1
|
Devi B, Jangid K, Kumar V, Arora T, Kumar N, Dwivedi AR, Parkash J, Kumar V. Phenylstyrylpyrimidine derivatives as potential multipotent therapeutics for Alzheimer's disease. RSC Med Chem 2024; 15:2922-2936. [PMID: 39149109 PMCID: PMC11324047 DOI: 10.1039/d4md00277f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/01/2024] [Indexed: 08/17/2024] Open
Abstract
Alzheimer's disease (AD) is a multifactorial neurological disorder that affects millions of people worldwide. Despite extensive research efforts, there are currently no effective disease-modifying therapeutics available for the complete cure of AD. In the current study, we have designed and synthesized a series of phenyl-styryl-pyrimidine derivatives as potential multifunctional agents against different targets of AD. The compounds were evaluated for their ability to inhibit acetylcholinesterase (AChE), monoamine oxidase (MAO) and β amyloid aggregation which are associated with the initiation and progression of the disease. Several compounds in the series exhibited potent inhibitory activity against AChE and MAO-B, with IC50 values in the low micromolar range. In particular, two compounds, BV-12 and BV-14, were found to exhibit a multipotent profile and showed non-competitive inhibition against MAO-B with IC50 values of 4.93 ± 0.38 & 7.265 ± 0.82 μM, respectively and AChE inhibition with IC50 values of 7.265 and 9.291 μM, respectively. BV-12 and BV-14 also displayed β amyloid self-aggregation inhibition of 32.98% and 23.25%, respectively. Furthermore, molecular modelling studies revealed that BV-14 displayed a docking score of -11.20 kcal mol-1 with MAO-B & -6.767 kcal mol-1 with AChE, forming a stable complex with both proteins. It was concluded that phenyl-styryl-pyrimidine derivatives have the potential to be developed as multitarget directed ligands for the treatment of AD.
Collapse
Affiliation(s)
- Bharti Devi
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, School of Basic Sciences, Central University of Punjab Bathinda Punjab-151401 India
| | - Kailash Jangid
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, School of Basic Sciences, Central University of Punjab Bathinda Punjab-151401 India
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Bathinda-151401 India
| | - Vijay Kumar
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, School of Basic Sciences, Central University of Punjab Bathinda Punjab-151401 India
| | - Tania Arora
- Department of Zoology, School of Basic Sciences, Central University of Punjab Bathinda-151401 India
| | - Naveen Kumar
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, School of Basic Sciences, Central University of Punjab Bathinda Punjab-151401 India
| | - Ashish Ranjan Dwivedi
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Bathinda-151401 India
- Gitam School of Pharmacy Hyderabad Telangana 502329 India
| | - Jyoti Parkash
- Department of Zoology, School of Basic Sciences, Central University of Punjab Bathinda-151401 India
| | - Vinod Kumar
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, School of Basic Sciences, Central University of Punjab Bathinda Punjab-151401 India
| |
Collapse
|
2
|
Kumar N, Jangid K, Kumar V, Yadav RP, Mishra J, Upadhayay S, Kumar V, Devi B, Kumar V, Dwivedi AR, Kumar P, Baranwal S, Bhatti JS, Kumar V. In Vitro and In Vivo Investigations of Chromone Derivatives as Potential Multitarget-Directed Ligands: Cognitive Amelioration Utilizing a Scopolamine-Induced Zebrafish Model. ACS Chem Neurosci 2024; 15:2565-2585. [PMID: 38795037 DOI: 10.1021/acschemneuro.4c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2024] Open
Abstract
Alzheimer's disease is a complex neurological disorder linked with multiple pathological hallmarks. The interrelation of therapeutic targets assists in the enhancement of cognitive decline through interference with overall neuronal transmission. We have synthesized and screened various chromone derivatives as potential multitarget-directed ligands for the effective treatment of Alzheimer's disease. The synthesized compounds exhibited multipotent activity against AChE, BuChE, MAO-B, and amyloid β aggregation. Three potent compounds, i.e., VN-3, VN-14, and VN-19 were identified that displayed remarkable activities against different targets. These compounds displayed IC50 values of 80 nM, 2.52 μM, and 140 nM against the AChE enzyme, respectively, and IC50 values of 2.07 μM, 70 nM, and 450 nM against the MAO-B isoform, respectively. VN-3 displayed potent activity against self-induced Aβ1-42 aggregation with inhibition of 58.3%. In the ROS inhibition studies, the most potent compounds reduced the intracellular ROS levels up to 80% in SH-SY5Y cells at 25 μM concentration. The compounds were found to be neuroprotective and noncytotoxic even at a concentration of 25 μM against SH-SY5Y cells. In silico studies showed that the compounds were nicely accommodated in the active sites of the receptors along with thermodynamically stable orientations. Compound VN-19 exhibited a balanced multitargeting profile against AChE, BuChE, MAO-B, and Aβ1-42 enzymes and was further evaluated for in vivo activities on the scopolamine-induced zebrafish model. VN-19 was found to ameliorate the cognitive decline in zebrafish brains by protecting them against scopolamine-induced neurodegeneration. Thus, VN-3, VN-14, and VN-19 were identified as potent multitarget-directed ligands with a balanced activity profile against different targets and can be developed as therapeutics for AD.
Collapse
Affiliation(s)
- Naveen Kumar
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Kailash Jangid
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab, Bathinda, Punjab 151401, India
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Vishal Kumar
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Ravi Prakash Yadav
- Gastrointestinal Disease Lab, Department of Microbiology, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Jayapriya Mishra
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Shubham Upadhayay
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Vinay Kumar
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Bharti Devi
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Vijay Kumar
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Ashish Ranjan Dwivedi
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab 151401, India
- Gitam School of Pharmacy, Hyderabad, Telangana 502329, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Somesh Baranwal
- Gastrointestinal Disease Lab, Department of Microbiology, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Vinod Kumar
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab, Bathinda, Punjab 151401, India
| |
Collapse
|
3
|
Osmani̇ye D, Sağlik BN, Levent S, Çevi̇k UACAR, Ilgin S, Yurttaş L, Özkay Y, Karaburun AC, Kaplancikli ZA, Gundogdu-Karaburun N. Design, Synthesis, and Biological Effect Studies of Novel Benzofuran-Thiazolylhydrazone Derivatives as Monoamine Oxidase Inhibitors. ACS OMEGA 2024; 9:11388-11397. [PMID: 38496951 PMCID: PMC10938434 DOI: 10.1021/acsomega.3c07703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 03/19/2024]
Abstract
In recent studies, monoamine oxidase (MAO) inhibitory effects of various thiazolylhydrazone derivatives have been demonstrated. Within the scope of this study, 12 new compounds containing thiazolylhydrazone groups were synthesized. The structures of the obtained compounds were elucidated by 1H NMR, 13C NMR, and high-resolution mass spectrometry (HRMS) methods. The inhibitory effects of the final compounds on MAO enzymes were investigated by means of in vitro methods. In addition to enzyme inhibition studies, enzyme kinetic studies of compounds with high inhibitory activity were examined, and their effects on substrate-enzyme relations were investigated. Additionaly, cytotoxicity tests were carried out to determine the toxicities of the selected compounds, and the compounds were found to be nontoxic. The interactions of the active compound with the active site of the enzyme were characterized by in silico methods.
