapse
Affiliation(s)
- Ahmed E Elsawi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Mostafa M Elbadawi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Hadia Almahli
- Department of Chemistry, University of Cambridge, Cambridge CB2 1TN, United Kingdom
| | - Simone Giovannuzzi
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Moataz Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Rofaida Salem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Tamer M Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Dokki, Cairo 12622, Egypt
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| |
Collapse
|
18
|
Singh A, Sonawane P, Kumar A, Singh H, Naumovich V, Pathak P, Grishina M, Khalilullah H, Jaremko M, Emwas AH, Verma A, Kumar P. Challenges and Opportunities in the Crusade of BRAF Inhibitors: From 2002 to 2022. ACS OMEGA 2023; 8:27819-27844. [PMID: 37576670 PMCID: PMC10413849 DOI: 10.1021/acsomega.3c00332] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/27/2023] [Indexed: 08/15/2023]
Abstract
Serine/threonine-protein kinase B-Raf (BRAF; RAF = rapidly accelerated fibrosarcoma) plays an important role in the mitogen-activated protein kinase (MAPK) signaling cascade. Somatic mutations in the BRAF gene were first discovered in 2002 by Davies et al., which was a major breakthrough in cancer research. Subsequently, three different classes of BRAF mutants have been discovered. This class includes class I monomeric mutants (BRAFV600), class II BRAF homodimer mutants (non-V600), and class III BRAF heterodimers (non-V600). Cancers caused by these include melanoma, thyroid cancer, ovarian cancer, colorectal cancer, nonsmall cell lung cancer, and others. In this study, we have highlighted the major binding pockets in BRAF protein, their active and inactive conformations with inhibitors, and BRAF dimerization and its importance in paradoxical activation and BRAF mutation. We have discussed the first-, second-, and third-generation drugs approved by the Food and Drug Administration and drugs under clinical trials with all four different binding approaches with DFG-IN/OUT and αC-IN/OUT for BRAF protein. We have investigated particular aspects and difficulties with all three generations of inhibitors. Finally, this study has also covered recent developments in synthetic BRAF inhibitors (from their discovery in 2002 to 2022), their unique properties, and importance in inhibiting BRAF mutants.
Collapse
Affiliation(s)
- Ankit
Kumar Singh
- Department
of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Pankaj Sonawane
- Department
of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Adarsh Kumar
- Department
of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Harshwardhan Singh
- Department
of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Vladislav Naumovich
- Laboratory
of Computational Modeling of Drugs, Higher Medical and Biological
School, South Ural State University, Chelyabinsk 454008, Russia
| | - Prateek Pathak
- Laboratory
of Computational Modeling of Drugs, Higher Medical and Biological
School, South Ural State University, Chelyabinsk 454008, Russia
| | - Maria Grishina
- Laboratory
of Computational Modeling of Drugs, Higher Medical and Biological
School, South Ural State University, Chelyabinsk 454008, Russia
| | - Habibullah Khalilullah
- Department
of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of
Pharmacy, Qassim University, Unayzah 51911, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health
Initiative and Red Sea Research Center, Division of Biological and
Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core
Laboratories, King Abdullah University of
Science and Technology, Thuwal 23955-6900, Saudi
Arabia
| | - Amita Verma
- Bioorganic
and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical
Sciences, Sam Higginbottom University of
Agriculture, Technology and Sciences, Prayagraj 211007, India
| | - Pradeep Kumar
- Department
of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| |
Collapse
|
19
|
Mohamed MS, Ibrahim NA, Gouda AM, badr M, El-Sherief HA. Design, synthesis and molecular docking of 1,2,4-triazole schiff base hybrids as tubulin, EGFR inhibitors and apoptosis-inducers. J Mol Struct 2023; 1286:135621. [DOI: 10.1016/j.molstruc.2023.135621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
20
|
Oniciuc L, Amăriucăi-Mantu D, Diaconu D, Mangalagiu V, Danac R, Antoci V, Mangalagiu II. Benzoquinoline Derivatives: An Attractive Approach to Newly Small Molecules with Anticancer Activity. Int J Mol Sci 2023; 24:ijms24098124. [PMID: 37175832 PMCID: PMC10179047 DOI: 10.3390/ijms24098124] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
This study presents the synthesis, structural characterization, and in vitro evaluation of anticancer activity of some newly benzo[f]quinoline derivatives. The synthesis is facile and efficient, involving two steps: quaternization of nitrogen heterocycle followed by a [3+2] dipolar cycloaddition reaction. The synthesized compounds were characterized by FTIR, NMR, and X-ray diffraction on monocrystal in the case of compounds 6c and 7c. An in vitro single-dose anticancer assay of eighteen benzo[f]quinoline compounds, quaternary salts, and cycloadducts, was performed. The results showed that the most active compounds were quaternary salts 3d and 3f with aromatic R substituents. Quaternary salt 3d revealed non-selective activity against all types of cancer cells, while salt 3f exhibited a highly selective activity against leukemia cells. Compound 3d also presented remarkable cytotoxic efficiency against four distinct types of cancer cells-namely, non-small cell lung cancer HOP-92, melanoma LOX IMVI, melanoma SK-MEL-5, and breast cancer MDA-MB-468. Compound 3f was selected for five-dose screening. The study also includes SAR correlations.
Collapse
Affiliation(s)
- Liliana Oniciuc
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol 1st Bvd, 700506 Iasi, Romania
| | - Dorina Amăriucăi-Mantu
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol 1st Bvd, 700506 Iasi, Romania
| | - Dumitrela Diaconu
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol 1st Bvd, 700506 Iasi, Romania
- Institute of Interdisciplinary Research-CERNESIM Center, Alexandru Ioan Cuza University of Iasi, 11 Carol I, 700506 Iasi, Romania
| | - Violeta Mangalagiu
- Institute of Interdisciplinary Research-CERNESIM Center, Alexandru Ioan Cuza University of Iasi, 11 Carol I, 700506 Iasi, Romania
| | - Ramona Danac
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol 1st Bvd, 700506 Iasi, Romania
| | - Vasilichia Antoci
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol 1st Bvd, 700506 Iasi, Romania
| | - Ionel I Mangalagiu
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol 1st Bvd, 700506 Iasi, Romania
- Institute of Interdisciplinary Research-CERNESIM Center, Alexandru Ioan Cuza University of Iasi, 11 Carol I, 700506 Iasi, Romania
| |
Collapse
|
21
|
Mohamed FAM, Alakilli SYM, El Azab EF, Baawad FAM, Shaaban EIA, Alrub HA, Hendawy O, Gomaa HAM, Bakr AG, Abdelrahman MH, Trembleau L, Mohammed AF, Youssif BGM. Discovery of new 5-substituted-indole-2-carboxamides as dual epidermal growth factor receptor (EGFR)/cyclin dependent kinase-2 (CDK2) inhibitors with potent antiproliferative action. RSC Med Chem 2023; 14:734-744. [PMID: 37122549 PMCID: PMC10131667 DOI: 10.1039/d3md00038a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
A new series of 5-substituted-3-ethylindole-2-carboxamides 5a-k and 6a-c was designed and synthesised in an attempt to develop a dual targeted antiproliferative agent. Various spectroscopic methods of analysis were used to confirm the structures of the new compounds. The antiproliferative effect of compounds 5a-k and 6a-c against four cancer cell lines was investigated. Compounds 5a-k and 6a-c had significant antiproliferative activity against the four cancer cell lines tested, with mean GI50 values ranging from 37 nM to 193 nM. The most powerful derivatives were compounds 5g, 5i, and 5j, with GI50 values of 55 nM, 49 nM, and 37 nM, respectively, in comparison to the reference erlotinib, which had a GI50 of 33 nM. The four most potent compounds, 5c, 5g, 5i, and 5j, were then investigated for their efficacy as EGFR inhibitors, and the findings showed that the tested compounds inhibited EGFR with IC50 values ranging from 85 nM to 124 nM when compared to the reference erlotinib (IC50 = 80 nM). Moreover, compounds 5c and 5g inhibited CDK2 with IC50 values of 46 ± 05 nM and 33 ± 04 nM, respectively. The EGFR and CDK2 assays revealed that compounds 5i and 5j displayed potent antiproliferative activity and can be considered as potential dual EGFR and CDK2 inhibitors.
