1
|
El Hassab MA, Eldehna WM, Hassan GS, Abou-Seri SM. Multi-stage structure-based virtual screening approach combining 3D pharmacophore, docking and molecular dynamic simulation towards the identification of potential selective PARP-1 inhibitors. BMC Chem 2025; 19:30. [PMID: 39893479 PMCID: PMC11786381 DOI: 10.1186/s13065-025-01389-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 01/14/2025] [Indexed: 02/04/2025] Open
Abstract
Presently, humanity is confronted with a range of diseases that have high death rates, especially those linked to cancerous growths. Several enzymes and proteins have been discovered as highly attractive targets for cancer treatment. The PARP family consists of 17 members and plays a crucial role in repairing DNA damage, which enables the survival of cancer cells. PARP-1 and, to a lesser extent, PARP-2 display above 90% activity in response to DNA damage, thereby distinguishing them apart from other members of the PARP family. Elevated levels of PARP-1 were observed in many types of tumor cells, such as breast, lung, ovarian, prostate, and melanomas. In an attempt to provide a future guide for developing selective inhibitors for PARP-1 over PARP-2 to minimize the resulting side effects from PARP-2 inhibitors, we constructed a structure-based virtual screening approach (SBVS). Firstly. A 3D pharmacophore was constructed based on the interaction of the selective inhibitor compound IV. After that, a database of nearly 450,000 phthalimide-containing inhibitors was screened through the validated pharmacophore, and 165 compounds were retrieved. The retrieved compounds were docked into the active site of PARP-1 where only 5 compounds MWGS-1-5 achieved a favorable docking score than the reference IV (-16.8 Kcal/mol). Redocking of the five compounds should have excellent selectivity for PARP-1 over PARP-2, especially compound MWGS-1. Further endorsement via molecular dynamics has proven higher affinity and selectivity for MWGS-1 towards PARP-1 over PARP-2, in which PARP-1- MWGS-1 and PARP-1- MWGS-1 achieved RMSD values of 1.42 and 2.8 Å, respectively.
Collapse
Affiliation(s)
- Mahmoud A El Hassab
- Department of Medicinal Chemistry, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai, Ras Sudr, 46612, Egypt.
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, P.O. Box 33516, Kafrelsheikh, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Canal El Mahmoudia St, Alexandria, 21648, Egypt
| | - Ghaneya S Hassan
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
- Pharmaceutical Chemistry Department, School of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Sahar M Abou-Seri
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| |
Collapse
|
2
|
Bai YR, Yang WG, Jia R, Sun JS, Shen DD, Liu HM, Yuan S. The recent advance and prospect of poly(ADP-ribose) polymerase inhibitors for the treatment of cancer. Med Res Rev 2025; 45:214-273. [PMID: 39180380 DOI: 10.1002/med.22069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/29/2024] [Accepted: 07/30/2024] [Indexed: 08/26/2024]
Abstract
Chemotherapies are commonly used in cancer therapy, their applications are limited to low specificity, severe adverse reactions, and long-term medication-induced drug resistance. Poly(ADP-ribose) polymerase (PARP) inhibitors are a novel class of antitumor drugs developed to solve these intractable problems based on the mechanism of DNA damage repair, which have been widely applied in the treatment of ovarian cancer, breast cancer, and other cancers through inducing synthetic lethal effect and trapping PARP-DNA complex in BRCA gene mutated cancer cells. In recent years, PARP inhibitors have been widely used in combination with various first-line chemotherapy drugs, targeted drugs and immune checkpoint inhibitors to expand the scope of clinical application. However, the intricate mechanisms underlying the drug resistance to PARP inhibitors, including the restoration of homologous recombination, stabilization of DNA replication forks, overexpression of drug efflux protein, and epigenetic modifications pose great challenges and desirability in the development of novel PARP inhibitors. In this review, we will focus on the mechanism, structure-activity relationship, and multidrug resistance associated with the representative PARP inhibitors. Furthermore, we aim to provide insights into the development prospects and emerging trends to offer guidance for the clinical application and inspiration for the development of novel PARP inhibitors and degraders.
Collapse
Affiliation(s)
- Yi-Ru Bai
- Department of Pharmacy, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
- Key Laboratory of Advanced Drug Preparation Technologies, School of Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Wei-Guang Yang
- Department of Pharmacy, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Rui Jia
- Department of Pharmacy, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Ju-Shan Sun
- Department of Pharmacy, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Dan-Dan Shen
- Department of Obstetrics and Gynecology, Zhengzhou Key Laboratory of Endometrial Disease Prevention and Treatment, Zhengzhou, China
- Gynecology Department, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hong-Min Liu
- Department of Pharmacy, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
- Key Laboratory of Advanced Drug Preparation Technologies, School of Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Shuo Yuan
- Department of Pharmacy, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
- Key Laboratory of Advanced Drug Preparation Technologies, School of Pharmacy, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Nuha D, Evren AE, Özkan BNS, Gundogdu-Karaburun N, Karaburun AÇ. Design, synthesis, biological evaluation, and molecular modeling simulations of new phthalazine-1,4-dione derivatives as anti-Alzheimer's agents. Arch Pharm (Weinheim) 2024; 357:e2400067. [PMID: 38967191 DOI: 10.1002/ardp.202400067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 07/06/2024]
Abstract
The development of targeted phthalazine-1,4-dione acetylcholinesterase (AChE) inhibitors for treating Alzheimer's disease involved the synthesis of 32 compounds via a multistage process. Various analytical techniques confirmed the compounds' identities. Thirteen compounds were found to inhibit AChE by more than 50% without affecting butyrylcholinesterase (BChE). Among these, three compounds, 8m, 8n, and 8p, exhibited extraordinary activity similar to donepezil, a reference AChE inhibitor. During enzyme kinetic studies, compound 8n, displaying the highest AChE inhibitory activity, underwent evaluation at three concentrations (2 × IC50, IC50, and IC50/2). Lineweaver-Burk plots indicated mixed inhibition activity for compound 8n against AChE, suggesting a combination of competitive and noncompetitive characteristics. Additionally, effective derivatives 8m, 8n, and 8p exhibited high blood-brain barrier (BBB) permeability in in vitro parallel artificial membrane permeability assay tests. Molecular docking studies revealed that these compounds bind to the enzyme's active site residues in a position similar to donepezil. Molecular dynamic simulations confirmed the stability of the protein-ligand system, and the chemical reactivity characteristics of the compounds were investigated using density functional theory. The compounds' wide energy gaps suggest stability and therapeutic potential. This research represents a significant step toward finding a potential cure for Alzheimer's disease. However, further research and testing are required to determine the compounds' safety and efficacy. The unique structure of phthalazine derivatives makes them suitable for various biological activities, and these compounds show promise for developing effective drugs for treating Alzheimer's disease. Overall, the development of these targeted compounds is a crucial advancement in the search for an effective treatment for Alzheimer's disease.