Collapse
Affiliation(s)
- Derya Osmani̇ye
- Department of Pharmaceutical
Chemistry, Faculty of Pharmacy, Anadolu
University, 26470 Eskişehir, Turkey
- Central Research Laboratory (MERLAB), Faculty
of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Begüm Nurpelin Sağlik
- Department of Pharmaceutical
Chemistry, Faculty of Pharmacy, Anadolu
University, 26470 Eskişehir, Turkey
- Central Research Laboratory (MERLAB), Faculty
of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Serkan Levent
- Department of Pharmaceutical
Chemistry, Faculty of Pharmacy, Anadolu
University, 26470 Eskişehir, Turkey
- Central Research Laboratory (MERLAB), Faculty
of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Ulviye ACAR Çevi̇k
- Department of Pharmaceutical
Chemistry, Faculty of Pharmacy, Anadolu
University, 26470 Eskişehir, Turkey
- Central Research Laboratory (MERLAB), Faculty
of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Sinem Ilgin
- Department of Pharmaceutical
Toxicology, Faculty of Pharmacy, Anadolu
University, 26470 Eskişehir, Turkey
| | - Leyla Yurttaş
- Department of Pharmaceutical
Chemistry, Faculty of Pharmacy, Anadolu
University, 26470 Eskişehir, Turkey
| | - Yusuf Özkay
- Department of Pharmaceutical
Chemistry, Faculty of Pharmacy, Anadolu
University, 26470 Eskişehir, Turkey
- Central Research Laboratory (MERLAB), Faculty
of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Ahmet Cagri Karaburun
- Department of Pharmaceutical
Chemistry, Faculty of Pharmacy, Anadolu
University, 26470 Eskişehir, Turkey
| | - Zafer Asım Kaplancikli
- Department of Pharmaceutical
Chemistry, Faculty of Pharmacy, Anadolu
University, 26470 Eskişehir, Turkey
| | - Nalan Gundogdu-Karaburun
- Department of Pharmaceutical
Chemistry, Faculty of Pharmacy, Anadolu
University, 26470 Eskişehir, Turkey
| |
Collapse
|
4
|
El-Halaby LO, El-Husseiny WM, El-Messery SM, Goda FE. Synthesis, in vitro, and in silico studies of new derivatives of diphenylpiperazine scaffold: A key substructure for MAO inhibition. Bioorg Chem 2024; 143:107011. [PMID: 38061181 DOI: 10.1016/j.bioorg.2023.107011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/24/2023] [Accepted: 11/28/2023] [Indexed: 01/24/2024]
Abstract
Fifteen new diphenylpiperazine hybrids were designed, synthesized and in vitro biologically evaluated against hMAOs enzymes via fluorometric method. All of our new compounds displayed strong inhibitory activities against both two isoforms of hMAOs with IC50 range of 0.091-16.32 µM. According to selectivity index values, all hybrids showed higher selectivity against hMAO-A over hMAO-B. Compound 8 exhibited the best hMAO-A inhibition activity (IC50 value = 91 nM, SI = 19.55). With a selectivity index of 31.02 folds over MAO-B, compound 7 was revealed to be the most effective hMAO-A inhibitor. In silico prediction of physicochemical parameters and BBB permeability proved that all of the newly synthesized compounds have favorable pharmacokinetic profiles and acceptable ADME properties and can pass BBB. For clarification and explanation of the biological activity of compounds 7 and 8, molecular docking simulations were carried out. In light of this, 1,4-diphenylpiperazine analogues can be seen as an encouraging lead to develop safe and effective new drugs for treatment of many disorders such as anxiety and depression by inhibition of hMAO-A enzyme.
Collapse
Affiliation(s)
- Lamiaa O El-Halaby
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, P.O. Box 35516, Mansoura, Egypt
| | - Walaa M El-Husseiny
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, P.O. Box 35516, Mansoura, Egypt
| | - Shahenda M El-Messery
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, P.O. Box 35516, Mansoura, Egypt.
| | - Fatma E Goda
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, P.O. Box 35516, Mansoura, Egypt
| |
Collapse
|
5
|
Pal R, Kumar B, Swamy P M G, Chawla PA. Design, synthesis of 1,2,4-triazine derivatives as antidepressant and antioxidant agents: In vitro, in vivo and in silico studies. Bioorg Chem 2023; 131:106284. [PMID: 36444791 DOI: 10.1016/j.bioorg.2022.106284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022]
Abstract
The novel series of substituted-N-(5,6-diphenyl-1,2,4-triazin-3-yl) benzamides (R: 1-12) were designed, synthesized and evaluated for in-vitro and in-vivo antidepressant-like activity. In MAO-A inhibition assay, compound R: 5 and R: 9 displayed most potent activity with IC50 = 0.12 and 0.30 µM. R: 5 and R: 9 were also evaluated for in-vivo antidepressant using FST and TST. In both models, the test samples R: 5 and R: 9 showed noteworthy antidepressant effect. R: 5 showed 46.48 % and 45.96 % reduction in immobility in FST and TST respectively at dosage of 30 mg/kg (p.o). Whereas compound R: 9 reduced the immobility time by 52.76 % and 47.14 % as compared to control in FST and TST, respectively at same dosage. Both the compounds were also tested for behavioural study using actophotometer and grip tests. None of compounds exhibited decrease in locomotor activity. Further, these compounds were subjected to in silico studies to determine their ADME properties along with binding energies and binding orientions. In ADME studies none of the compounds violated the Lipinski rule and all other parameters were also within the acceptable ranges. In docking study R: 5 (-10.7) and R: 9 (-10.4) were also displayed highest docking score. These encouraging results present the pharmacophoric features of substituted-N-(5,6-diphenyl-1,2,4-triazin-3-yl) benzamides as interesting lead for further development of new antidepressant drug molecules.
Collapse
Affiliation(s)
- Rohit Pal
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India; Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru 560107, Karnataka, India
| | - Bhupinder Kumar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India
| | - Guruubasavaraja Swamy P M
- Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru 560107, Karnataka, India
| | - Pooja A Chawla
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India.
| |
Collapse
|
6
|
El-Damasy AK, Park JE, Kim HJ, Lee J, Bang EK, Kim H, Keum G. Identification of New N-methyl-piperazine Chalcones as Dual MAO-B/AChE Inhibitors. Pharmaceuticals (Basel) 2023; 16:ph16010083. [PMID: 36678580 PMCID: PMC9860728 DOI: 10.3390/ph16010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Monoamine oxidase-B (MAO-B), acetylcholinesterase (AChE), and butyrylcholinesterase (BChE) have been considered target enzymes of depression and neurodegenerative diseases, including Alzheimer's disease (AD). In this study, seventeen N-methyl-piperazine chalcones were synthesized, and their inhibitory activities were evaluated against the target enzymes. Compound 2k (3-trifluoromethyl-4-fluorinated derivative) showed the highest selective inhibition against MAO-B with an IC50 of 0.71 μM and selectivity index (SI) of 56.34, followed by 2n (2-fluoro-5-bromophenyl derivative) (IC50 = 1.11 μM, SI = 16.04). Compounds 2k and 2n were reversible competitive MAO-B inhibitors with Ki values of 0.21 and 0.28 μM, respectively. Moreover, 2k and 2n effectively inhibited AChE with IC50 of 8.10 and 4.32 μM, which underscored their multi-target inhibitory modes. Interestingly, compound 2o elicited remarkable inhibitions over MAO-B, AChE, and BChE with IC50 of 1.19-3.87 μM. A cell-based assay of compounds 2k and 2n against Vero normal cells pointed out their low cytotoxicity. In a docking simulation, 2k showed the lowest energy for MAO-B (-11.6 kcal/mol) with four hydrogen bonds and two π-π interactions. Furthermore, in silico studies were conducted, and disclosed that 2k and 2n are expected to possess favorable pharmacokinetic properties, such as the ability to penetrate the blood-brain barrier (BBB). In view of these findings, compounds 2k and 2n could serve as promising potential candidates for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ashraf K. El-Damasy
- Center for Brain Technology, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Correspondence: (A.K.E.-D.); (H.K.); (G.K.)
| | - Jong Eun Park
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Hyun Ji Kim
- Center for Brain Technology, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Jinhyuk Lee
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Eun-Kyoung Bang
- Center for Brain Technology, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
- Correspondence: (A.K.E.-D.); (H.K.); (G.K.)
| | - Gyochang Keum
- Center for Brain Technology, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Correspondence: (A.K.E.-D.); (H.K.); (G.K.)
| |
Collapse
|
7
|
Kilbile JT, Tamboli Y, Gadekar SS, Islam I, Supuran CT, Sapkal SB. An insight into the biological activity and structure-based drug design attributes of sulfonylpiperazine derivatives. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
8
|
Design, Synthesis, Pharmacological and In Silico Screening of Disubstituted-Piperazine Derivatives as Selective and Reversible MAO-A Inhibitors for Treatment of Depression. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Bhawna, Kumar A, Bhatia M, Kapoor A, Kumar P, Kumar S. Monoamine oxidase inhibitors: A concise review with special emphasis on structure activity relationship studies. Eur J Med Chem 2022; 242:114655. [PMID: 36037788 DOI: 10.1016/j.ejmech.2022.114655] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 12/29/2022]
Abstract
Monoamine oxidase enzyme is necessary for the management of brain functions. It oxidatively metabolizes monoamines and produces ammonia, aldehyde and hydrogen peroxide as by-products. Excessive production of by-products of monoamine metabolism generates free radicals which cause cellular apoptosis and several neurodegenerative disorders for example Alzheimer's disease, Parkinson's disease, depression and autism. The inhibition of MAOs is an attractive target for the treatment of neurological disorders. Clinically approved MAO inhibitors for example selegiline, rasagiline, clorgyline, pargyline etc. are irreversible in nature and cause some adverse effects while recently studied reversible MAO inhibitors are devoid of harmful effects of old monoamine oxidase inhibitors. In this review article we have listed various synthesized molecules containing different moieties like coumarin, chalcone, thiazole, thiourea, caffeine, pyrazole, chromone etc. along with their activity, mode of action, structure activity relationship and molecular docking studies.