Collapse
Affiliation(s)
- Fatma A M Mohamed
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences at Al-Qurayyat, Jouf University Al-Qurayyat 77454 Saudi Arabia
| | - Saleha Y M Alakilli
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University Jeddah 23761 Saudi Arabia
| | - Eman Fawzy El Azab
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences at Al-Qurayyat, Jouf University Al-Qurayyat 77454 Saudi Arabia
- Biochemistry Department, Faculty of Science, Alexandria University Alexandria 21511 Egypt
| | - Faris A M Baawad
- M.B.B.S, Faculty of Medicine, King Abdulaziz University Jeddah 23761 Saudi Arabia
| | - Esraa Ibrahim A Shaaban
- Department of Biochemistry, Graduate; School of Medical Sciences, Nagoya City University Mizuho-cho, Mizuho-ku Nagoya 467-8601 Japan
| | - Heba Abu Alrub
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences at Al-Qurayyat, Jouf University Al-Qurayyat 77454 Saudi Arabia
| | - Omnia Hendawy
- Department of Pharmacology, College of Pharmacy, Jouf University Sakaka 72341 Aljouf Saudi Arabia
- Department of Clinical Pharmacology, Faculty of Medicine, Beni-Suef University Beni-Suef Egypt
| | - Hesham A M Gomaa
- Department of Pharmacology, College of Pharmacy, Jouf University Sakaka 72341 Aljouf Saudi Arabia
| | - Adel G Bakr
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University Assiut Branch Assiut 71524 Egypt
| | - Mostafa H Abdelrahman
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University Assiut 71524 Egypt
| | - Laurent Trembleau
- School of Natural and Computing Sciences, University of Aberdeen Meston Building Aberdeen AB243UE UK
| | - Anber F Mohammed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University Assiut 71526 Egypt +201098294419
| | - Bahaa G M Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University Assiut 71526 Egypt +201098294419
| |
Collapse
|
22
|
Maghraby MTE, Salem OIA, Youssif BGM, Sheha MM. Design, synthesis, and modelling study of new 1,2,3-triazole/chalcone hybrids with antiproliferative action as epidermal growth factor receptor inhibitors. Chem Biol Drug Des 2023; 101:749-759. [PMID: 36366966 DOI: 10.1111/cbdd.14178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/10/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
A novel series of 1,2,3-triazole/chalcone hybrids 6a-n was designed and synthesized using a molecular hybridization approach to develop a new cytotoxic agent capable of targeting epidermal growth factor receptor (EGFR) and/or BRAF. The antiproliferative effect of the novel hybrids was investigated against four cancer cells using doxorubicin as a reference. Hybrids 6a, 6d, 6f-h, and 6n have the highest antiproliferative activity (IC50 values 0.95-1.80 μM) compared to doxorubicin (IC50 1.14 μM). The most potent antiproliferative derivative, compound 6d, was also the most potent EGFR inhibitor with an IC50 of 0.09 ± 0.05 μM, which is comparable to the reference Erlotinib (IC50 = 0.05 ± 0.03 μM). 6d has modest BRAF inhibitory action with an IC50 of 0.90 ± 0.10 μM. The findings were also related to molecular docking studies, which provided models of strong interactions with the EGFR-TK domain for the inhibitors. In cell cycle analysis, hybrid 6d caused a cell cycle arrest at the G1 transition phase.
Collapse
Affiliation(s)
- Mohamed T-E Maghraby
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt.,Pharmaceutical Chemistry Department, Faculty of Pharmacy, New Valley University, Egypt
| | - Ola I A Salem
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Bahaa G M Youssif
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Mahmoud M Sheha
- Department of Medicinal Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sphinx University, Assiut, Egypt
| |
Collapse
|
23
|
Shah BM, Modi P, Trivedi P. Recent Investigation on Synthetic ‘Triazoles’ Scaffold as Potential Pharmacological Agents: A Comprehensive Survey. CHEMISTRY AFRICA 2023. [DOI: 10.1007/s42250-023-00617-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
24
|
Hagar FF, Abbas SH, Abdelhamid D, Gomaa HAM, Youssif BGM, Abdel-Aziz M. New 1,3,4-oxadiazole-chalcone/benzimidazole hybrids as potent antiproliferative agents. Arch Pharm (Weinheim) 2023; 356:e2200357. [PMID: 36351754 DOI: 10.1002/ardp.202200357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/11/2022]
Abstract
A series of new 1,3,4-oxadiazole-chalcone/benzimidazole hybrids 9a-o and 10a-k were designed and synthesized as potential antiproliferative agents. Hybrids 9a-o exhibited remarkable antiproliferative activities on different NCI-60 cell lines in a single-dose assay. The antiproliferative activities of the newly synthesized compounds were evaluated against a panel of four human cancer cell lines (A-549, MCF-7, Panc-1, and HT-29). Compounds 9g-i and their oxygen isosteres, 10f-h, exhibited promising antiproliferative activities with IC50 values ranging from 0.80 to 2.27 µM compared to doxorubicin (IC50 ranging from 0.90 to 1.41 µM). Furthermore, the inhibitory potency of these compounds against the epidermal growth factor receptor (EGFR) and BRAFV600E kinases was evaluated using erlotinib as a reference drug. Molecular modeling studies were done to investigate the binding mode of the most active hybrids in the ATP binding site of EGFR.