Collapse
Affiliation(s)
- Demokrat Nuha
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Department of Chemistry, Faculty of Science, Eskisehir Technical University, Eskişehir, Turkey
- Faculty of Pharmacy, University for Business and Technology, Prishtina, Kosovo
| | - Asaf Evrim Evren
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Vocational School of Health Services, Department of Pharmacy Services, Bilecik Seyh Edebali University, Bilecik, Turkey
| | | | - Nalan Gundogdu-Karaburun
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Ahmet Çagri Karaburun
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
4
|
Abd-Rabo ZS, Serry AM, George RF. An overview of pyridazin-3(2 H)-one: a core for developing bioactive agents targeting cardiovascular diseases and cancer. Future Med Chem 2024; 16:1685-1703. [PMID: 39105606 PMCID: PMC11370926 DOI: 10.1080/17568919.2024.2379234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/03/2024] [Indexed: 08/07/2024] Open
Abstract
Cardiovascular diseases (CVDs) and cancer are the top two leading causes of death globally. Vasodilators are commonly used to treat various CVDs. In cancer treatment, targeted anticancer agents have been developed to minimize side effects compared with traditional chemotherapy. Many hypertension patients are more prone to cancer, a case known as reverse cardio-oncology. This leads to the search for drugs with dual activity or repurposing strategy to discover new therapeutic uses for known drugs. Recently, medicinal chemists have shown great interest in synthesizing pyridazinone derivatives due to their significant biological activities in tackling these critical health challenges. This review will concentrate on pyridazin-3(2H)-one-containing compounds as vasodilators and anticancer agents, along with a brief overview of various methods for their synthesis.
Collapse
Affiliation(s)
- Zeinab S Abd-Rabo
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Modern University for Technology & Information MTI, Cairo, 11571, Egypt
| | - Aya M Serry
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Modern University for Technology & Information MTI, Cairo, 11571, Egypt
| | - Riham F George
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
5
|
Thakur A, Rana M, Ritika, Mathew J, Nepali S, Pan CH, Liou JP, Nepali K. Small molecule tractable PARP inhibitors: Scaffold construction approaches, mechanistic insights and structure activity relationship. Bioorg Chem 2023; 141:106893. [PMID: 37783100 DOI: 10.1016/j.bioorg.2023.106893] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023]
Abstract
Diverse drug design strategies viz. molecular hybridization, substituent installation, scaffold hopping, isosteric replacement, high-throughput screening, induction and separation of chirality, structure modifications of phytoconstituents and use of structural templates have been exhaustively leveraged in the last decade to load the chemical toolbox of PARP inhibitors. Resultantly, numerous promising scaffolds have been pinpointed that in turn have led to the resuscitation of the credence to PARP inhibitors as cancer therapeutics. This review briefly presents the physiological functions of PARPs, the pharmacokinetics, and pharmacodynamics, and the interaction profiles of FDA-approved PARP inhibitors. Comprehensively covered is the section on the drug design strategies employed by drug discovery enthusiasts for furnishing PARP inhibitors. The impact of structural variations in the template of designed scaffolds on enzymatic and cellular activity (structure-activity relationship studies) has been discussed. The insights gained through the biological evaluation such as profiling of physicochemical properties andin vitroADME properties, PK assessments, and high-dose pharmacology are covered.
Collapse
Affiliation(s)
- Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan
| | - Mandeep Rana
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan
| | - Ritika
- College of Medicine, Taipei Medical University, Taipei 110031, Taiwan
| | - Jacob Mathew
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan
| | - Sanya Nepali
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Chun-Hsu Pan
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan
| | - Jing Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan.
| |
Collapse
|
6
|
Rana M, Thakur A, Kaur C, Pan CH, Lee SB, Liou JP, Nepali K. Prudent tactics to sail the boat of PARP inhibitors as therapeutics for diverse malignancies. Expert Opin Drug Discov 2023; 18:1169-1193. [PMID: 37525475 DOI: 10.1080/17460441.2023.2241818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023]
Abstract
INTRODUCTION PARP inhibitors block the DNA-repairing mechanism of PARP and represent a promising class of anti-cancer therapy. The last decade has witnessed FDA approvals of several PARP inhibitors, with some undergoing advanced-stage clinical investigation. Medicinal chemists have invested much effort to expand the structure pool of PARP inhibitors. Issues associated with the use of PARP inhibitors that make their standing disconcerting in the pharmaceutical sector have been addressed via the design of new structural assemblages. AREA COVERED In this review, the authors present a detailed account of the medicinal chemistry campaigns conducted in the recent past for the construction of PARP1/PARP2 inhibitors, PARP1 biased inhibitors, and PARP targeting bifunctional inhibitors as well as PARP targeting degraders (PROTACs). Limitations associated with FDA-approved PARP inhibitors and strategies to outwit the limitations are also discussed. EXPERT OPINION The PARP inhibitory field has been rejuvenated with numerous tractable entries in the last decade. With numerous magic bullets in hand coupled with unfolded tactics to outwit the notoriety of cancer cells developing resistance toward PARP inhibitors, the dominance of PARP inhibitors as a sagacious option of targeted therapy is highly likely to be witnessed soon.