Collapse
Affiliation(s)
- Bhawna
- Department of Pharmaceutical Sciences,Guru Jambheshwar University of Science and Technology, Hisar, 125001, Haryana, India
| | - Ashwani Kumar
- Department of Pharmaceutical Sciences,Guru Jambheshwar University of Science and Technology, Hisar, 125001, Haryana, India
| | - Meenakshi Bhatia
- Department of Pharmaceutical Sciences,Guru Jambheshwar University of Science and Technology, Hisar, 125001, Haryana, India
| | - Archana Kapoor
- Department of Pharmaceutical Sciences,Guru Jambheshwar University of Science and Technology, Hisar, 125001, Haryana, India
| | - Parvin Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, Haryana, India
| | - Sunil Kumar
- Department of Pharmaceutical Sciences,Guru Jambheshwar University of Science and Technology, Hisar, 125001, Haryana, India.
| |
Collapse
|
10
|
Kumar B, Dwivedi AR, Arora T, Raj K, Prashar V, Kumar V, Singh S, Prakash J, Kumar V. Design, Synthesis, and Pharmacological Evaluation of N-Propargylated Diphenylpyrimidines as Multitarget Directed Ligands for the Treatment of Alzheimer's Disease. ACS Chem Neurosci 2022; 13:2122-2139. [PMID: 35797244 DOI: 10.1021/acschemneuro.2c00132] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Alzheimer's disease (AD), a multifactorial complex neural disorder, is categorized with progressive memory loss and cognitive impairment as main clinical features. The multitarget directed ligand (MTDL) strategy is explored for the treatment of multifactorial diseases such as cancer and AD. Herein, we report the synthesis and screening of 24 N-propargyl-substituted diphenylpyrimidine derivatives as MTDLs against acetylcholine/butyrylcholine esterases and monoamine oxidase enzymes. In this series, VP1 showed the most potent MAO-B inhibitory activity with an IC50 value of 0.04 ± 0.002 μM. VP15 with an IC50 value of 0.04 ± 0.003 μM and a selectivity index of 626 (over BuChE) displayed the most potent AChE inhibitory activity in this series. In the reactive oxygen species (ROS) inhibition studies, VP1 reduced intercellular ROS levels in SH-SY5Y cells by 36%. This series of compounds also exhibited potent neuroprotective potential against 6-hydroxydopamine-induced neuronal damage in SH-SY5Y cells with up to 90% recovery. In the in vivo studies in the rats, the hydrochloride salt of VP15 was orally administered and found to cross the blood-brain barrier and reach the target site. VP15·HCl significantly attenuated the spatial memory impairment and improved the cognitive deficits in the mice. This series of compounds were found to be irreversible inhibitors and showed no cytotoxicity against neuronal cells. In in silico studies, the compounds attained thermodynamically stable orientation with complete occupancy at the active site of the receptors. Thus, N-propargyl-substituted diphenylpyrimidines displayed drug-like characteristics and have the potential to be developed as MTDLs for the effective treatment of AD.
Collapse
Affiliation(s)
- Bhupinder Kumar
- Laboratory of Organic and Medicinal Chemistry, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab 151401, India.,Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab 142001, India
| | - Ashish Ranjan Dwivedi
- Laboratory of Organic and Medicinal Chemistry, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Tania Arora
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Khadga Raj
- Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab 142001, India
| | - Vikash Prashar
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Vijay Kumar
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Shamsher Singh
- Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab 142001, India
| | - Jyoti Prakash
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Vinod Kumar
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab, Bathinda, Punjab 151401, India
| |
Collapse
|
11
|
Design, synthesis and evaluation of piperazine clubbed 1,2,4-triazine derivatives as potent anticonvulsant agents. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132587] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Guo J, Xu A, Cheng M, Wan Y, Wang R, Fang Y, Jin Y, Xie SS, Liu J. Design, Synthesis and Biological Evaluation of New 3,4-Dihydro-2(1H)-Quinolinone-Dithiocarbamate Derivatives as Multifunctional Agents for the Treatment of Alzheimer’s Disease. Drug Des Devel Ther 2022; 16:1495-1514. [PMID: 35611357 PMCID: PMC9124477 DOI: 10.2147/dddt.s354879] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/10/2022] [Indexed: 12/01/2022] Open
Abstract
Background Alzheimer’s disease (AD) belongs to neurodegenerative disease, and the increasing number of AD patients has placed a heavy burden on society, which needs to be addressed urgently. ChEs/MAOs dual-target inhibitor has potential to treat AD according to reports. Purpose To obtain effective multi-targeted agents for the treatment of AD, a novel series of hybrid compounds were designed and synthesized by fusing the pharmacophoric features of 3,4-dihydro-2 (1H)-quinolinone and dithiocarbamate. Methods All compounds were evaluated for their inhibitory abilities of ChEs and MAOs. Then, further biological activities of the most promising candidate 3e were determined, including the ability to cross the blood-brain barrier (BBB), kinetics and molecular model analysis, cytotoxicity in vitro and acute toxicity studies in vivo. Results Most compounds showed potent and clear inhibition to AChE and MAOs. Among them, compound 3e was considered to be the most effective and balanced inhibitor to both AChE and MAOs (IC50=0.28 µM to eeAChE; IC50=0.34 µM to hAChE; IC50=2.81 µM to hMAO-B; IC50=0.91 µM to hMAO-A). In addition, 3e showed mixed inhibition of hAChE and competitive inhibition of hMAO-B in the enzyme kinetic studies. Further studies indicated that 3e could penetrate the BBB and showed no toxicity on PC12 cells and HT-22 cells when the concentration of 3e was lower than 12.5 µM. More importantly, 3e lacked acute toxicity in mice even at high dose (2500 mg/kg, P.O.). Conclusion This work indicated that compound 3e with a six-carbon atom linker and a piperidine moiety at terminal position was a promising candidate and was worthy of further study.
Collapse
Affiliation(s)
- Jie Guo
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
| | - Airen Xu
- Clinical Pharmacology Research Center, The Second Hospital of Yinzhou, Ningbo, Zhejiang, People’s Republic of China
| | - Maojun Cheng
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
| | - Yang Wan
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
| | - Rikang Wang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
| | - Yuanying Fang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
| | - Yi Jin
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
| | - Sai-Sai Xie
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
- Correspondence: Sai-Sai Xie, National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, No. 56, Yangming Road, Donghu District, Nanchang City, Jiangxi Province, 330006, People’s Republic of China, Email
| | - Jing Liu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
- Jing Liu, School of Pharmacy, Jiangxi University of Chinese Medicine, No. 56, Yangming Road, Donghu District, Nanchang City, Jiangxi Province, 330006, People’s Republic of China, Email
| |
Collapse
|
13
|
Yamali C, Inci Gul H, Tugrak Sakarya M, Nurpelin Saglik B, Ece A, Demirel G, Nenni M, Levent S, Cihat Oner A. Quinazolinone-based benzenesulfonamides with low toxicity and high affinity as monoamine oxidase-A inhibitors: Synthesis, biological evaluation and induced-fit docking studies. Bioorg Chem 2022; 124:105822. [DOI: 10.1016/j.bioorg.2022.105822] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/18/2022] [Indexed: 02/07/2023]
|
14
|
Kumar B, Kumar N, Thakur A, Kumar V, Kumar R, Kumar V. A Review on the Arylpiperazine Derivatives as Potential Therapeutics for the Treatment of Various Neurological Disorders. Curr Drug Targets 2022; 23:729-751. [DOI: 10.2174/1389450123666220117104038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/20/2021] [Accepted: 11/17/2021] [Indexed: 01/18/2023]
Abstract
Abstract:
Neurological disorders are disease conditions related to the neurons and central nervous system (CNS). Any kind of structural, electrical, biochemical and functional abnormalities in neurons can lead to various types of disorders like Alzheimer’s disease (AD), depression, Parkinson’s disease (PD), epilepsy, stroke, etc. Currently available medicines are symptomatic and do not treat the disease state. Thus, novel CNS active agents with the potential of complete treatment of an illness are highly desired. A range of small organic molecules are being explored as potential drug candidates for the cure of different neurological disorders. In this context, arylpiperazine has been found to be a versatile scaffold and indispensable pharmacophore in many CNS active agents. A number of molecules with arylpiperazine nucleus have been developed as potent leads for the treatment of AD, PD, depression and other disorders. The arylpiperazine nucleus can be optionally substituted at different chemical structures and offer flexibility for the synthesis of large number of derivatives. In the current review article, we have explored the role of various arylpiperazine containing scaffolds against different neurological disorders, including AD, PD, and depression. The structure-activity relationship studies were conducted for recognizing potent lead compounds. This review article may provide important clues on the structural requirements for the design and synthesis of effective molecules as curative agents for different neurological disorders.