Collapse
Affiliation(s)
- Fatma Fouad Hagar
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Samar H Abbas
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Dalia Abdelhamid
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Hesham A M Gomaa
- Pharmacology Department, College of Pharmacy, Jouf University, Sakaka, 72314, Saudi Arabia
| | - Bahaa G M Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Mohamed Abdel-Aziz
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
25
|
Al-Wahaibi LH, Mohammed AF, Abdelrahman MH, Trembleau L, Youssif BGM. Design, Synthesis, and Antiproliferative Activity of New 5-Chloro-indole-2-carboxylate and Pyrrolo[3,4- b]indol-3-one Derivatives as Potent Inhibitors of EGFR T790M/BRAF V600E Pathways. Molecules 2023; 28:1269. [PMID: 36770936 PMCID: PMC9921301 DOI: 10.3390/molecules28031269] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Mutant EGFR/BRAF pathways are thought to be crucial targets for the development of anticancer drugs since they are over-activated in several malignancies. We present here the development of a novel series of 5-chloro-indole-2-carboxylate 3a-e, 4a-c and pyrrolo[3,4-b]indol-3-ones 5a-c derivatives as potent inhibitors of mutant EGFR/BRAF pathways with antiproliferative activity. The cell viability assay results of 3a-e, 4a-c, and 5a-c revealed that none of the compounds tested were cytotoxic, and that the majority of those tested at 50 µM had cell viability levels greater than 87%. Compounds 3a-e, 4a-c, and 5a-c had significant antiproliferative activity with GI50 values ranging from 29 nM to 78 nM, with 3a-e outperforming 4a-c and 5a-c in their inhibitory actions against the tested cancer cell lines. Compounds 3a-e were tested for EGFR inhibition, with IC50 values ranging from 68 nM to 89 nM. The most potent derivative was found to be the m-piperidinyl derivative 3e (R = m-piperidin-1-yl), with an IC50 value of 68 nM, which was 1.2-fold more potent than erlotinib (IC50 = 80 nM). Interestingly, all the tested compounds 3a-e had higher anti-BRAFV600E activity than the reference erlotinib but were less potent than vemurafenib, with compound 3e having the most potent activity. Moreover, compounds 3b and 3e showed an 8-fold selectivity index toward EGFRT790M protein over wild-type. Additionally, molecular docking of 3a and 3b against BRAFV600E and EGFRT790M enzymes revealed high binding affinity and active site interactions compared to the co-crystalized ligands. The pharmacokinetics properties (ADME) of 3a-e revealed safety and good pharmacokinetic profile.
Collapse
Affiliation(s)
- Lamya H. Al-Wahaibi
- Department of Chemistry, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11564, Saudi Arabia
| | - Anber F. Mohammed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Mostafa H. Abdelrahman
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Laurent Trembleau
- School of Natural and Computing Sciences, University of Aberdeen, Meston Building, Aberdeen AB24 3UE, UK
| | - Bahaa G. M. Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| |
Collapse
|
26
|
Kolcuoglu Y, Bekircan O, Fazli H, Sahin E, Ture A, Akdemir A, Hamarat Sanlier S. Design and synthesis of new heterocyclic compounds containing 5-[(1 H-1,2,4-triazol-1-yl)methyl]-3 H-1,2,4-triazole-3-thione structure as potent hEGFR inhibitors. J Biomol Struct Dyn 2023; 41:12753-12767. [PMID: 36688370 DOI: 10.1080/07391102.2023.2167113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/06/2023] [Indexed: 01/24/2023]
Abstract
EGFR is one of the important mediators of the signaling cascade that determines key roles in various biological processes such as growth, differentiation, metabolism and apoptosis in the cell in response to external and internal stimuli. In recent years, it has been proven that although this enzyme activity is tightly regulated in normal cells, if the enzyme activity cannot be controlled, it can lead to malignancy. EGFR is also considered a prominent macromolecule in targeted cancer chemotherapy. For this purpose, a comprehensive modeling studies were conducted against EGFR protein and novel molecules containing 5-[(1H-1,2,4-triazol-1-yl)methyl]-3H-1,2,4-triazole-3-thione structure were suggested to be synthesized. Among the synthesized molecules, compounds 7c, 8c, 8f and 8g were determined to have significant IC50 values. Compound 8g was found to have the IC50 value closest to the very well-known EGFR inhibitor Gefitinib with its noncompetitive inhibition form. Ki value of compound 8g was calculated as 0.00232 µM.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yakup Kolcuoglu
- Department of Chemistry, Faculty of Science, Karadeniz Technical University, Trabzon, Turkey
| | - Olcay Bekircan
- Department of Chemistry, Faculty of Science, Karadeniz Technical University, Trabzon, Turkey
| | - Hilal Fazli
- Department of Chemistry, Faculty of Science, Karadeniz Technical University, Trabzon, Turkey
| | - Emine Sahin
- Department of Chemistry, Faculty of Science, Karadeniz Technical University, Trabzon, Turkey
| | - Aslı Ture
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| | - Atilla Akdemir
- Computer-Aided Drug Discovery Laboratory, Department of Pharmacology, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul, Turkey
| | - Senay Hamarat Sanlier
- Biochemistry Department, Faculty of Science, Ege University, Izmir, Turkey
- Center for Drug Research, Development and Pharmacokinetic Applications (ARGEFAR), Ege University, Izmir, Turkey
| |
Collapse
|
27
|
Pingili D, Svum P, Raghavendra NM. Discovery of Novel 1,2,4‐Oxadiazolyl Triazole Hybrids as B‐Raf Inhibitors for the Treatment of Melanoma. ChemistrySelect 2022. [DOI: 10.1002/slct.202204248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Divya Pingili
- Department of Pharmaceutical Chemistry Sri Venkateshwara College of Pharmacy, Madhapur Hyderabad Telangana India
- Department of Pharmacy Jawaharlal Nehru Technological University Kakinada
| | - Prasad Svum
- Department of Pharmacy Jawaharlal Nehru Technological University Kakinada
| | - Nulgumnalli Manjunathaiah Raghavendra
- Department of Pharmaceutical Chemistry Acharya & BM Reddy College of Pharmacy Bengaluru Karnataka India
- Department of Pharmaceutical Chemistry College of Pharmaceutical Sciences Dayanand Sagar University Bengaluru Karnataka India
| |
Collapse
|
28
|
Abou‐Zied HA, Beshr EAM, Gomaa HAM, Mostafa YA, Youssif BGM, Hayallah AM, Abdel‐Aziz M. Discovery of new cyanopyridine/chalcone hybrids as dual inhibitors of EGFR/BRAF
V600E
with promising antiproliferative properties. Arch Pharm (Weinheim) 2022; 356:e2200464. [PMID: 36526595 DOI: 10.1002/ardp.202200464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 12/23/2022]
Abstract
As dual EGFR and BRAFV600E inhibitors, 2-(3-cyano-4,6-bis(aryl)-2-oxo-1,2-dihydropyridine-1-yl)-N-(4-cinnamoylphenyl) acetamide derivatives 8-20 were developed. Compounds 8, 12, and 13 showed strong antiproliferative activity when the target compounds were synthesized and tested in vitro against four cancer cell lines. These hybrids have a dual inhibition activity on EGFR and BRAFV600E , according to in vitro studies. The EGFR was inhibited by compounds 8, 12, and 13 with IC50 values between 89 and 110 nM, which were equivalent to those of erlotinib (IC50 = 80 nm). Compound 13 was found to be an effective inhibitor of the proliferation of cancer cells (GI50 = 0.72 µM) and demonstrated hopeful inhibitory activity of BRAFV600E (IC50 = 58 nm), which is superior to erlotinib (IC50 = 65 nm). Compound 13 caused apoptosis and showed cell cycle arrest in the G0/G1phase in a study on the MCF-7 cell line. The new compounds can fit tightly into the active sites of EGFR and BRAFV600E kinases, according to molecular docking analyses.