Collapse
Affiliation(s)
- Mandeep Rana
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Charanjit Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Chun-Hsu Pan
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical, University, Taipei, Taiwan
| | - Sung-Bau Lee
- Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical, University, Taipei, Taiwan
- Master Program in Clinical Genomics and Proteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Jing Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical, University, Taipei, Taiwan
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical, University, Taipei, Taiwan
| |
Collapse
|
7
|
Chen B, Ojha DP, Toyonaga T, Tong J, Pracitto R, Thomas MA, Liu M, Kapinos M, Zhang L, Zheng MQ, Holden D, Fowles K, Ropchan J, Nabulsi N, De Feyter H, Carson RE, Huang Y, Cai Z. Preclinical evaluation of a brain penetrant PARP PET imaging probe in rat glioblastoma and nonhuman primates. Eur J Nucl Med Mol Imaging 2023; 50:2081-2099. [PMID: 36849748 DOI: 10.1007/s00259-023-06162-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/18/2023] [Indexed: 03/01/2023]
Abstract
PURPOSE Currently, there are multiple active clinical trials involving poly(ADP-ribose) polymerase (PARP) inhibitors in the treatment of glioblastoma. The noninvasive quantification of baseline PARP expression using positron emission tomography (PET) may provide prognostic information and lead to more precise treatment. Due to the lack of brain-penetrant PARP imaging agents, the reliable and accurate in vivo quantification of PARP in the brain remains elusive. Herein, we report the synthesis of a brain-penetrant PARP PET tracer, (R)-2-(2-methyl-1-(methyl-11C)pyrrolidin-2-yl)-1H-benzo[d]imidazole-4-carboxamide ([11C]PyBic), and its preclinical evaluations in a syngeneic RG2 rat glioblastoma model and healthy nonhuman primates. METHODS We synthesized [11C]PyBic using veliparib as the labeling precursor, performed dynamic PET scans on RG2 tumor-bearing rats and calculated the distribution volume ratio (DVR) using simplified reference region method 2 (SRTM2) with the contralateral nontumor brain region as the reference region. We performed biodistribution studies, western blot, and immunostaining studies to validate the in vivo PET quantification results. We characterized the brain kinetics and binding specificity of [11C]PyBic in nonhuman primates on FOCUS220 scanner and calculated the volume of distribution (VT), nondisplaceable volume of distribution (VND), and nondisplaceable binding potential (BPND) in selected brain regions. RESULTS [11C]PyBic was synthesized efficiently in one step, with greater than 97% radiochemical and chemical purity and molar activity of 148 ± 85 MBq/nmol (n = 6). [11C]PyBic demonstrated PARP-specific binding in RG2 tumors, with 74% of tracer binding in tumors blocked by preinjected veliparib (i.v., 5 mg/kg). The in vivo PET imaging results were corroborated by ex vivo biodistribution, PARP1 immunohistochemistry and immunoblotting data. Furthermore, brain penetration of [11C]PyBic was confirmed by quantitative monkey brain PET, which showed high specific uptake (BPND > 3) and low nonspecific uptake (VND < 3 mL/cm3) in the monkey brain. CONCLUSION [11C]PyBic is the first brain-penetrant PARP PET tracer validated in a rat glioblastoma model and healthy nonhuman primates. The brain kinetics of [11C]PyBic are suitable for noninvasive quantification of available PARP binding in the brain, which posits [11C]PyBic to have broad applications in oncology and neuroimaging.
Collapse
Affiliation(s)
- Baosheng Chen
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Devi Prasan Ojha
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Takuya Toyonaga
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Jie Tong
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Richard Pracitto
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Monique A Thomas
- Magnetic Resonance Research Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Michael Liu
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Michael Kapinos
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Li Zhang
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Ming-Qiang Zheng
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Daniel Holden
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Krista Fowles
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Jim Ropchan
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Nabeel Nabulsi
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Henk De Feyter
- Magnetic Resonance Research Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Richard E Carson
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Yiyun Huang
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Zhengxin Cai
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA.
| |
Collapse
|
8
|
Hirlekar BU, Nuthi A, Singh KD, Murty US, Dixit VA. An overview of compound properties, multiparameter optimization, and computational drug design methods for PARP-1 inhibitor drugs. Eur J Med Chem 2023; 252:115300. [PMID: 36989813 DOI: 10.1016/j.ejmech.2023.115300] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023]
Abstract
Breast cancer treatment with PARP-1 inhibitors remains challenging due to emerging toxicities, drug resistance, and unaffordable costs of treatment options. How do we invent strategies to design better anti-cancer drugs? A part of the answer is in optimized compound properties, desirability functions, and modern computational drug design methods that drive selectivity and toxicity and have not been reviewed for PARP-1 inhibitors. Nonetheless, comparisons of these compound properties for PARP-1 inhibitors are not available in the literature. In this review, we analyze the physchem, PKPD space to identify inherent desirability functions characteristic of approved drugs that can be valuable for the design of better candidates. Recent literature utilizing ligand, structure-based drug design strategies and matched molecular pair analysis (MMPA) for the discovery of novel PARP-1 inhibitors are also reviewed. Thus, this perspective provides valuable insights into the medchem and multiparameter optimization of PARP-1 inhibitors that might be useful to other medicinal chemists.