Collapse
Affiliation(s)
- Bhupinder Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, India-151401
| | - Naveen Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, India-151401
| | - Amandeep Thakur
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, India-151401
| | - Vijay Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, India-151401
| | | | - Vinod Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, India-151401
| |
Collapse
|
15
|
Knez D, Hrast M, Frlan R, Pišlar A, Žakelj S, Kos J, Gobec S. Indoles and 1-(3-(benzyloxy)benzyl)piperazines: Reversible and selective monoamine oxidase B inhibitors identified by screening an in-house compound library. Bioorg Chem 2021; 119:105581. [PMID: 34990933 DOI: 10.1016/j.bioorg.2021.105581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/06/2021] [Accepted: 12/20/2021] [Indexed: 11/02/2022]
Abstract
The therapeutic indications for monoamine oxidases A and B (MAO-A and MAO-B) inhibitors that have emerged from biological studies on animal and cellular models of neurological and oncological diseases have focused drug discovery projects upon identifying reversible MAO inhibitors. Screening of our in-house academic compound library identified two hit compounds that inhibit MAO-B with IC50 values in micromolar range. Two series of indole (23 analogues) and 3-(benzyloxy)benzyl)piperazine (16 analogues) MAO-B inhibitors were derived from hits, and screened for their structure-activity relationships. Both series yielded low micromolar selective inhibitors of human MAO-B, namely indole 2 (IC50 = 12.63 ± 1.21 µM) and piperazine 39 (IC50 = 19.25 ± 4.89 µM), which is comparable to selective MAO-B inhibitor isatin (IC50 = 6.10 ± 2.81 µM), yet less potent in comparison to safinamide (IC50 = 0.029 ± 0.002 µM). Selective MAO-B inhibitors 2, 14, 38 and 39 exhibited favourable permeation of the blood-brain barrier and low cytotoxicity in the human neuroblastoma cell line SH-SY5Y.
Collapse
Affiliation(s)
- Damijan Knez
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia.
| | - Martina Hrast
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Rok Frlan
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Anja Pišlar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Simon Žakelj
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Janko Kos
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia; Department of Biotechnology, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Stanislav Gobec
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
16
|
Uslu H, Osmaniye D, Sağlik BN, Levent S, Özkay Y, Benkli K, Kaplancikli ZA. Design, synthesis, in vitro, and in silico studies of 1,2,4-triazole-piperazine hybrid derivatives as potential MAO inhibitors. Bioorg Chem 2021; 117:105430. [PMID: 34678603 DOI: 10.1016/j.bioorg.2021.105430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/10/2021] [Accepted: 10/11/2021] [Indexed: 10/20/2022]
Abstract
Monoamine oxidases (MAOs) have become promising drug targets for the development of central nervous system agents. In recent research, it was shown that numerous piperazine derivatives exhibit hMAO inhibitory activity. Therefore, in this study, a novel series of 1,2,4-triazole-piperazine derivatives (5a-j) were designed, synthesized, characterized, and screened for their hMAO-A and hMAO-B inhibitory activities. When the ADME predictions were examined, it was seen that the pharmacokinetic profiles of all synthesized compounds were appropriate. Compounds 5a, 5b, 5c, and 5e, with H, F, Cl, and NO2 groups on the 4-position of the phenyl ring, respectively, showed important MAO-A inhibitory activity. Compound 5c was found to be the most effective agent among the synthesized compounds with an IC50 value of 0.070 ± 0.002 µM against the MAO-A enzyme. The synthesized compounds appear to support the results of other studies to design MAO inhibitors to obtain more suitable drugs, especially for neurological disorders such as depression and anxiety.
Collapse
Affiliation(s)
- Harun Uslu
- Firat University, Department of Medical Services and Techniques, Vocational School of Health Services, 23119 Elazığ, Turkey.
| | - Derya Osmaniye
- Anadolu University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 26470 Eskişehir, Turkey; Anadolu University, Faculty of Pharmacy, Doping and Narcotic Compounds Analysis Laboratory, 26470 Eskişehir, Turkey
| | - Begüm Nurpelin Sağlik
- Anadolu University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 26470 Eskişehir, Turkey; Anadolu University, Faculty of Pharmacy, Doping and Narcotic Compounds Analysis Laboratory, 26470 Eskişehir, Turkey
| | - Serkan Levent
- Anadolu University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 26470 Eskişehir, Turkey; Anadolu University, Faculty of Pharmacy, Doping and Narcotic Compounds Analysis Laboratory, 26470 Eskişehir, Turkey
| | - Yusuf Özkay
- Anadolu University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 26470 Eskişehir, Turkey; Anadolu University, Faculty of Pharmacy, Doping and Narcotic Compounds Analysis Laboratory, 26470 Eskişehir, Turkey
| | - Kadriye Benkli
- Badakbas Pharmacy, Altintepe Street Koknarli 6/C Maltepe, 34840 Istanbul, Turkey
| | - Zafer Asım Kaplancikli
- Anadolu University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 26470 Eskişehir, Turkey
| |
Collapse
|
17
|
Singh K, Pal R, Khan SA, Kumar B, Akhtar MJ. Insights into the structure activity relationship of nitrogen-containing heterocyclics for the development of antidepressant compounds: An updated review. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130369] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
18
|
Mathew B, Oh JM, Baty RS, Batiha GES, Parambi DGT, Gambacorta N, Nicolotti O, Kim H. Piperazine-substituted chalcones: a new class of MAO-B, AChE, and BACE-1 inhibitors for the treatment of neurological disorders. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:38855-38866. [PMID: 33743158 PMCID: PMC7980107 DOI: 10.1007/s11356-021-13320-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/03/2021] [Indexed: 06/01/2023]
Abstract
Eleven piperazine-containing 1,3-diphenylprop-2-en-1-one derivatives (PC1-PC11) were evaluated for their inhibitory activities against monoamine oxidases (MAOs), cholinesterases (ChEs), and β-site amyloid precursor protein cleaving enzyme 1 (BACE-1) with a view toward developing new treatments for neurological disorders. Compounds PC10 and PC11 remarkably inhibited MAO-B with IC50 values of 0.65 and 0.71 μM, respectively. Ten of the eleven compounds weakly inhibited AChE and BChE with > 50% of residual activities at 10 μM, although PC4 inhibited AChE by 56.6% (IC50 = 8.77 μM). Compound PC3 effectively inhibited BACE-1 (IC50 = 6.72 μM), and PC10 and PC11 moderately inhibited BACE-1 (IC50 =14.9 and 15.3 μM, respectively). Reversibility and kinetic studies showed that PC10 and PC11 were reversible and competitive inhibitors of MAO-B with Ki values of 0.63 ± 0.13 and 0.53 ± 0.068 μM, respectively. ADME predictions for lead compounds revealed that PC10 and PC11 have central nervous system (CNS) drug-likeness. Molecular docking simulations showed that fluorine atom and trifluoromethyl group on PC10 and PC11, respectively, interacted with the substrate cavity of the MAO-B active site. Our results suggested that PC10 and PC11 can be considered potential candidates for the treatment of neurological disorders such as Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, India.
| | - Jong Min Oh
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Roua S Baty
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira, 22511, Egypt
| | - Della Grace Thomas Parambi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jouf University, Sakaka, Al Jo, uf-2014, Saudi Arabia
| | - Nicola Gambacorta
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Via E. Orabona, 4, I-70125, Bari, Italy
| | - Orazio Nicolotti
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Via E. Orabona, 4, I-70125, Bari, Italy
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922, Republic of Korea.
| |
Collapse
|
19
|
El-Halaby LO, El-Husseiny WM, El-Messery SM, Goda FE. Biphenylpiperazine Based MAO Inhibitors: Synthesis, Biological Evaluation, Reversibility and Molecular Modeling Studies. Bioorg Chem 2021; 115:105216. [PMID: 34352710 DOI: 10.1016/j.bioorg.2021.105216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/18/2021] [Accepted: 07/24/2021] [Indexed: 11/18/2022]
Abstract
In this study, 21 new 1,4-biphenylpiperazine derivatives were designed, synthesized and evaluated as monoamine oxidase (MAO) inhibitors by in vitro fluorometric method. All these compounds exhibited inhibitory activity against hMAO enzymes, 17 analogues of them showed selectivity towards hMAO-B over hMAO-A enzyme. Compound 20 exhibited the best activity and selectivity towards hMAO-B with IC50 value of 53 nM and selectivity index of 1122 folds over MAO-A, compared to the reference drugs rasagiline (IC50 = 66 nM) and selegiline (IC50 = 40 nM). Kinetic study and reversibility test of the most potent compound (20) revealed that it is reversible and mixed competitive inhibitor (Ki value is 17 nM for the inhibition of hMAO-B). Compound 20 was evaluated against normal NIH/3T3 mouse embryonic fibroblast cell lines and it was found that it is non-cytotoxic at its effective concentration against hMAO-B. Moreover, compound 20 and the most potent compounds have acceptable ADME properties and good pharmacokinetics profiles. Molecular docking simulations were performed for explanation and elucidation for the biological activity of compounds 19 and 20. Accordingly, 1,4- biphenylpiperazine derivatives can be considered as a promising lead to produce more potent and safer MAO inhibitors for management of various neurological disorders.