Collapse
Affiliation(s)
- Hesham A. Abou‐Zied
- Medicinal Chemistry Department, Faculty of Pharmacy Deraya University Minia Egypt
| | - Eman A. M. Beshr
- Medicinal Chemistry Department, Faculty of Pharmacy Minia University Minia Egypt
| | - Hesham A. M. Gomaa
- Pharmacology Department, College of Pharmacy Jouf University Sakaka Saudi Arabia
| | - Yaser A. Mostafa
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy Assiut University Assiut Egypt
| | - Bahaa G. M. Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy Assiut University Assiut Egypt
| | - Alaa M. Hayallah
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy Assiut University Assiut Egypt
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy Sphinx University Assiut Egypt
| | - Mohamed Abdel‐Aziz
- Medicinal Chemistry Department, Faculty of Pharmacy Minia University Minia Egypt
| |
Collapse
|
29
|
Alshammari MB, Aly AA, Youssif BGM, Bräse S, Ahmad A, Brown AB, Ibrahim MAA, Mohamed AH. Design and synthesis of new thiazolidinone/uracil derivatives as antiproliferative agents targeting EGFR and/or BRAF V600E. Front Chem 2022; 10:1076383. [PMID: 36578355 PMCID: PMC9792171 DOI: 10.3389/fchem.2022.1076383] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/18/2022] [Indexed: 12/14/2022] Open
Abstract
Thiourea derivatives of uracil were efficiently synthesized via the reaction of 5-aminouracil with isothiocyanates. Then, we prepared uracil-containing thiazoles via condensation of thioureas with diethyl/dimethyl acetylenedicarboxylates. The structures of the products were confirmed by a combination of spectral techniques including infra-red (IR), nuclear magnetic resonance (NMR), mass spectrometry (MS) and elemental analyses. A rationale for the formation of the products is presented. The newly synthesized compounds were evaluated for their in vitro antiproliferative activity against four cancer cell lines. The compounds tested showed promising antiproliferative activity, with GI50 values ranging from 1.10 µM to 10.00 µM. Compounds 3c, 5b, 5c, 5h, 5i, and 5j were the most potent derivatives, with GI50 values ranging from 1.10 µM to 1.80 µM. Compound 5b showed potent inhibitory activity against EGFR and BRAFV600E with IC50 of 91 ± 07 and 93 ± 08 nM, respectively, indicating that this compound could serve as a dual inhibitor of EGFR and BRAFV600E with promising antiproliferative properties. Docking computations revealed the great potency of compounds 5b and 5j towards EGFR and BRAFV600E with docking scores of -8.3 and -9.7 kcal/mol and -8.2 and -9.3 kcal/mol, respectively.
Collapse
Affiliation(s)
- Mohammed B. Alshammari
- Chemistry Department, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharij, Saudi Arabia
| | - Ashraf A. Aly
- Chemistry Department, Faculty of Science, Minia University, El-Minia, Egypt,*Correspondence: Ashraf A. Aly, , ; Bahaa G. M. Youssif, ; Stefan Bräse,
| | - Bahaa G. M. Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Asyut, Egypt,*Correspondence: Ashraf A. Aly, , ; Bahaa G. M. Youssif, ; Stefan Bräse,
| | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruher Institut fur Technologie, Karlsruhe, Germany,Institute of Biological and Chemical Systems (IBCS-FMS), Karlsruhe Institute of Technology, Karlsruhe, Germany,*Correspondence: Ashraf A. Aly, , ; Bahaa G. M. Youssif, ; Stefan Bräse,
| | - Akil Ahmad
- Chemistry Department, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharij, Saudi Arabia
| | - Alan B. Brown
- Chemistry Department, Florida Institute of Technology, Melbourne, FL, United States
| | - Mahmoud A. A. Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, Egypt
| | - Asmaa H. Mohamed
- Chemistry Department, Faculty of Science, Minia University, El-Minia, Egypt
| |
Collapse
|
30
|
El-Wahab HAAA, Ali AM, Abdel-Rahman HM, Qayed WS. Synthesis, biological evaluation, and molecular modeling studies of acetophenones-tethered 1,2,4-triazoles and their oximes as epidermal growth factor receptor inhibitors. Chem Biol Drug Des 2022; 100:981-993. [PMID: 34773452 DOI: 10.1111/cbdd.13982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/12/2021] [Accepted: 11/06/2021] [Indexed: 01/25/2023]
Abstract
A series of 5-(4-pyridyl)-1,2,4-triazoles hybrids with acetophenones and their oxime derivatives was rationally designed and synthesized as epidermal growth factor receptor (EGFR) kinase inhibitors. Initially, drug Likeness and pharmacokinetics properties of the prepared compounds were evaluated. Afterward, the prepared compounds were in vitro screened for their ability to inhibit the growth of the NCI-60 human cancer cell lines where certain compounds showed moderate activity. Compounds 4e and 5b emerged as the most potent compounds in this series were further tested for their EGFR enzyme inhibition activity. They showed IC50 values of 0.14 and 0.18 µM, respectively, in comparison with Gefitinib as a reference with an IC50 value of 0.06 µM. Docking of compounds 4e and 5b into the binding site of EGFR tyrosine kinase was performed to explains their possible binding mode and to compare it with known inhibitors. Moreover, molecular dynamic simulations were estimated for deeper understanding of the binding mode of compounds 4e and 5b at the binding site of EGFR tyrosine kinase. The findings indicated that the novel ligands 4e and 5b were stable in the EGFR tyrosine kinase active site.
Collapse
Affiliation(s)
- Hend A A Abd El-Wahab
- Medicinal Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Ahmed M Ali
- Medicinal Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Hamdy M Abdel-Rahman
- Medicinal Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt.,Pharmaceutical Chemistry Department, Faculty of Pharmacy, Nahda University (NUB), Beni-Suef, Egypt
| | - Wesam S Qayed
- Medicinal Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| |
Collapse
|
31
|
Emami L, Sadeghian S, Mojaddami A, khabnadideh S, Sakhteman A, Sadeghpour H, Faghih Z, Fereidoonnezhad M, Rezaei Z. Design, synthesis and evaluation of novel 1,2,4-triazole derivatives as promising anticancer agents. BMC Chem 2022; 16:91. [DOI: 10.1186/s13065-022-00887-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/29/2022] [Indexed: 11/15/2022] Open
Abstract
AbstractHerein, we reported the synthesis of nineteen novel 1,2,4-triazole derivatives including 1,3-diphenyl-2-(1H-1,2,4-triazol-1-yl) propan-1-ones (7a-e), 1-(1,3-diphenylpropan-2-yl)-1H-1,2,4-triazole (8a-c) and 1,4-diphenyl-2-(1H-1,2,4-triazol-1-yl) butane-1,4-diones (10a-k). The structures of these derivatives were confirmed by spectroscopic techniques like IR, 1H-NMR, Mass spectroscopy and Elemental analysis. The cytotoxic activities of the synthesized compounds were evaluated against three human cancer cell lines including MCF-7, Hela and A549 using MTT assay. Compounds 7d, 7e, 10a and 10d showed a promising cytotoxic activity lower than 12 μM against Hela cell line. The safety of these compounds was also, evaluated on MRC-5 as a normal cell line and relieved that most of the synthesized compounds have proper selectivity against normal and cytotoxic cancerous cell lines. Finally, molecular docking studies were also, done to understand the mechanism and binding modes of these derivatives in the binding pocket of aromatase enzyme as a possible target.