Collapse
|
9
|
Badithapuram V, Kumar Nukala S, Dasari G, Swamy Thirukovela N, Bandari S. Synthesis of Some New Phthalazine−piperazine−pyrazole Conjugates; In vitro Anti‐Cancer, ADMET And Molecular Docking Studies. ChemistrySelect 2023. [DOI: 10.1002/slct.202204329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Affiliation(s)
- Vinitha Badithapuram
- Department of Chemistry Chaitanya Deemed to be University Warangal 506009 Telangana India
| | - Satheesh Kumar Nukala
- Department of Chemistry Chaitanya Deemed to be University Warangal 506009 Telangana India
| | - Gouthami Dasari
- Department of Chemistry Chaitanya Deemed to be University Warangal 506009 Telangana India
| | | | - Srinivas Bandari
- Department of Chemistry Chaitanya Deemed to be University Warangal 506009 Telangana India
| |
Collapse
|
10
|
Wu K, Peng X, Li Y, Chen M, Liu Y, Liu D, Jiang L, He Y, Peng J, Cao X. Design, synthesis, and evaluation of 1H-benzo[d]imidazole-4-carboxamide PARP-1 inhibitors using different saturated nitrogen-contained heterocycle as linker group. Chem Biol Drug Des 2023; 101:1335-1347. [PMID: 36752693 DOI: 10.1111/cbdd.14216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/01/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023]
Abstract
Poly (ADP-ribose) polymerase-1 (PARP-1) inhibitors have been successfully applied in the clinical treatment of various cancer. Side effects and drug resistant cases were reported, and more effective PARP-1 inhibitors were required. However, studies on the AD site of PARP-1 inhibitors are currently incomplete. Therefore, to synthesize more potential candidate PARP-1 inhibitors and disclose some AD site SAR of the PARP-1 inhibitors, herein, a series of 2-phenyl-benzimidazole-4-carboxamide derivatives using different saturated nitrogen-contained heterocycles as linker group (6a-6t) have been designed, synthesized, and evaluated PARP-1 inhibitory activity and proliferation inhibitory against BRCA-1 mutant MDA-MB-436 cell line in vitro. The results showed 6b (IC50 = 8.65 nM) exhibited the most PARP-1 enzyme inhibitory activity comparable with Veliparib (IC50 = 15.54 nM) and Olaparib (IC50 = 2.77 nM); 6m exhibited the strongest MDA-MB-436 cell anti-proliferation activity (IC50 = 25.36 ± 6.06 μM) comparable with Olaparib (IC50 = 23.89 ± 3.81 μM). The compounds 6b, 6r, and 6m could be potential candidates for effective PARP-1 inhibitors and valuable for further optimization. The analysis of activity data also showed that the holistically anti-proliferation activity of the 1,4-diazepane group was about~twofold than that of the piperazine group. Meanwhile, the terminal 3-methyl-furanyl group exhibited the most robust PARP-1 inhibitory and anti-proliferation activity. It is hoped that the results could benefitable for further optimization of PARP-1 inhibitors. Furthermore, we note that some compounds (6d,6g,6n,6p,6s) showed poor PARP-1 inhibitory (>500 nM) but relatively good anti-proliferation activity, which indicates the proliferation inhibitory mechanism against MDA-MB-436 cell line was worth investigating in-depth.
Collapse
Affiliation(s)
- Kaiyue Wu
- Institute of Pharmacy and Pharmacology, Hunan Province, Cooperative Innovation Center for Molecular Target New Drug Study, College of Pharmacy, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiaoyu Peng
- Institute of Pharmacy and Pharmacology, Hunan Province, Cooperative Innovation Center for Molecular Target New Drug Study, College of Pharmacy, Hengyang Medical School, University of South China, Hengyang, China
| | - Yang Li
- Institute of Pharmacy and Pharmacology, Hunan Province, Cooperative Innovation Center for Molecular Target New Drug Study, College of Pharmacy, Hengyang Medical School, University of South China, Hengyang, China
| | - Miaojia Chen
- Institute of Pharmacy and Pharmacology, Hunan Province, Cooperative Innovation Center for Molecular Target New Drug Study, College of Pharmacy, Hengyang Medical School, University of South China, Hengyang, China
| | - Yunfan Liu
- Institute of Pharmacy and Pharmacology, Hunan Province, Cooperative Innovation Center for Molecular Target New Drug Study, College of Pharmacy, Hengyang Medical School, University of South China, Hengyang, China
| | - Dan Liu
- Institute of Pharmacy and Pharmacology, Hunan Province, Cooperative Innovation Center for Molecular Target New Drug Study, College of Pharmacy, Hengyang Medical School, University of South China, Hengyang, China
| | - Lizhi Jiang
- Institute of Pharmacy and Pharmacology, Hunan Province, Cooperative Innovation Center for Molecular Target New Drug Study, College of Pharmacy, Hengyang Medical School, University of South China, Hengyang, China
| | - Yan He
- Department of Chemistry, Tsinghua University, Beijing, China.,The State Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, China
| | - Junmei Peng
- Institute of Pharmacy and Pharmacology, Hunan Province, Cooperative Innovation Center for Molecular Target New Drug Study, College of Pharmacy, Hengyang Medical School, University of South China, Hengyang, China
| | - Xuan Cao
- Institute of Pharmacy and Pharmacology, Hunan Province, Cooperative Innovation Center for Molecular Target New Drug Study, College of Pharmacy, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
11
|
Zhang J, Gao Y, Zhang Z, Zhao J, Jia W, Xia C, Wang F, Liu T. Multi-therapies Based on PARP Inhibition: Potential Therapeutic Approaches for Cancer Treatment. J Med Chem 2022; 65:16099-16127. [PMID: 36512711 DOI: 10.1021/acs.jmedchem.2c01352] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The nuclear enzymes called poly(ADP-ribose)polymerases (PARPs) are known to catalyze the process of PARylation, which plays a vital role in various cellular functions. They have become important targets for the discovery of novel antitumor drugs since their inhibition can induce significant lethality in tumor cells. Therefore, researchers all over the world have been focusing on developing novel and potent PARP inhibitors for cancer therapy. Studies have shown that PARP inhibitors and other antitumor agents, such as EZH2 and EGFR inhibitors, play a synergistic role in cancer cells. The combined inhibition of PARP and the targets with synergistic effects may provide a rational strategy to improve the effectiveness of current anticancer regimens. In this Perspective, we sum up the recent advance of PARP-targeted agents, including single-target inhibitors/degraders and dual-target inhibitors/degraders, discuss the fundamental theory of developing these dual-target agents, and give insight into the corresponding structure-activity relationships of these agents.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271016, China
| | - Yuqi Gao
- College of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271016, China.,Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, Shandong 250117, China
| | - Zipeng Zhang
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, Shandong 250117, China
| | - Jinbo Zhao
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271016, China.,Department of Chemistry and Biology, Jilin Provincial Key Laboratory of Carbon Fiber Development and Application, Changchun University of Technology, Changchun, Jilin 130012, China