Collapse
Affiliation(s)
- Lamiaa O El-Halaby
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, P.O. Box 35516, Mansoura, Egypt
| | - Walaa M El-Husseiny
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, P.O. Box 35516, Mansoura, Egypt
| | - Shahenda M El-Messery
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, P.O. Box 35516, Mansoura, Egypt.
| | - Fatma E Goda
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, P.O. Box 35516, Mansoura, Egypt
| |
Collapse
|
20
|
Kumar B, Thakur A, Dwivedi AR, Kumar R, Kumar V. Multi-Target-Directed Ligands as an Effective Strategy for the Treatment of Alzheimer's Disease. Curr Med Chem 2021; 29:1757-1803. [PMID: 33982650 DOI: 10.2174/0929867328666210512005508] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/25/2021] [Accepted: 04/02/2021] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is a complex neurological disorder, and multiple pathological factors are believed to be involved in the genesis and progression of the disease. A number of hypotheses, including Acetylcholinesterase, Monoamine oxidase, β-Amyloid, Tau protein, etc., have been proposed for the initiation and progression of the disease. At present, acetylcholine esterase inhibitors and memantine (NMDAR antagonist) are the only approved therapies for the symptomatic management of AD. Most of these single-target drugs have miserably failed in the treatment or halting the progression of the disease. Multi-factorial diseases like AD require complex treatment strategies that involve simultaneous modulation of a network of interacting targets. Since the last few years, Multi-Target-Directed Ligands (MTDLs) strategy, drugs that can simultaneously hit multiple targets, is being explored as an effective therapeutic approach for the treatment of AD. In the current review article, the authors have briefly described various pathogenic pathways associated with AD. The importance of Multi-Target-Directed Ligands and their design strategies in recently reported articles have been discussed in detail. Potent leads are identified through various structure-activity relationship studies, and their drug-like characteristics are described. Recently developed promising compounds have been summarized in the article. Some of these MTDLs with balanced activity profiles against different targets have the potential to be developed as drug candidates for the treatment of AD.
Collapse
Affiliation(s)
- Bhupinder Kumar
- Central University of Punjab Department of Pharmaceutical Sciences and Natural Products, India
| | - Amandeep Thakur
- Central University of Punjab Department of Pharmaceutical Sciences and Natural Products, India
| | | | - Rakesh Kumar
- Central University of Punjab, Bathinda, Punjab-151001, India
| | - Vinod Kumar
- Department of Chemistry, Central University of Punjab, Bathinda, Punjab-151001, India
| |
Collapse
|
21
|
Kumar RR, Sahu B, Pathania S, Singh PK, Akhtar MJ, Kumar B. Piperazine, a Key Substructure for Antidepressants: Its Role in Developments and Structure-Activity Relationships. ChemMedChem 2021; 16:1878-1901. [PMID: 33751807 DOI: 10.1002/cmdc.202100045] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Indexed: 01/21/2023]
Abstract
Depression is the single largest contributor to global disability with a huge economic and social burden on the world. There are a number of antidepressant drugs on the market, but treatment-resistant depression and relapse of depression in a large number of patients have increased problems for clinicians. One peculiarity observed in most of the marketed antidepressants is the presence of a piperazine substructure. Although piperazine is also used in the optimization of other pharmacological agents, it is almost extensively used for the development of novel antidepressants. One common understanding is that this is due to its favorable CNS pharmacokinetic profile; however, in the case of antidepressants, piperazine plays a much bigger role and is involved in specific binding conformations of these agents. Therefore, in this review, a critical analysis of the significance of the piperazine moiety in the development of antidepressants has been performed. An overview of current developments in the designing and synthesis of piperazine-based antidepressants (2015 onwards) along with SAR studies is also provided. The various piperazine-based therapeutic agents in early- or late-phase human testing for depression are also discussed. The preclinical compounds discussed in this review will help researchers understand how piperazine actually influences the design and development of novel antidepressant compounds. The SAR studies discussed will provide crucial clues about the structural features and optimizations required to enhance the efficacy and potency of piperazine-based antidepressants.
Collapse
Affiliation(s)
- Ravi Ranjan Kumar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab, 142001, India
| | - Bhaskar Sahu
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab, 142001, India
| | - Shelly Pathania
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab, 142001, India
| | - Pankaj Kumar Singh
- Integrative Physiology and Pharmacology, Institute of Biomedicine, Faculty of Medicine, University of Turku, 20520, Turku, Finland
| | - M Jawaid Akhtar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab, 142001, India
| | - Bhupinder Kumar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab, 142001, India
| |
Collapse
|
22
|
Sharma P, Singh M, Mathew B. An Update of Synthetic Approaches and Structure‐Activity Relationships of Various Classes of Human MAO‐B Inhibitors. ChemistrySelect 2021. [DOI: 10.1002/slct.202004188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Pratibha Sharma
- Chitkara College of Pharmacy Chitkara University Punjab India
| | - Manjinder Singh
- Chitkara College of Pharmacy Chitkara University Punjab India
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus Kochi 682 041 India
| |
Collapse
|
23
|
Wang D, Chen N, Taranto AG, Jin Y, Wen C, Kong DX. Accelerating the identification of subtype selective inhibitors via Three-Dimensional Biologically Relevant Spectrum (BRS-3D): The monoamine oxidase subtypes as a case study. Bioorg Chem 2020; 106:104503. [PMID: 33280834 DOI: 10.1016/j.bioorg.2020.104503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/19/2020] [Indexed: 11/18/2022]
Abstract
Subtype-selective drugs are of great therapeutic importance as they are expected to be more effective and with less side-effects. However, discovery of subtype selective inhibitors was hampered by the high similarity of the binding sites within subfamilies. In this study, we further evaluated the applicability of "Three-Dimensional Biologically Relevant Spectrum (BRS-3D)" for the identification of subtype-selective inhibitors. A case study was performed on monoamine oxidase, which has two subtypes related to distinct diseases. The inhibitory activity against MAO-A/B of 347 compounds experimentally tested in this research was reported. Compound M124 (5H-thiazolo[3,2-a]pyrimidin-5-one) with IC50 less than 100 nM (SI = 23) was selected as a probe to investigate the structure selectivity relationship. Similarity search led to the identification of compound M229 and M249 with IC50 values of 7.4 nM, 4 nM and acceptable selectivity index over MAO-A (M229 SI > 1351, M249 SI > 2500). The molecular basis for subtype selectivity was explored through docking study and attention based DNN model. Additionally, in silico ADME properties were characterized. Accordingly, it is found that BRS-3D is a robust method for subtype selectivity in the early stage of drug discovery and the compounds reported here can be promising leads for further experimental analysis.