Collapse
|
32
|
Xi Q, Jiang W, Wang H, Liu J, Sun F, Wen B, Zhao X, Gao S, Li Y. A Facile Synthesis and Antitumor Activity of Novel 2-Aryl-2,3- dihydro-1 H-pyrrolo[3,4- b]quinoxalin-1-ones. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2021.1881130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Qian Xi
- College of Chemistry and Chemical Engineering, Bohai University, Jinzhou, China
| | - Wenting Jiang
- College of Life Science, Yan’an University, Yan’an, China
| | - Hongxue Wang
- College of Chemistry and Chemical Engineering, Bohai University, Jinzhou, China
| | - Jia Liu
- Chaoyang Inspection and Testing Certification Center, Chaoyang, China
| | - Fuze Sun
- College of Chemistry and Chemical Engineering, Bohai University, Jinzhou, China
| | - Baohan Wen
- College of Chemistry and Chemical Engineering, Bohai University, Jinzhou, China
| | - Xinyue Zhao
- College of Chemistry and Chemical Engineering, Bohai University, Jinzhou, China
| | - Siyang Gao
- College of Chemistry and Chemical Engineering, Bohai University, Jinzhou, China
| | - Yang Li
- College of Chemistry and Chemical Engineering, Bohai University, Jinzhou, China
| |
Collapse
|
33
|
Dasari G, Bandari S, Kumar Nukala S, Swamy Thirukovela N, Sirassu N, Badithapuram V, Manchal R. In vitro Anticancer and Insilico Studies of Quinoxaline‐sulfonyl‐1,2,4‐triazole Hybrids. ChemistrySelect 2022. [DOI: 10.1002/slct.202200681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Gouthami Dasari
- Department of Chemistry Chaitanya Deemed to be University Warangal 506009, Telangana India
| | - Srinivas Bandari
- Department of Chemistry Chaitanya Deemed to be University Warangal 506009, Telangana India
| | - Satheesh Kumar Nukala
- Department of Chemistry Chaitanya Deemed to be University Warangal 506009, Telangana India
| | | | - Narsimha Sirassu
- Department of Chemistry Chaitanya Deemed to be University Warangal 506009, Telangana India
| | - Vinitha Badithapuram
- Department of Chemistry Chaitanya Deemed to be University Warangal 506009, Telangana India
| | - Ravinder Manchal
- Department of Chemistry Chaitanya Deemed to be University Warangal 506009, Telangana India
| |
Collapse
|
34
|
1,2,4-Triazole Derivatives as Novel and Potent Antifungal Agents: Design, Synthesis and Biological Evaluation. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
35
|
Mansour NI, El-Sayed SM, El-Gohary NS, Abdel-Aziz NI, El-Subbagh HI, Ghaly MA. New phthalimide-based derivatives as EGFR-TK inhibitors: Synthesis, biological evaluation, and molecular modeling study. Bioorg Chem 2022; 127:105966. [PMID: 35728294 DOI: 10.1016/j.bioorg.2022.105966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/30/2022] [Accepted: 06/10/2022] [Indexed: 11/02/2022]
Abstract
A novel series of phthalimide derivatives was synthesized and evaluated for in vitro antitumor activity against six human cancer cell lines; HepG-2, HCT-116, MCF-7, Hep2, PC3 and Hela.The obtained results revealed that compound 32 was the most potent antitumor, while compounds 33, 22 and 24 showed strong activity against all tested cell lines. Further biological evaluation of the most active compounds was done and their in vitro EGFR-TK inhibition was tested, and the results came in accordance with the results of antitumor testing, where 32 displayed promising inhibitory activity (IC50 = 0.065 µM) compared to the standard drug erlotinib (IC50 = 0.067 µM). In addition, compounds 48, 22, 28 and 19 showed strong inhibitory activity (IC50 = 0.089, 0.093, 0.147 and 0.152 µM respectively). Cell cycle analysis was conducted and the results revealed that 32 induced cell cycle arrest on Hela and MCF-7 at G0-G1 phase and Pre-G1 phase causing cell death mainly via apoptosis. Additionally, in vivo antitumor screening revealed that 32 reduced both body weight and tumor volume in solid tumor utilizing Ehrlich ascites carcinoma (EAC) animal model. Molecular modeling study showed that 32 and 48 have the highest affinity for binding with the active site of EGFR-TK with docking score comparable to erlotinib. Compounds 32 and 48 could be used as template models for further optimization.
Collapse
Affiliation(s)
- Nayera I Mansour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Selwan M El-Sayed
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Nadia S El-Gohary
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Naglaa I Abdel-Aziz
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Delta University for Science and Technology, 11152, Gamasa, Egypt
| | - Hussein I El-Subbagh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Mariam A Ghaly
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| |
Collapse
|
36
|
Design, Synthesis and Evaluation of 4-Phenyl-1,2,3-Triazole Substituted Pyrimidine Derivatives as Antiproliferative and Tubulin Polymerization Inhibitors. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
37
|
Design and synthesis of new triarylimidazole derivatives as dual inhibitors of BRAFV600E/p38α with potential antiproliferative activity. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132218] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
38
|
Tan L, Zhang J, Wang Y, Wang X, Wang Y, Zhang Z, Shuai W, Wang G, Chen J, Wang C, Ouyang L, Li W. Development of Dual Inhibitors Targeting Epidermal Growth Factor Receptor in Cancer Therapy. J Med Chem 2022; 65:5149-5183. [PMID: 35311289 DOI: 10.1021/acs.jmedchem.1c01714] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Epidermal growth factor receptor (EGFR) is of great significance in mediating cell signaling transduction and tumor behaviors. Currently, third-generation inhibitors of EGFR, especially osimertinib, are at the clinical frontier for the treatment of EGFR-mutant non-small-cell lung cancer (NSCLC). Regrettably, the rapidly developing drug resistance caused by EGFR mutations and the compensatory mechanism have largely limited their clinical efficacy. Given the synergistic effect between EGFR and other compensatory targets during tumorigenesis and tumor development, EGFR dual-target inhibitors are promising for their reduced risk of drug resistance, higher efficacy, lower dosage, and fewer adverse events than those of single-target inhibitors. Hence, we present the synergistic mechanism underlying the role of EGFR dual-target inhibitors against drug resistance, their structure-activity relationships, and their therapeutic potential. Most importantly, we emphasize the optimal target combinations and design strategies for EGFR dual-target inhibitors and provide some perspectives on new challenges and future directions in this field.