| | - Wenshuang Jia
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, Shandong 250117, China
| | - Chengcai Xia
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271016, China
| | - Fugang Wang
- Department of Pharmacology, School of Pharmacy, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271016, China
| | - Tingting Liu
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271016, China
| |
Collapse
|
12
|
Okunlola FO, Olotu FA, Soliman MES. Unveiling the mechanistic roles of chlorine substituted phthalazinone-based compounds containing chlorophenyl moiety towards the differential inhibition of poly (ADP-ribose) polymerase-1 in the treatment of lung cancer. J Biomol Struct Dyn 2022; 40:10878-10886. [PMID: 34463214 DOI: 10.1080/07391102.2021.1951354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PARP-1 has become an attractive target in cancer treatment owing to its significant role in breast and ovarian cancers. The design of highly selective and effective poly (ADP ribose) polymerase-1 inhibitors has significant therapeutic advantages and has remained the core of several PARP-1-based drug discovery research. The pharmacophoric relevance of a chlorine substituent in a recent study led to the design of compounds 11c (meta-chlorophenyl) and 11d (para-chlorophenyl). In this study, we resolved the mechanistic effects of the changes in chlorine positional orientation, which underlie the inhibitory potencies and selectivity exhibited disparately by 11c and 11d. Compared to 11d, among other multiple higher-affinity complementary interactions with key site residues, the meta-Cl positioning in 11c facilitated its optimal motion and orientation towards conserved residues Arg878 and Asp766 with consistent pi-cation and pi-anion interactions, respectively, thereby favoring the stability of the ligand towards PARP-1. These could account for the higher inhibitory potency exhibited by 11c relative to 11d against PARP-1. The thermodynamics calculation revealed that 11c had a relatively higher total binding energy (ΔGbind) than 11d. We also observed that 11d displayed high deviations, compared to 11c, indicative of its unstable binding orientation. Furthermore, we reported in this study that the high involvement of electrostatic and van der Waal effects potentiated the binding affinity and strength of 11c (ΔEvdW = -50.58 and ΔEele = -27.20) relative to 11d (ΔEvdW = -49.46 and ΔEele = -19.96) at PARP-1 binding pocket. We believe the findings in this current study would provide valuable insights into the design of selective PARP-1 inhibitors containing chlorine substituent for cancer treatment, including lung cancer.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Felix O Okunlola
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Fisayo A Olotu
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
13
|
Youssef M, Nafie MS, Salama EE, Boraei AT, Gad EM. Synthesis of New Bioactive Indolyl-1,2,4-Triazole Hybrids As Dual Inhibitors for EGFR/PARP-1 Targeting Breast and Liver Cancer Cells. ACS OMEGA 2022; 7:45665-45677. [PMID: 36530255 PMCID: PMC9753112 DOI: 10.1021/acsomega.2c06531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
Cancer is the most severe disease worldwide. Every year, tens of millions of people are diagnosed with cancer, and over half of those people will ultimately die from the disease. Hence, the discovery of new inhibitors for fighting cancer is necessary. As a result, new indolyl-triazole hybrids were synthesized to target breast and liver cancer cells. The synthetic strategy involves glycosylation of the 4-aryltriazolethiones 3a-b with acetyl-protected α-halosugars in the presence of K2CO3 in acetone to give a mixture of β-S-glycosides 6a-b, 7a-b, and β-N-glycosides 8a-b, 9a-b. Chemo-selective S-glycosylation was achieved using NaHCO3 in ethanol. The migration of glycosyl moiety from sulfur to nitrogen (S → N glycosylmigration) was achieved thermally without any catalyst. Alkylation of the triazole-thiones with 2-bromoethanol and 1-bromopropan-2-ol in the presence of K2CO3 yielded the corresponding S-alkylated products. The synthesized compounds were tested for their cytotoxicity using an MTT assay and for apoptosis induction targeting PARP-1 and EGFR. Compounds 12b, 13a, and 13b exhibited cytotoxic activities with promising IC50 values of 2.67, 6.21, 1.07 μM against MCF-7 cells and 3.21, 8.91, 0.32 μM against HepG2 cells compared to Erlotinib (IC50 = 2.51, 2.91 μM, respectively) as reference drug. Interestingly, compounds 13b induced apoptosis in MCf-7 and HepG2 cells, arresting the cell cycle at the G2/M and S phases, respectively. Additionally, the dual enzyme inhibition seen in compound 13b against EGFR and PARP-1 is encouraging, with IC50 values of 62.4 nM compared to Erlotinib (80 nM) and 1.24 nM compared to Olaparib (1.49 nM), respectively. The anticancer activity was finally validated using an in vivo SEC-cancer model; compound 13b improved both hematological and biochemical analyses inhibiting tumor proliferation by 66.7% compared to Erlotinib's 65.7%. So, compound 13b may serve as a promising anticancer activity through dual PARP-1/EGFR target inhibition.
Collapse
|
14
|
Ahmadi S, Habibi D, Heydari S, Roshani Asl E. The capable xanthine-based adsorbent for removal of the Cd(II), Ni(II) and Pb(II) ions from aqueous solution via their complexation and the use of its corresponding Cd complex for the green synthesis of indazolophthalazinetriones. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04868-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Novel Phthalazin-1(2H)-One Derivatives Displaying a Dithiocarbamate Moiety as Potential Anticancer Agents. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238115. [PMID: 36500208 PMCID: PMC9738785 DOI: 10.3390/molecules27238115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022]
Abstract
Nowadays, cancer disease seems to be the second most common cause of death worldwide. Molecular hybridization is a drug design strategy that has provided promising results against multifactorial diseases, including cancer. In this work, two series of phthalazinone-dithiocarbamate hybrids were described, compounds 6-8, which display the dithiocarbamate scaffold at N2, and compounds 9, in which this moiety was placed at C4. The proposed compounds were successfully synthesized via the corresponding aminoalkyl phthalazinone derivatives and using a one-pot reaction with carbon disulfide, anhydrous H3PO4, and different benzyl or propargyl bromides. The antiproliferative effects of the titled compounds were explored against three human cancer cell lines (A2780, NCI-H460, and MCF-7). The preliminary results revealed significant differences in activity and selectivity depending on the dithiocarbamate moiety location. Thus, in general terms, compounds 6-8 displayed better activity against the A-2780 and MCF-7 cell lines, while most of the analogues of the 9 group were selective toward the NCI-H460 cell line. Compounds 6e, 8e, 6g, 9a-b, 9d, and 9g with IC50 values less than 10 µM were the most promising. The drug-likeness and toxicity properties of the novel phthalazinone-dithiocarbamate hybrids were predicted using Swiss-ADME and ProTox web servers, respectively.