Collapse
Affiliation(s)
- Dong Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Nianhang Chen
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Alex Gutterres Taranto
- Laboratory of Bioinformatics and Drug Design, Federal University of São João del-Rei (UFSJ), Brazil
| | - Yuting Jin
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Congcong Wen
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - De-Xin Kong
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
24
|
Takao K, Sakatsume T, Kamauchi H, Sugita Y. Syntheses and Evaluation of 2- or 3-( N-Cyclicamino)chromone Derivatives as Monoamine Oxidase Inhibitors. Chem Pharm Bull (Tokyo) 2020; 68:1082-1089. [DOI: 10.1248/cpb.c20-00579] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Koichi Takao
- Laboratory of Bioorganic Chemistry, Department of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University
| | - Tsukasa Sakatsume
- Laboratory of Bioorganic Chemistry, Department of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University
| | - Hitoshi Kamauchi
- Laboratory of Bioorganic Chemistry, Department of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University
| | - Yoshiaki Sugita
- Laboratory of Bioorganic Chemistry, Department of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University
| |
Collapse
|
25
|
Newly Synthesized Fluorinated Cinnamylpiperazines Possessing Low In Vitro MAO-B Binding. Molecules 2020; 25:molecules25214941. [PMID: 33114548 PMCID: PMC7663645 DOI: 10.3390/molecules25214941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/06/2020] [Accepted: 10/23/2020] [Indexed: 12/22/2022] Open
Abstract
Herein, we report on the synthesis and pharmacological evaluation of ten novel fluorinated cinnamylpiperazines as potential monoamine oxidase B (MAO-B) ligands. The designed derivatives consist of either cinnamyl or 2-fluorocinnamyl moieties connected to 2-fluoropyridylpiperazines. The three-step synthesis starting from commercially available piperazine afforded the final products in overall yields between 9% and 29%. An in vitro competitive binding assay using l-[3H]Deprenyl as radioligand was developed and the MAO-B binding affinities of the synthesized derivatives were assessed. Docking studies revealed that the compounds 8–17 were stabilized in both MAO-B entrance and substrate cavities, thus resembling the binding pose of l-Deprenyl. Although our results revealed that the novel fluorinated cinnamylpiperazines 8–17 do not possess sufficient MAO-B binding affinity to be eligible as positron emission tomography (PET) agents, the herein developed binding assay and the insights gained within our docking studies will certainly pave the way for further development of MAO-B ligands.
Collapse
|
26
|
Piperazine-tuned benzimidazole-based multifunctional fluorescent sensor for the detection of mercury (II) ion and pH. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Zhu M, Alami M, Messaoudi S. Room-Temperature Pd-Catalyzed Synthesis of 1-(Hetero)aryl Selenoglycosides. Org Lett 2020; 22:6584-6589. [PMID: 32806176 DOI: 10.1021/acs.orglett.0c02352] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A general protocol for functionalization of an anomeric selonate anion at room temperature has been reported. By using the PdG3 XantPhos catalyst, the cross-coupling between the in situ-generated glycosyl selenolate and a broad range of (hetero)aryl and alkenyl iodides furnished a series of functionalized selenoglycosides in excellent yields with perfect control of the anomeric configuration.
Collapse
Affiliation(s)
- Mingxiang Zhu
- BioCIS, Univ. Paris-Sud, CNRS, University Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Mouad Alami
- BioCIS, Univ. Paris-Sud, CNRS, University Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Samir Messaoudi
- BioCIS, Univ. Paris-Sud, CNRS, University Paris-Saclay, 92290 Châtenay-Malabry, France
| |
Collapse
|
28
|
Özdemir Z, Alagöz MA, Uslu H, Karakurt A, Erikci A, Ucar G, Uysal M. Synthesis, molecular modelling and biological activity of some pyridazinone derivatives as selective human monoamine oxidase-B inhibitors. Pharmacol Rep 2020; 72:692-704. [PMID: 32144745 DOI: 10.1007/s43440-020-00070-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/03/2020] [Accepted: 01/08/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Since brain neurotransmitter levels are associated with the pathology of various neurodegenerative diseases like Parkinson and Alzheimer, monoamineoxidase (MAO) plays a critical role in balancing these neurotransmitters in the brain. MAO isoforms appear as promising drug targets for the development of central nervous system agents. Pyridazinones have a broad array of biological activities. Here, six pyridazinone derivatives were synthesized and their human monoamine oxidase inhibitory activities were evaluated by molecular docking studies, in silico ADME prediction and in vitro biological screening tests. METHODS The compounds were synthesized by the reaction of different piperazine derivatives with 3 (2H)-pyridazinone ring and MAO-inhibitory effects were investigated. Docking studies were conducted with Maestro11.8 software. RESULTS Most of the synthesized compounds inhibited hMAO-B selectively except compound 4f. Compounds 4a-4e inhibited hMAO-B selectively and reversibly in a competitive mode. Compound 4b was found as the most potent (ki = 0.022 ± 0.001 µM) and selective (SI (Ki hMAO-A/hMAO-B) = 206.82) hMAO-B inhibitor in this series. The results of docking studies were found to be consistent with the results of the in vivo activity studies. Compounds 4a-4e were found to be non-toxic to HepG2 cells at 25 μM concentration. In silico calculations of ADME properties indicated that the compounds have good pharmacokinetic profiles. CONCLUSION It was concluded that 4b is possibly recommended as a promising nominee for the design and development of new pyridazinones which can be used in the treatment of neurological diseases.
Collapse
Affiliation(s)
- Zeynep Özdemir
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Inonu University, 44280, Malatya, Turkey.
| | - Mehmet Abdullah Alagöz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Inonu University, 44280, Malatya, Turkey
| | - Harun Uslu
- Department of Anesthesiology, Vocational School of Health Services, Fırat University, 23119, Elazığ, Turkey
| | - Arzu Karakurt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Inonu University, 44280, Malatya, Turkey
| | - Acelya Erikci
- Department of Biochemistry, Faculty of Pharmacy, Lokman Hekim University, 06510, Ankara, Turkey
| | - Gulberk Ucar
- Department of Biochemistry, Faculty of Pharmacy, Lokman Hekim University, 06510, Ankara, Turkey
| | - Mehtap Uysal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06100, Ankara, Turkey
| |
Collapse
|
29
|
Wu SM, Qiu XY, Liu SJ, Sun J. Single Heterocyclic Compounds as Monoamine Oxidase Inhibitors: From Past to Present. Mini Rev Med Chem 2020; 20:908-920. [PMID: 32116191 DOI: 10.2174/1389557520666200302114620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 04/19/2019] [Accepted: 09/02/2019] [Indexed: 11/22/2022]
Abstract
Inhibitors of monoamine oxidase (MAO) have shown therapeutic values in a variety of neurodegenerative diseases such as depression, Parkinson's disease and Alzheimer's disease. Heterocyclic compounds exhibit a broad spectrum of biological activities and vital leading compounds for the development of chemical drugs. Herein, we focus on the synthesis and screening of novel single heterocyclic derivatives with MAO inhibitory activities during the past decade. This review covers recent pharmacological advancements of single heterocyclic moiety along with structure- activity relationship to provide better correlation among different structures and their receptor interactions.
Collapse
Affiliation(s)
- Su-Min Wu
- College of Science & Technology, Ningbo University, Ningbo, 315212, China
| | - Xiao-Yang Qiu
- College of Science & Technology, Ningbo University, Ningbo, 315212, China.,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Shu-Juan Liu
- College of Science & Technology, Ningbo University, Ningbo, 315212, China
| | - Juan Sun
- School of Biological & Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou 310023, China
| |
Collapse
|
30
|
Kaur P, Kumar B, Gurjar KK, Kumar R, Kumar V, Kumar R. Metal- and Solvent-Free Multicomponent Decarboxylative A 3-Coupling for the Synthesis of Propargylamines: Experimental, Computational, and Biological Investigations. J Org Chem 2020; 85:2231-2241. [PMID: 31877044 DOI: 10.1021/acs.joc.9b02806] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Decarboxylative A3-coupling of ortho-hydroxybenzaldehydes, secondary amines, and alkynoic acids is performed under catalyst and solvent-free conditions. The developed methodology provided a waste-free method for the synthesis of hydroxylated propargylamines which are versatile precursors for various bioactive heterocyclic scaffolds. The experimental and density functional theory studies revealed that the in situ-formed ortho-quinonoid intermediate (formed from ortho-hydroxybenzaldehyde and amine) undergoes a concerted Eschweiler-Clarke type decarboxylation with alkynoic acids. The synthesized compounds were evaluated for MAO-A, MAO-B, and AChE inhibitory activities as potential drug candidates for the treatment of various neurological disorders. Compound 4f was found to be the most potent and selective MAO-B (high selectivity over MAO-A) and AChE inhibitor in the series with IC50 values of 4.27 ± 0.07 and 0.79 ± 0.03 μM, respectively.