Collapse
Affiliation(s)
- Lun Tan
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Jifa Zhang
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Yuxi Wang
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Xiye Wang
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Yanyan Wang
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Zhixiong Zhang
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Wen Shuai
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Guan Wang
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Juncheng Chen
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Chengdi Wang
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Liang Ouyang
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| |
Collapse
|
39
|
Gomaa HA, Shaker ME, Alzarea SI, Hendawy O, Mohamed FA, Gouda AM, Ali AT, Morcoss MM, Abdelrahman MH, Trembleau L, Youssif BG. Optimization and SAR investigation of novel 2,3-dihydropyrazino[1,2-a]indole-1,4-dione derivatives as EGFR and BRAFV600E dual inhibitors with potent antiproliferative and antioxidant activities. Bioorg Chem 2022; 120:105616. [DOI: 10.1016/j.bioorg.2022.105616] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/14/2021] [Accepted: 01/07/2022] [Indexed: 11/02/2022]
|
40
|
Solid Phase Luminescence and Thermal Transformations of Palladium(II) Complexes with 3-(2-Pyridyl)-1,2,4-Triazoles. THEOR EXP CHEM+ 2022. [DOI: 10.1007/s11237-021-09705-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Biological Evaluation of 4-(1H-triazol-1-yl)benzoic Acid Hybrids as Antioxidant Agents: In Vitro Screening and DFT Study. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112411642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fourteen triazole benzoic acid hybrids were previously characterized. This work aimed to screen their in vitro antioxidant activity using different assays, i.e., DPPH (1,1-diphenyl-1-picrylhydrazyl), reducing the power capability, FRAP (ferric reducing antioxidants power) and ABTS (2,2′-azino-bis(3-ethylben zothiazoline-6-sulfonate) radical scavenging. The 14 compounds showed antioxidant properties in relation to standard BHA (butylated hydroxylanisole) and Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid). Higher antioxidant activity was observed by the parent (1) at a concentration of 100 µg/mL (89.95 ± 0.34 and 88.59 ± 0.13%) when tested by DPPH and ABTS methods in relation to BHA at 100 µg/mL (95.02 ± 0.74 and 96.18 ± 0.33%). The parent (2) demonstrated remarkable scavenging activity when tested by ABTS (62.00 ± 0.24%), however, 3 was less active (29.98 ± 0.13%). Compounds 5, 6, 9, and 11 exhibited good scavenging activity compared to 1. DFT studies were performed using the B3LYP/6-311++g (2d,2p) level of theory to evaluate different antioxidant descriptors for the targets. Three antioxidant mechanisms, i.e., hydrogen atom transfer (HAT), sequential electron transfer proton transfer (SETPT) and sequential proton loss electron transfer (SPLET) were suggested to describe the antioxidant properties of 1–14. Out of the 14 triazole benzoic acid hybrids, 5, 9, 6, and 11 showed some good theoretical results, which were in agreement with some experimental outcomes. Based on the computed (PA and ETE) and (BDE and IP) values in (SPLET) and (HAT and SETPT) mechanisms, respectively, compound 9 emerged has having good antioxidant activity.
Collapse
|
42
|
Bekircan O, Danış Ö, Şahin ME, Çetin M. Monoamine oxidase A and B inhibitory activities of 3,5-diphenyl-1,2,4-triazole substituted [1,2,4]triazolo[3,4-b][1,3,4]thiadiazole derivatives. Bioorg Chem 2021; 118:105493. [PMID: 34814086 DOI: 10.1016/j.bioorg.2021.105493] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/08/2021] [Accepted: 11/13/2021] [Indexed: 11/02/2022]
Abstract
Monoamine oxidase (EC 1.4.3.4, MAO) is a flavin adenine dinucleotide-containing flavoenzyme located on the outer mitochondrial membrane and catalyzes the oxidative deamination of monoaminergic neurotransmitters and dietary amines. MAO exists in humans as two isoenzymes, hMAO-A and hMAO-B, which are distinguished by their tertiary structures, preferred substrates and inhibitors, and selective inhibition of these isoenzymes are used in the treatment of different diseases such as Alzheimer's, Parkinson's and depression. In the present study, we report the design, synthesis and characterization of 3,5-diphenyl-1,2,4-triazole substituted [1,2,4]triazolo[3,4-b][1,3,4]thiadiazole derivatives as novel and selective inhibitors of hMAO-B. Twenty one compounds (38, 39a-h, 41a-d, 42a-h) were screened for their inhibitory activity against hMAO-A and hMAO-B by using in vitro Amplex Red® reagent based fluorometric method and all compounds were found to be as selective h-MAO-B inhibitors to a different degree. The compound 42e and 42h displayed the highest inhibitory activity against hMAO-B with IC50 values of 2.51 and 2.81 µM, respectively, and more than 25-fold selectivity towards inhibition of hMAO-B. A further kinetic evaluation of the most potent derivative (42e) was also performed and a mixed mode of inhibition of hMAO-B by the compound 42e was determined (Ki = 0,26 µM). According to our findings the [1,2,4]triazolo[3,4-b][1,3,4]thiadiazole emerged as a promising scaffold for the development of novel and selective hMAO-B inhibitors.
Collapse
Affiliation(s)
- Olcay Bekircan
- Department of Chemistry, Faculty of Science, Karadeniz Technical University, 61080 Trabzon, Turkey.
| | - Özkan Danış
- Department of Chemistry, Faculty of Arts and Sciences, Marmara University, 34722 Istanbul, Turkey
| | - Mehmet Eren Şahin
- Department of Chemistry, Faculty of Science, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Mert Çetin
- Department of Chemistry, Faculty of Arts and Sciences, Marmara University, 34722 Istanbul, Turkey
| |
Collapse
|
43
|
Astakhov AV, Tarasova EV, Chernysheva AV, Rybakov VB, Starikova ZA, Chernyshev VM. Tautomerism and basicity of carboxylic acid guanyl hydrazides (acylaminoguanidines). Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3246-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Tantawy AH, Meng XG, Marzouk AA, Fouad A, Abdelazeem AH, Youssif BGM, Jiang H, Wang MQ. Structure-based design, synthesis, and biological evaluation of novel piperine-resveratrol hybrids as antiproliferative agents targeting SIRT-2. RSC Adv 2021; 11:25738-25751. [PMID: 35478872 PMCID: PMC9037111 DOI: 10.1039/d1ra04061h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