Collapse
|
16
|
Pebam M, P S R, Gangopadhyay M, Thatikonda S, Rengan AK. Terminalia chebula Polyphenol and Near-Infrared Dye-Loaded Poly(lactic acid) Nanoparticles for Imaging and Photothermal Therapy of Cancer Cells. ACS APPLIED BIO MATERIALS 2022; 5:5333-5346. [PMID: 36288561 DOI: 10.1021/acsabm.2c00724] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Photothermal/photodynamic therapies (PTT/PDT) are multimodal approaches employing near-infrared (NIR) light-responsive photosensitizers for cancer treatment. In the current study, IR-775, a hydrophobic photosensitizer, was used in combination with a polyphenols (p)-rich ethyl acetate extract from Terminalia chebula to treat cancer. IR-775 dye and polyphenols were encapsulated in a poly(lactic acid) polymeric nanosystem (PpIR NPs) to increase the cell bioavailability. The hydrodynamic diameter of PpIR NPs is 142.6 ± 2 nm and exhibited physical stability. The nanosystem showed enhanced cellular uptake in a lung cancer cell line (A549). Cell cytotoxicity results indicate that PpIR NPs showed more than 82.46 ± 3% cell death upon NIR light treatment compared to the control groups. Both PDT and PTT generate reactive oxygen species (ROS) and cause hyperthermia, thereby enhancing cancer cell death. Qualitative and quantitative analyses have depicted that PpIR NPs with NIR light irradiation have decreased protein expression of HSP70 and PARP, and increased γ-H2AX, which collectively lead to cell death. After NIR light irradiation, the relative gene expression patterns of HSP70 and CDK2Na were also downregulated. Further, PpIR NPs uptake has been studied in 3D cells and in ovo bioimaging in zebrafish models. In conclusion, the PpIR NPs show good cancer cell cytotoxicity and present a potential nanosystem for bioimaging.
Collapse
|
17
|
Cytotoxic Activity, Apoptosis Induction and Structure–Activity Relationship of 2‐Phenylphthalazin‐2‐ium Salts as Promising Antitumor Agents. ChemistrySelect 2022. [DOI: 10.1002/slct.202202983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
Peng X, Pan W, Jiang F, Chen W, Qi Z, Peng W, Chen J. Selective PARP1 Inhibitors, PARP1-based Dual-Target Inhibitors, PROTAC PARP1 Degraders, and Prodrugs of PARP1 Inhibitors for Cancer Therapy. Pharmacol Res 2022; 186:106529. [DOI: 10.1016/j.phrs.2022.106529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/07/2022]
|
19
|
Wu K, Chen M, Peng X, Li Y, Tang G, Peng J, Cao X. Recent Progress of the research on the benzimidazole PARP-1 inhibitors. Mini Rev Med Chem 2022; 22:2438-2462. [PMID: 35319364 DOI: 10.2174/1389557522666220321150700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/20/2021] [Accepted: 01/07/2022] [Indexed: 11/22/2022]
Abstract
Poly (ADP-ribose) polymerase-1 (PARP-1) is a multifunctional protein that plays an important role in DNA repair and genome integrity. PARP-1 inhibitors can be used as effective drugs not only to treat BRCA-1/2 deficient cancers because of the effect of synthetically lethal, but also to treat non-BRCA1/2 deficient tumours because of the effect of PARP capture. Therefore, the PARP inhibitors have become a focus of compelling research. Among these inhibitors, substituted benzimidazole derivatives were mainly concerned lead compounds. However, the commercial available benzimidazole PARP-1 inhibitors have some shortcomings such as serious toxicity in combination with chemotherapy drugs, in vivo cardiovascular side effects such as anemia. Therefore it's crucial for scientists to explore more structure-activity relationships of the benzimidazole PARP-1 inhibitors and access safer and more effective PARP inhibitors. As the binding region of PARP-1 and the substrates is usually characterized as NI site and AD site, the modification of benzimidazoles mainly occurs on the benzimidazole skeleton (NI site), and the side chain of benzimidazole on 2-C position (AD site). Herein, the recent progresses of the researches of benzamides PARP inhibitors were introduced. We noticed that even though many efforts were taken to the modification of NI sites, there were still lacks of optimistic and impressive results. However, the structure-activity relationships of the modification of AD sites have not thoroughly discovered yet. We hope that enlightened by the previous researches, more researches of AD site should be occurred and more effective benzimidazole PARP-1 inhibitors could be designed, synthesized, and applied to clinics.
Collapse
Affiliation(s)
- Kaiyue Wu
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, College of Pharmacy, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Miaojia Chen
- Department of Pharmacy, the first People\'s Hospital, Pingjiang, Yueyang, Hunan, China
| | - Xiaoyu Peng
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, College of Pharmacy, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yang Li
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, College of Pharmacy, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Guotao Tang
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, College of Pharmacy, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Junmei Peng
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, College of Pharmacy, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xuan Cao
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, College of Pharmacy, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
20
|
Al-Sanea MM, Al-Ansary GH, Elsayed ZM, Maklad RM, Elkaeed EB, Abdelgawad MA, Bukhari SNA, Abdel-Aziz MM, Suliman H, Eldehna WM. Development of 3-methyl/3-(morpholinomethyl)benzofuran derivatives as novel antitumor agents towards non-small cell lung cancer cells. J Enzyme Inhib Med Chem 2021; 36:987-999. [PMID: 33985397 PMCID: PMC8128204 DOI: 10.1080/14756366.2021.1915302] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
As one of the most lethal malignancies, lung cancer is considered to account for approximately one-fifth of all malignant tumours-related deaths worldwide. This study reports the synthesis and in vitro biological assessment of two sets of 3-methylbenzofurans (4a-d, 6a-c, 8a-c and 11) and 3-(morpholinomethyl)benzofurans (15a-c, 16a-b, 17a-b and 18) as potential anticancer agents towards non-small cell lung carcinoma A549 and NCI-H23 cell lines, with VEGFR-2 inhibitory activity. The target benzofuran-based derivatives efficiently inhibited the growth of both A549 and NCI-H23 cell lines with IC50 spanning in ranges 1.48-47.02 and 0.49-68.9 µM, respectively. The three most active benzofurans (4b, 15a and 16a) were further investigated for their effects on the cell cycle progression and apoptosis in A549 (for 4b) and NCI-H23 (for 15a and 16a) cell lines. Furthermore, benzofurans 4b, 15a and 16a displayed good VEGFR-2 inhibitory activity with IC50 equal 77.97, 132.5 and 45.4 nM, respectively.