Collapse
|
31
|
Hagenow J, Hagenow S, Grau K, Khanfar M, Hefke L, Proschak E, Stark H. Reversible Small Molecule Inhibitors of MAO A and MAO B with Anilide Motifs. Drug Des Devel Ther 2020; 14:371-393. [PMID: 32099324 PMCID: PMC6996489 DOI: 10.2147/dddt.s236586] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/19/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Ligands consisting of two aryl moieties connected via a short spacer were shown to be potent inhibitors of monoamine oxidases (MAO) A and B, which are known as suitable targets in treatment of neurological diseases. Based on this general blueprint, we synthesized a series of 66 small aromatic amide derivatives as novel MAO A/B inhibitors. METHODS The compounds were synthesized, purified and structurally confirmed by spectroscopic methods. Fluorimetric enzymological assays were performed to determine MAO A/B inhibition properties. Mode and reversibility of inhibition was determined for the most potent MAO B inhibitor. Docking poses and pharmacophore models were generated to confirm the in vitro results. RESULTS N-(2,4-Dinitrophenyl)benzo[d][1,3]dioxole-5-carboxamide (55, ST-2043) was found to be a reversible competitive moderately selective MAO B inhibitor (IC50 = 56 nM, Ki = 6.3 nM), while N-(2,4-dinitrophenyl)benzamide (7, ST-2023) showed higher preference for MAO A (IC50 = 126 nM). Computational analysis confirmed in vitro binding properties, where the anilides examined possessed high surface complementarity to MAO A/B active sites. CONCLUSION The small molecule anilides with different substitution patterns were identified as potent MAO A/B inhibitors, which were active in nanomolar concentrations ranges. These small and easily accessible molecules are promising motifs, especially for newly designed multitargeted ligands taking advantage of these fragments.
Collapse
Affiliation(s)
- Jens Hagenow
- Heinrich Heine University Düsseldorf, Institute of Pharmaceutical and Medicinal Chemistry, Duesseldorf40225, Germany
| | - Stefanie Hagenow
- Heinrich Heine University Düsseldorf, Institute of Pharmaceutical and Medicinal Chemistry, Duesseldorf40225, Germany
| | - Kathrin Grau
- Heinrich Heine University Düsseldorf, Institute of Pharmaceutical and Medicinal Chemistry, Duesseldorf40225, Germany
| | - Mohammad Khanfar
- Heinrich Heine University Düsseldorf, Institute of Pharmaceutical and Medicinal Chemistry, Duesseldorf40225, Germany
- Faculty of Pharmacy, The University of Jordan, Amman11942, Jordan
- College of Pharmacy, Alfaisal University, Riyadh11533, Saudi Arabia
| | - Lena Hefke
- Goethe University Frankfurt, Institute of Pharmaceutical Chemistry, Frankfurt60438, Germany
| | - Ewgenij Proschak
- Goethe University Frankfurt, Institute of Pharmaceutical Chemistry, Frankfurt60438, Germany
| | - Holger Stark
- Heinrich Heine University Düsseldorf, Institute of Pharmaceutical and Medicinal Chemistry, Duesseldorf40225, Germany
- Correspondence: Holger Stark Heinrich Heine University Duesseldorf, Institute of Pharmaceutical and Medicinal Chemistry, Universitaetsstr. 1, Duesseldorf40225, GermanyTel +49 211 81-10478Fax +49 211 81-13359 Email
| |
Collapse
|
32
|
Pańczyk K, Pytka K, Jakubczyk M, Rapacz A, Siwek A, Głuch‐Lutwin M, Gryboś A, Słoczyńska K, Koczurkiewicz P, Ryszawy D, Pękala E, Budziszewska B, Starek‐Świechowicz B, Suraj‐Prażmowska J, Walczak M, Żesławska E, Nitek W, Bucki A, Kołaczkowski M, Żelaszczyk D, Francik R, Marona H, Waszkielewicz AM. Synthesis of
N
‐(phenoxyalkyl)‐,
N
‐{2‐[2‐(phenoxy)ethoxy]ethyl}‐ or
N
‐(phenoxyacetyl)piperazine Derivatives and Their Activity Within the Central Nervous System. ChemistrySelect 2019. [DOI: 10.1002/slct.201902648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Katarzyna Pańczyk
- Department of Bioorganic ChemistryChair of Organic ChemistryFaculty of PharmacyJagiellonian University Medical College Medyczna 9 30-688 Krakow Poland
| | - Karolina Pytka
- Department of PharmacodynamicsFaculty of PharmacyJagiellonian University Medical College, Medyczna 9 30-688 Krakow Poland
| | - Magdalena Jakubczyk
- Department of PharmacodynamicsFaculty of PharmacyJagiellonian University Medical College, Medyczna 9 30-688 Krakow Poland
| | - Anna Rapacz
- Department of PharmacodynamicsFaculty of PharmacyJagiellonian University Medical College, Medyczna 9 30-688 Krakow Poland
| | - Agata Siwek
- Department of PharmacobiologyFaculty of PharmacyJagiellonian University Medical College Medyczna 9 30-688 Krakow Poland
| | - Monika Głuch‐Lutwin
- Department of PharmacobiologyFaculty of PharmacyJagiellonian University Medical College Medyczna 9 30-688 Krakow Poland
| | - Anna Gryboś
- Department of PharmacobiologyFaculty of PharmacyJagiellonian University Medical College Medyczna 9 30-688 Krakow Poland
| | - Karolina Słoczyńska
- Department of Pharmaceutical BiochemistryFaculty of PharmacyJagiellonian University Medical College, Medyczna 9 30-688 Krakow Poland
| | - Paulina Koczurkiewicz
- Department of Pharmaceutical BiochemistryFaculty of PharmacyJagiellonian University Medical College, Medyczna 9 30-688 Krakow Poland
| | - Damian Ryszawy
- Department of Cell BiologyFaculty of Biochemistry, Biophysics and BiotechnologyJagiellonian University, Gronostajowa 7 30-387 Krakow Poland
| | - Elżbieta Pękala
- Department of Pharmaceutical BiochemistryFaculty of PharmacyJagiellonian University Medical College, Medyczna 9 30-688 Krakow Poland
| | - Bogusława Budziszewska
- Department of Biochemical ToxicologyFaculty of PharmacyJagiellonian University Medical College Medyczna 9 30-688 Krakow Poland
| | - Beata Starek‐Świechowicz
- Department of Biochemical ToxicologyFaculty of PharmacyJagiellonian University Medical College Medyczna 9 30-688 Krakow Poland
| | - Joanna Suraj‐Prażmowska
- Jagiellonian Centre for Experimental Therapeutics (JCET)Jagiellonian University, Bobrzynskiego 14, 30–348 Krakow Poland, Chair and Department of Toxicology, Faculty of Pharmacy, Jagiellonian University Medical College Medyczna 9 30-688 Krakow Poland
| | - Maria Walczak
- Jagiellonian Centre for Experimental Therapeutics (JCET)Jagiellonian University, Bobrzynskiego 14, 30–348 Krakow Poland, Chair and Department of Toxicology, Faculty of Pharmacy, Jagiellonian University Medical College Medyczna 9 30-688 Krakow Poland
| | - Ewa Żesławska
- Department of ChemistryInstitute of BiologyPedagogical University Podchorążych 2, 30–084 Krakow Poland
| | - Wojciech Nitek
- Faculty of ChemistryJagiellonian University Gronostajowa 2 30-387 Krakow Poland
| | - Adam Bucki
- Department of Medicinal ChemistryChair of Pharmaceutical ChemistryFaculty of PharmacyJagiellonian University Medical College Medyczna 9 30-688 Krakow Poland
| | - Marcin Kołaczkowski
- Department of Medicinal ChemistryChair of Pharmaceutical ChemistryFaculty of PharmacyJagiellonian University Medical College Medyczna 9 30-688 Krakow Poland
| | - Dorota Żelaszczyk
- Department of Bioorganic ChemistryChair of Organic ChemistryFaculty of PharmacyJagiellonian University Medical College Medyczna 9 30-688 Krakow Poland
| | - Renata Francik
- Department of Bioorganic ChemistryChair of Organic ChemistryFaculty of PharmacyJagiellonian University Medical College Medyczna 9 30-688 Krakow Poland
| | - Henryk Marona
- Department of Bioorganic ChemistryChair of Organic ChemistryFaculty of PharmacyJagiellonian University Medical College Medyczna 9 30-688 Krakow Poland
| | - Anna M. Waszkielewicz
- Department of Bioorganic ChemistryChair of Organic ChemistryFaculty of PharmacyJagiellonian University Medical College Medyczna 9 30-688 Krakow Poland
| |
Collapse
|
33
|
Guglielmi P, Carradori S, Ammazzalorso A, Secci D. Novel approaches to the discovery of selective human monoamine oxidase-B inhibitors: is there room for improvement? Expert Opin Drug Discov 2019; 14:995-1035. [PMID: 31268358 DOI: 10.1080/17460441.2019.1637415] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Selective monoamine oxidase-B (MAO-B) inhibitors are currently used as coadjuvants for the treatment of early motor symptoms in Parkinson's disease. They can, based on their chemical structure and mechanism of inhibition, be categorized into reversible and irreversible agents. Areas covered: This review provides a comprehensive update on the development state of selective MAO-B inhibitors describing the results, structures, structure-activity relationships (SARs) and Medicinal chemistry strategies as well as the related shortcomings over the past five years. Expert opinion: Researchers have explored and implemented new and old chemical scaffolds achieving high inhibitory potencies and isoform selectivity. Most of them were characterized and proposed as multitarget agents able to act at different levels (including AChE inhibition, H3R or A2AR antagonism, antioxidant and chelating properties, Aβ1-42 aggregation reduction) in the network of aetiologies of neurodegenerative disorders. These results can also be used to avoid 'cheese-reaction' effects and the occurrence of serotonergic syndrome in patients.