A series of novel piperine–resveratrol hybrids 5a–h was designed, synthesized, and structurally elucidated by IR, and 1H, 13C, and 19F NMR. Antiproliferative activities of 5a–h were evaluated by NCI against sixty cancer cell lines. Compound 5b, possessing resveratrol pharmacophoric phenolic moieties, showed a complete cell death against leukemia HL-60 (TB) and Breast cancer MDA-MB-468 with growth inhibition percentage of −0.49 and −2.83, respectively. In addition, 5b recorded significant activity against the other cancer cell lines with growth inhibition percentage between 80 to 95. New 5a–h hybrids were evaluated for their inhibitory activities against Sirt-1 and Sirt-2 as molecular targets for their antiproliferative action. Results showed that compounds 5a–h were more potent inhibitors of Sirt-2 than Sirt-1 at 5 μm and 50 μm. Compound 5b showed the strongest inhibition of Sirt-2 (78 ± 3% and 26 ± 3% inhibition at 50 μM and 5 μM, respectively). Investigation of intermolecular interaction via Hirschfeld surface analysis indicates that these close contacts are mainly ascribed to the O–H⋯O hydrogen bonding. To get insights into the Sirt-2 inhibitory mechanism, a docking study was performed where 5b was found to fit nicely inside both extended C-pocket and selectivity pocket and could compete with the substrate acyl-Lys. Another possible binding pattern showed that 5b could act by partial occlusion of the NAD+ C-pocket. Collectively, these findings would contribute significantly to better understanding the Sirt-2 inhibitory mechanism in order to develop a new generation of refined and selective Sirt-2 inhibitors. A series of novel piperine–resveratrol hybrids 5a–h was designed, synthesized, and structurally elucidated by IR, and 1H, 13C, and 19F NMR.![]()
Collapse
Affiliation(s)
- Ahmed H Tantawy
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University Wuhan 430070 People's Republic of China .,Department of Chemistry, College of Science, Huazhong Agricultural University Wuhan 430070 China .,Department of Chemistry, College of Science, Benha University Benha 13518 Egypt
| | - Xiang-Gao Meng
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, School of Chemistry, Central China Normal University Wuhan 430079 China
| | - Adel A Marzouk
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University Assiut Branch Assiut 71524 Egypt
| | - Ali Fouad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University Assiut Branch Assiut 71524 Egypt
| | - Ahmed H Abdelazeem
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University Beni-Suef 62514 Egypt.,Department of Pharmaceutical Sciences, College of Pharmacy, Riyadh Elm University Riyadh 11681 Saudi Arabia
| | - Bahaa G M Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University Assiut 71526 Egypt
| | - Hong Jiang
- Department of Chemistry, College of Science, Huazhong Agricultural University Wuhan 430070 China
| | - Man-Qun Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University Wuhan 430070 People's Republic of China
| |
Collapse
|
45
|
Zveaghintseva M, Stingaci E, Pogrebnoi S, Smetanscaia A, Valica V, Uncu L, Ch. Kravtsov V, Melnic E, Petrou A, Glamočlija J, Soković M, Carazo A, Mladěnka P, Poroikov V, Geronikaki A, Macaev FZ. Chromenol Derivatives as Novel Antifungal Agents: Synthesis, In Silico and In Vitro Evaluation. Molecules 2021; 26:molecules26144304. [PMID: 34299579 PMCID: PMC8307147 DOI: 10.3390/molecules26144304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 11/16/2022] Open
Abstract
Herein we report the synthesis of some new 1H-1,2,4-triazole functionalized chromenols (3a-3n) via tandem reactions of 1-(alkyl/aryl)-2-(1H-1,2,4-triazole-1-yl) with salicylic aldehydes and the evaluation of their antifungal activity. In silico prediction of biological activity with computer program PASS indicate that the compounds have a high novelty compared to the known antifungal agents. We did not find any close analog among the over 580,000 pharmaceutical agents in the Cortellis Drug Discovery Intelligence database at the similarity cutoff of 70%. The evaluation of antifungal activity in vitro revealed that the highest activity was exhibited by compound 3k, followed by 3n. Their MIC values for different fungi were 22.1-184.2 and 71.3-199.8 µM, respectively. Twelve from fourteen tested compounds were more active than the reference drugs ketoconazole and bifonazole. The most sensitive fungus appeared to be Trichoderma viride, while Aspergillus fumigatus was the most resistant one. It was found that the presence of the 2-(tert-butyl)-2H-chromen-2-ol substituent on the 4th position of the triazole ring is very beneficial for antifungal activity. Molecular docking studies on C. albicans sterol 14α-demethylase (CYP51) and DNA topoisomerase IV were used to predict the mechanism of antifungal activities. According to the docking results, the inhibition of CYP51 is a putative mechanism of antifungal activity of the novel chromenol derivatives. We also showed that most active compounds have a low cytotoxicity, which allows us to consider them promising antifungal agents for the subsequent testing activity in in vivo assays.
Collapse
Affiliation(s)
- Marina Zveaghintseva
- Laboratory of Organic Synthesis, Institute of Chemistry, 3 Str. Academiei 3, MD-2028 Chișinău, Moldova; (M.Z.); (E.S.); (S.P.)
| | - Eugenia Stingaci
- Laboratory of Organic Synthesis, Institute of Chemistry, 3 Str. Academiei 3, MD-2028 Chișinău, Moldova; (M.Z.); (E.S.); (S.P.)
| | - Serghei Pogrebnoi
- Laboratory of Organic Synthesis, Institute of Chemistry, 3 Str. Academiei 3, MD-2028 Chișinău, Moldova; (M.Z.); (E.S.); (S.P.)
| | - Anastasia Smetanscaia
- Scientific Center for Drug Research, “Nicolae Testemițanu” State University of Medicine and Pharmacy, Bd. Stefan Cel Mare și Sfant 165, MD-2004 Chișinău, Moldova; (A.S.); (V.V.); (L.U.)
| | - Vladimir Valica
- Scientific Center for Drug Research, “Nicolae Testemițanu” State University of Medicine and Pharmacy, Bd. Stefan Cel Mare și Sfant 165, MD-2004 Chișinău, Moldova; (A.S.); (V.V.); (L.U.)
| | - Livia Uncu
- Scientific Center for Drug Research, “Nicolae Testemițanu” State University of Medicine and Pharmacy, Bd. Stefan Cel Mare și Sfant 165, MD-2004 Chișinău, Moldova; (A.S.); (V.V.); (L.U.)
| | - Victor Ch. Kravtsov
- Laboratory of Physical Methods of Solid State Investigation “Tadeusz Malinowski”, Institute of Applied Physics, Str. Academiei 5, MD-2028 Chișinău, Moldova; (V.C.K.); (E.M.)
| | - Elena Melnic
- Laboratory of Physical Methods of Solid State Investigation “Tadeusz Malinowski”, Institute of Applied Physics, Str. Academiei 5, MD-2028 Chișinău, Moldova; (V.C.K.); (E.M.)
| | - Anthi Petrou
- Department of Pharmacy, School of Health, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Jasmina Glamočlija
- Mycological Laboratory, Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 11060 Beograd, Serbia; (J.G.); (M.S.)
| | - Marina Soković
- Mycological Laboratory, Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 11060 Beograd, Serbia; (J.G.); (M.S.)
| | - Alejandro Carazo
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, 500 05 Hradec Králové, Czech Republic; (A.C.); (P.M.)
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, 500 05 Hradec Králové, Czech Republic; (A.C.); (P.M.)
| | - Vladimir Poroikov
- Laboratory of Structure-Function Based Drug Design, Institute of Biomedical Chemistry, Pogodinskaya Str. 10, Bldg. 8, 119121 Moscow, Russia;
| | - Athina Geronikaki
- Department of Pharmacy, School of Health, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Correspondence: (A.G.); (F.Z.M.); Tel.: +30-2310-99-76-16 (A.G.)
| | - Fliur Z. Macaev
- Laboratory of Organic Synthesis, Institute of Chemistry, 3 Str. Academiei 3, MD-2028 Chișinău, Moldova; (M.Z.); (E.S.); (S.P.)
- Scientific Center for Drug Research, “Nicolae Testemițanu” State University of Medicine and Pharmacy, Bd. Stefan Cel Mare și Sfant 165, MD-2004 Chișinău, Moldova; (A.S.); (V.V.); (L.U.)