Collapse
Affiliation(s)
- Mohammad M. Al-Sanea
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Ghada H. Al-Ansary
- Department of Pharmaceutical Chemistry, Pharmacy Program, Batterejee Medical College, Jeddah, Saudi Arabia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Zainab M. Elsayed
- Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Raed M. Maklad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
- Institute of Drug Discovery and Development, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Eslam B. Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Ad Diriyah, Riyadh, Saudi Arabia
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Marwa M. Abdel-Aziz
- The Regional Center for Mycology & Biotechnology, Al-Azhar University, Cairo, Egypt
| | - Howayda Suliman
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
21
|
Zhang L, Xiao Y, Yang R, Wang S, Ma S, Liu J, Xiao W, Wang Y. Systems pharmacology to reveal multi-scale mechanisms of traditional Chinese medicine for gastric cancer. Sci Rep 2021; 11:22149. [PMID: 34773055 PMCID: PMC8589993 DOI: 10.1038/s41598-021-01535-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 10/27/2021] [Indexed: 12/18/2022] Open
Abstract
Because of the complex etiology, the treatment of gastric cancer is a formidable challenge for contemporary medical. The current treatment method focuses on traditional surgical procedures, supplemented by other treatments. Among these other treatments, Traditional Chinese Medicine (TCM) plays an important role. Here, we used the systems pharmacology approach to reveal the potential molecular mechanism of PRGRC on gastric cancer which composes of Pinellia ternata(Thunb.) Breit., Rheum palmatumL., Gentiana scabraBunge, Radix Aucklandiae and Citrus aurantium L. This approach combines pharmacokinetics analysis with pharmacodynamics evaluation for the active compounds screening, targets prediction and pathways assessing. Firstly, through pharmacokinetic evaluation and target prediction models, 83 potential compounds and 184 gastric cancer-related targets were screened out. Then, the results of network analysis suggested that the targets of PRGRC were mainly involved two aspects: apoptosis and inflammation. Finally, we verified the reliability of the above analysis at the cellular level by using naringenin and luteolin with good pharmacokinetic activity as representative compounds. Overall, we found that PRGRC could influence the development of gastric cancer from a multi-scale perspective. This study provided a new direction for analyzing the mechanism of TCM.
Collapse
Affiliation(s)
- Lulu Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, 710069, Shanxi, China
| | - Yue Xiao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, 710069, Shanxi, China
| | - Ruijie Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, 710069, Shanxi, China
| | - Siyi Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, 710069, Shanxi, China
| | - ShuangXin Ma
- Lab of Systems Pharmacology, Center of Bioinformatics, College of Life Science, Northwest A&F University, Yangling, China
| | - Jianling Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, 710069, Shanxi, China.
| | - Wei Xiao
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Parmaceutical Co. Ltd., Lianyungang, 222002, China.
| | - Yonghua Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, 710069, Shanxi, China.
| |
Collapse
|
22
|
Tang L, Wu W, Zhang C, Shi Z, Chen D, Zhai X, Jiang Y. Discovery of the PARP (poly ADP-ribose polymerase) inhibitor 2-(1-(4,4-difluorocyclohexyl)piperidin-4-yl)-1H-benzo[d]imidazole-4-carboxamide for the treatment of cancer. Bioorg Chem 2021; 114:105026. [PMID: 34186467 DOI: 10.1016/j.bioorg.2021.105026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 05/06/2021] [Accepted: 05/24/2021] [Indexed: 11/21/2022]
Abstract
In this work, two series of cyclic amine-containing benzimidazole carboxamide derivatives were designed and synthesized as potent anticancer agents. PARP1/2 inhibitory activity assays indicated that most of the compounds showed significant activity. The in vitro antiproliferative activity of these compounds was investigated against four human cancer cell lines (MDA-MB-436, MDA-MB-231, MCF-7 and CAPAN-1), and several compounds exhibited strong cytotoxicity to tumor cells. Among them, 2-(1-(4,4-difluorocyclohexyl)piperidin-4-yl)-1H-benzo[d]imidazole-4-carboxamide (17d) was found to be effective PARP1/2 inhibitors (IC50 = 4.30 and 1.58 nM, respectively). In addition, 17d possessed obvious selective antineoplastic activity and noteworthy microsomal metabolic stability. What's more, further studies revealed that 17d was endowed with an excellent ADME profile. These combined results indicated that 17d could be a promising candidate for the treatment of cancer.
Collapse
Affiliation(s)
- Lin Tang
- Department of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China; Shenzhen Kivita Innovative Drug Discovery Institute, Shenzhen 518057, PR China
| | - Weibin Wu
- Shenzhen Kivita Innovative Drug Discovery Institute, Shenzhen 518057, PR China; National & Local United Engineering Lab for Personalized Anti-tumor Drugs, The Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China
| | - Cunlong Zhang
- Shenzhen Kivita Innovative Drug Discovery Institute, Shenzhen 518057, PR China; National & Local United Engineering Lab for Personalized Anti-tumor Drugs, The Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China
| | - Zhichao Shi
- Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Dawei Chen
- Shenzhen Kivita Innovative Drug Discovery Institute, Shenzhen 518057, PR China
| | - Xin Zhai
- Department of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China.