Collapse
Affiliation(s)
- Paolo Guglielmi
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma , Rome , Italy
| | - Simone Carradori
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara , Chieti , Italy
| | | | - Daniela Secci
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma , Rome , Italy
| |
Collapse
|
34
|
Kumar B, Kumar V, Prashar V, Saini S, Dwivedi AR, Bajaj B, Mehta D, Parkash J, Kumar V. Dipropargyl substituted diphenylpyrimidines as dual inhibitors of monoamine oxidase and acetylcholinesterase. Eur J Med Chem 2019; 177:221-234. [PMID: 31151057 DOI: 10.1016/j.ejmech.2019.05.039] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/24/2019] [Accepted: 05/13/2019] [Indexed: 01/04/2023]
Abstract
Alzheimer's disease (AD) is a multifactorial neurological disorder involving complex pathogenesis. Single target directed drugs proved ineffective and since last few years' different pharmacological strategies including multi-targeting agents are being explored for the effective drug development for AD. A total of 19 dipropargyl substituted diphenylpyrimidines have been synthesized and evaluated for the monoamine oxidase (MAO) and acetylcholinesterase (AChE) inhibition potential. All the compounds were found to be selective and reversible inhibitors of MAO-B isoform. These compounds also displayed good AChE inhibition potential with IC50 values in low micromolar range. AVB4 was found to be the most potent MAO-B inhibitor with IC50 value of 1.49 ± 0.09 μM and AVB1 was found to be the most potent AChE inhibitor with IC50 value of 1.35 ± 0.03 μM. In the ROS protection inhibition studies, AVB1 and AVB4 displayed weak but interesting activity in SH-SY5Y cells. In the cytotoxicity studies involving SH-SY5Y cells, both AVB1 and AVB4 were found to be non-toxic to the tissue cells. In the molecular dynamic simulation studies of 30 ns, the potent compounds were found to be quite stable in the active site of MAO-B and AChE. The results suggested that AVB1 and AVB4 are promising dual inhibitors and have the potential to be developed as anti-Alzheimer's drug.
Collapse
Affiliation(s)
- Bhupinder Kumar
- Laboratory of Organic and Medicinal Chemistry, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, 151001, India
| | - Vijay Kumar
- Laboratory of Organic and Medicinal Chemistry, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, 151001, India
| | - Vikash Prashar
- Department of Animal Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Suresh Saini
- Laboratory of Organic and Medicinal Chemistry, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, 151001, India
| | - Ashish Ranjan Dwivedi
- Laboratory of Organic and Medicinal Chemistry, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, 151001, India
| | - Beenu Bajaj
- Laboratory of Organic and Medicinal Chemistry, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, 151001, India
| | - Devashish Mehta
- Laboratory of Organic and Medicinal Chemistry, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, 151001, India
| | - Jyoti Parkash
- Department of Animal Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India.
| | - Vinod Kumar
- Laboratory of Organic and Medicinal Chemistry, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, 151001, India.
| |
Collapse
|
35
|
Popiołek Ł, Biernasiuk A, Paruch K, Malm A, Wujec M. Synthesis and in Vitro Antimicrobial Activity Screening of New 3-Acetyl-2,5-disubstituted-1,3,4-oxadiazoline Derivatives. Chem Biodivers 2019; 16:e1900082. [PMID: 31050208 DOI: 10.1002/cbdv.201900082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 03/29/2019] [Indexed: 01/18/2023]
Abstract
Thirteen new 3-acetyl-2,5-disubstituted-1,3,4-oxadiazoline derivatives were synthesized from corresponding hydrazide-hydrazones of isonicotinic acid in the reaction with acetic anhydride. The obtained compounds were identified with the use of spectral methods (IR, 1 H-NMR, 13 C-NMR, MS). In vitro antimicrobial activity screening of synthesized compounds against a panel of bacteria and fungi revealed interesting antibacterial and antifungal activity of tested 1,3,4-oxadiazoline derivatives, which is comparable to that of commonly used antimicrobial agents.
Collapse
Affiliation(s)
- Łukasz Popiołek
- Chair and Department of Organic Chemistry, Faculty of Pharmacy with Medical Analytics Division, Medical University of Lublin, 4A Chodźki Street, 20-093, Lublin, Poland
| | - Anna Biernasiuk
- Chair and Department of Pharmaceutical Microbiology, Faculty of Pharmacy with Medical Analytics Division, Medical University of Lublin, 1 Chodźki Street, 20-093, Lublin, Poland
| | - Kinga Paruch
- Chair and Department of Organic Chemistry, Faculty of Pharmacy with Medical Analytics Division, Medical University of Lublin, 4A Chodźki Street, 20-093, Lublin, Poland
| | - Anna Malm
- Chair and Department of Pharmaceutical Microbiology, Faculty of Pharmacy with Medical Analytics Division, Medical University of Lublin, 1 Chodźki Street, 20-093, Lublin, Poland
| | - Monika Wujec
- Chair and Department of Organic Chemistry, Faculty of Pharmacy with Medical Analytics Division, Medical University of Lublin, 4A Chodźki Street, 20-093, Lublin, Poland
| |
Collapse
|
36
|
Kumar B, Dwivedi AR, Sarkar B, Gupta SK, Krishnamurthy S, Mantha AK, Parkash J, Kumar V. 4,6-Diphenylpyrimidine Derivatives as Dual Inhibitors of Monoamine Oxidase and Acetylcholinesterase for the Treatment of Alzheimer's Disease. ACS Chem Neurosci 2019; 10:252-265. [PMID: 30296051 DOI: 10.1021/acschemneuro.8b00220] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder with multifactorial pathogenesis. Monoamine oxidase (MAO) and acetylcholinesterase enzymes (AChE) are potential targets for the treatment of AD. A total of 15 new propargyl containing 4,6-diphenylpyrimidine derivatives were synthesized and screened for the MAO and AChE inhibition activities along with ROS production inhibition and metal-chelation potential. All the synthesized compounds were found to be selective and potent inhibitors of MAO-A and AChE enzymes at nanomolar concentrations. VB1 was found to be the most potent MAO-A and BuChE inhibitor with IC50 values of 18.34 ± 0.38 nM and 0.666 ± 0.03 μM, respectively. It also showed potent AChE inhibition with an IC50 value of 30.46 ± 0.23 nM. Compound VB8 was found to be the most potent AChE inhibitor with an IC50 value of 9.54 ± 0.07 nM and displayed an IC50 value of 1010 ± 70.42 nM against the MAO-A isoform. In the cytotoxic studies, these compounds were found to be nontoxic to the human neuroblastoma SH-SY5Y cells even at 25 μM concentration. All the compounds were found to be reversible inhibitors of MAO-A and AChE enzymes. In addition, these compounds also showed good neuroprotective properties against 6-OHDA- and H2O2-induced neurotoxicity in SH-SY5Y cells. All the compounds accommodate nicely to the hydrophobic cavity of MAO-A and AChE enzymes. In the molecular dynamics simulation studies, both VB1 and VB8 were found to be stable in the respective cavities for 30 ns. Thus, 4,6-diphenylpyrimidine derivatives can act as promising leads in the development of dual-acting inhibitors targeting MAO-A and AChE enzymes for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Bhupinder Kumar
- Laboratory of Organic and Medicinal Chemistry, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab 151001, India
| | - Ashish Ranjan Dwivedi
- Laboratory of Organic and Medicinal Chemistry, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab 151001, India
| | - Bibekananda Sarkar
- Department of Animal Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab 151001, India
| | - Sukesh Kumar Gupta
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Sairam Krishnamurthy
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Anil K. Mantha
- Department of Animal Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab 151001, India
| | - Jyoti Parkash
- Department of Animal Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab 151001, India
| | - Vinod Kumar
- Laboratory of Organic and Medicinal Chemistry, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab 151001, India
| |
Collapse
|
37
|
N-acylanthranilic acid derivatives with anti-Aβ1–42 aggregation activity from the leaves of Isatis indigotica fortune. Fitoterapia 2018; 128:169-174. [DOI: 10.1016/j.fitote.2018.05.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/17/2018] [Accepted: 05/18/2018] [Indexed: 11/19/2022]
|