- Correspondence: (A.G.); (F.Z.M.); Tel.: +30-2310-99-76-16 (A.G.)
| |
Collapse
|
46
|
Recent developments in mitogen activated protein kinase inhibitors as potential anticancer agents. Bioorg Chem 2021; 114:105161. [PMID: 34328852 DOI: 10.1016/j.bioorg.2021.105161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 01/06/2023]
Abstract
The mitogen activated protein kinase (MAPK) belongs to group of kinase that links the extracellular stimuli to intracellular response. The MAPK signalling pathway (RAS-RAF-MEK-ERK) involved in different pathological conditions like cancer, caused due to genetic or any other factor such as physical or environmental. Many studies have been conducted on the pathological view of MAPK cascade and its associated element like RAS, RAF, MEK, ERK or its isoforms, and still the research is going on particularly with respect to its activation, regulation and inhibition. The MAPK signalling pathway has become the area of research to identify new target for the management of cancer. A number of heterocyclics are key to fight with the cancer associated with these enzymes thus give some hope in the management of cancer by inhibiting MAPK cascade. In the present article, we have focussed on MAPK signalling pathway and role of different heterocyclic scaffolds bearing nitrogen, sulphur and oxygen and about their potential to block MAPK signalling pathway. The heterocyclics are gaining importance due to high potency and selectivity with less off-target effects against different targets involved in the MAPK signalling pathway. We have tried to cover recent advancements in the MAPK signalling pathway inhibitors with an aim to get better understanding of the mechanism of action of the compounds. Several compounds in the preclinical and clinical studies have been thoroughly dealt with. In addition to the synthetic compounds, a significant number of natural products containing heterocyclic moieties as MAPK signalling pathway inhibitors have been put together. The structure activity relationship along with docking studies have been discussed to apprehend the mechanistic studies of various compounds that will ultimately help to design and develop more MAPK signalling pathway inhibitors.
Collapse
|
47
|
Triazolo Based-Thiadiazole Derivatives. Synthesis, Biological Evaluation and Molecular Docking Studies. Antibiotics (Basel) 2021; 10:antibiotics10070804. [PMID: 34356726 PMCID: PMC8300616 DOI: 10.3390/antibiotics10070804] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 11/18/2022] Open
Abstract
The goal of this research is to investigate the antimicrobial activity of nineteen previously synthesized 3,6-disubstituted-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazole derivatives. The compounds were tested against a panel of three Gram-positive and three Gram-negative bacteria, three resistant strains, and six fungi. Minimal inhibitory, bactericidal, and fungicidal concentrations were determined by a microdilution method. All of the compounds showed antibacterial activity that was more potent than both reference drugs, ampicillin and streptomycin, against all bacteria tested. Similarly, they were also more active against resistant bacterial strains. The antifungal activity of the compounds was up to 80-fold higher than ketoconazole and from 3 to 40 times higher than bifonazole, both of which were used as reference drugs. The most active compounds (2, 3, 6, 7, and 19) were tested for their inhibition of P. aeruginosa biofilm formation. Among them, compound 3 showed significantly higher antibiofilm activity and appeared to be equipotent with ampicillin. The prediction of the probable mechanism by docking on antibacterial targets revealed that E. coli MurB is the most suitable enzyme, while docking studies on antifungal targets indicated a probable involvement of CYP51 in the mechanism of antifungal activity. Finally, the toxicity testing in human cells confirmed their low toxicity both in cancerous cell line MCF7 and non-cancerous cell line HK-2.
Collapse
|
48
|
Sarhandi S, Zare Fekri L, Vessally E. Ultrasound Assisted Chromatography-Free Synthesis of Triazolo [1,2- a]Indazole-Triones in the Presence of 1,4-Diazabicyclo[2.2.2] Octanium Diacetate as an Environmentally Friendly Green Media. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2019.1632908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
| | | | - Esmail Vessally
- Department of Chemistry, Payame Noor University, Tehran, Iran
| |
Collapse
|
49
|
Bao J, He X, Zhang JZH. DeepBSP-a Machine Learning Method for Accurate Prediction of Protein-Ligand Docking Structures. J Chem Inf Model 2021; 61:2231-2240. [PMID: 33979150 DOI: 10.1021/acs.jcim.1c00334] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In recent years, machine-learning-based scoring functions have significantly improved the scoring power. However, many of these methods do not perform well in distinguishing the native structure from docked decoy poses due to the lack of decoy structural information in their training data. Here, we developed a machine-learning model, named DeepBSP, that can directly predict the root mean square deviation (rmsd) of a ligand docking pose with reference to its native binding pose. Unlike the binding affinity, the rmsd between the docking poses with reference to their native structures can be straightforwardly determined. By training on a generated data set with 11,925 native complexes and more than 165,000 docked poses, our model shows excellent docking power on our test set and also on the CASF-2016 docking decoy set compared to other major scoring functions. Thus, by combining molecular dockings that generate many poses with the application of DeepBSP, one can more accurately predict the best binding pose that is closest to the native complex structure. This DeepBSP model shall be very useful in picking out poses close to their natives from many poses generated from a dock application.
Collapse
Affiliation(s)
- Jingxiao Bao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.,NYU-ECNU Center for Computational Chemistry, NYU Shanghai, Shanghai 200062, China
| | - John Z H Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.,NYU-ECNU Center for Computational Chemistry, NYU Shanghai, Shanghai 200062, China.,Department of Chemistry, New York University, New York, New York 10003, United States.,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
50
|
Mohamed FAM, Gomaa HAM, Hendawy OM, Ali AT, Farghaly HS, Gouda AM, Abdelazeem AH, Abdelrahman MH, Trembleau L, Youssif BGM. Design, synthesis, and biological evaluation of novel EGFR inhibitors containing 5-chloro-3-hydroxymethyl-indole-2-carboxamide scaffold with apoptotic antiproliferative activity. Bioorg Chem 2021; 112:104960. [PMID: 34020242 DOI: 10.1016/j.bioorg.2021.104960] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022]
Abstract
New EGFR inhibitor series of fifteen 5-chloro-3-hydroxymethyl-indole-2-carboxamide derivatives has been designed, synthesized, and tested for antiproliferative activity against a panel of cancer cell lines. The results showed that p-substituted phenethyl derivatives 10, 11, 13, 15 and 17-19 showed superior antiproliferative activity compared to their m-substituted counterparts 12, 14, 16 and 20. Compounds 15, 16, 19 and 20 displayed promising EGFR inhibitory activity as well as an increase in caspase 3 levels. Compounds 15 and 19 increased caspase-8 and 9 levels, as well as inducing Bax and decreasing Bcl-2 protein levels. Compound 19 demonstrated cell cycle arrest at pre-G1 and G2/M phases. The results of the docking study into the active site of EGFR revealed strong fitting of the new compounds with higher binding affinities compared to erlotinib.
Collapse
Affiliation(s)
- Fatma A M Mohamed
- Clinical Laboratory Science Department, College of Applied Medical Sciences, Jouf University, Aljouf 72341, Saudi Arabia; Chemistry Department, Faculty of Science, Alexandria University, Alexandria-21321, Egypt
| | - Hesham A M Gomaa
- Pharmacology Department, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - O M Hendawy
- Pharmacology Department, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia; Department of Clinical Pharmacology, Faculty of Medicine, Beni-Suef University, Egypt
| | - Asmaa T Ali
- Biochemistry Department, Faculty of Pharmacy, Nahda University, Beni-Suef 62511, Egypt
| | - Hatem S Farghaly
- Biochemistry Department, Faculty of Pharmacy, Nahda University, Beni-Suef 62511, Egypt
| | - Ahmed M Gouda
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Ahmed H Abdelazeem
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Mostafa H Abdelrahman
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Laurent Trembleau
- School of Natural and Computing Sciences, University of Aberdeen, Meston Building, Aberdeen AB243UE, United Kingdom
| | - Bahaa G M Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| |
Collapse
|