| | - Yuyang Jiang
- Department of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China; Joint Key State Laboratory of Tumor Chemogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
23
|
1,3,4-Oxadiazole-containing hybrids as potential anticancer agents: Recent developments, mechanism of action and structure-activity relationships. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101284] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
24
|
Simijonović D, Vlachou EEN, Litinas KE, Petrović ZD, Petrović VP. Synthesis, structural characterization, and molecular docking study of new phthalhydrazide-coumarin hybrids. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
Abd El-Sattar NEA, Badawy EHK, Elrazaz EZ, Ismail NSM. Discovery of pyrano[2,3- d]pyrimidine-2,4-dione derivatives as novel PARP-1 inhibitors: design, synthesis and antitumor activity. RSC Adv 2021; 11:4454-4464. [PMID: 35424391 PMCID: PMC8694318 DOI: 10.1039/d0ra10321g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/11/2021] [Indexed: 01/01/2023] Open
Abstract
Poly(ADP-ribose) polymerases-1 (PARP-1) are involved in DNA repair damage and so PARP-1 inhibitors have been used as potentiators in combination with DNA damaging cytotoxic agents to compromise the cancer cell DNA repair mechanism, resulting in genomic dysfunction and cell death. In this study, we report the synthesis of a novel series of pyrano[2,3-d]pyrimidine-2,4-dione analogues as potential inhibitors against PARP-1. All the newly synthesized compounds were evaluated for their inhibitory activity towards PARP-1 and examined for their anti-proliferative activity against MCF-7 and HCT116 human cancer cell lines. The synthesized compounds showed promising activity where compounds S2 and S7 emerged as the most potent PARP-1 inhibitors with an IC50 value of 4.06 ± 0.18 and 3.61 ± 0.15 nM, respectively compared to that of Olaparib 5.77 nM and high cytotoxicity against MCF-7 with IC50 2.65 ± 0.05 and 1.28 ± 1.12 μM, respectively (Staurosporine 7.258 μM). Compound S8 remarkably showed the highest cell growth inhibition against MCF-7 and HCT116 with an IC50 value of 0.66 ± 0.05 and 2.76 ± 0.06 μM, respectively. Furthermore, molecular docking of the compounds into the PARP-1 active site was performed to explore the probable binding mode. Finally, most of the synthesized compounds were predicted to have good pharmacokinetics properties in a theoretical kinetic study.
Collapse
Affiliation(s)
- Nour E A Abd El-Sattar
- Department of Chemistry, Organic Labs, Computational Chemistry Lab, Faculty of Science, Ain Shams University Cairo 11566 Egypt
| | - Eman H K Badawy
- Department of Chemistry, Organic Labs, Computational Chemistry Lab, Faculty of Science, Ain Shams University Cairo 11566 Egypt
| | - Eman Z Elrazaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University Abbassia 11566 Cairo Egypt
| | - Nasser S M Ismail
- Pharmaceutical Chemistry Department, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt (FUE) Cairo 12311 Egypt
| |
Collapse
|
26
|
Identification of 2-substituted pyrrolo[1,2-b]pyridazine derivatives as new PARP-1 inhibitors. Bioorg Med Chem Lett 2021; 31:127710. [PMID: 33246105 DOI: 10.1016/j.bmcl.2020.127710] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/11/2020] [Accepted: 11/19/2020] [Indexed: 11/23/2022]
Abstract
A library of new 2-substituted pyrrolo[1,2-b]pyridazine derivatives were rapidly assembled and identified as PARP inhibitors. Structure-activity relationship for this class of inhibitor resulted in the discovery of most potent compounds 15a and 15b that exhibited about 29- and 5- fold selective activity against PARP-1 over PARP-2 respectively. The antiproliferative activity of the as-prepared compounds were demonstrated by further celluar assay in BRCA2-deficient V-C8 and BRCA1-deficient MDA-MB-436 cell lines, displaying that compound 15b could robustly reduce the corresponding cell proliferation and growth with CC50s of 340 and 106 nM respectively. The PK property of 15b was also investigated here.
Collapse
|
27
|
Eissa IH, Ibrahim MK, Metwaly AM, Belal A, Mehany ABM, Abdelhady AA, Elhendawy MA, Radwan MM, ElSohly MA, Mahdy HA. Design, molecular docking, in vitro, and in vivo studies of new quinazolin-4(3H)-ones as VEGFR-2 inhibitors with potential activity against hepatocellular carcinoma. Bioorg Chem 2020; 107:104532. [PMID: 33334586 DOI: 10.1016/j.bioorg.2020.104532] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 02/09/2023]
Abstract
A series of new VEGFR-2 inhibitors were designed, synthesized and evaluated for their anti-proliferative activities against hepatocellular carcinoma (HepG-2 cell line). Compound 29b (IC50 = 4.33 ± 0.2 µg/ml) was found to be the most potent derivative as it has showed to be more active than doxorubicin (IC50 = 4.50 ± 0.2 µg/ml) and 78% of sorafenib activity (IC50 = 3.40 ± 0.25 µg/ml). The inhibitory profiles against VEGFR-2 were also assessed for the most promising candidates (16b, 20c, 22b, 24a, 24b, 28c, 28e, 29a, 29b and 29c). Compounds 29b, 29c and 29a exhibited potent inhibitory activities towards VEGFR-2 at IC50 values of 3.1 ± 0.04, 3.4 ± 0.05 and 3.7 ± 0.06 µM, respectively, comparing sorafenib (IC50 = 2.4 ± 0.05 µM). Furthermorer, compound 29b induced apoptosis and arrested the cell cycle growth at G2/M phase. Additionally, in vivo antitumor experiments revealed that compounds 29b and 29c have significant tumor growth inhibition. The test of immuno-histochemical expression of activated caspase-3 revealed that there is a time-dependent increase in cleaved caspase-3 protein expression upon exposure of HepG-2 cells to compound 29b. Moreover, the fibroblastic proliferative index test revealed that compound 29b could attenuate liver fibrosis. Docking studies also supported the results concluded from the biological screening via prediction of the possible binding interactions of the target compounds with VEGFR-2 active sites using the crystal structure of VEGFR-2 downloaded from the Protein Data Bank, (PDB ID: 2OH4) using Discovery Studio 2.5 software. Further structural optimization of the most active candidates may serve as a useful strategy for getting new lead compounds in search for powerful and selective antineoplastic agents.
Collapse
Affiliation(s)
- Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt.
| | - Mohammed K Ibrahim
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Ahmed M Metwaly
- Pharmacognosy Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Amany Belal
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Ahmed B M Mehany
- Zoology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| | | | - Mostafa A Elhendawy
- National Center for Natural Products Research, University of Mississippi, MS 38677, USA; Department of Agriculture Chemistry, Faculty of Agriculture, Damietta University, Damietta, Egypt
| | - Mohamed M Radwan
- National Center for Natural Products Research, University of Mississippi, MS 38677, USA; Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mahmoud A ElSohly
- National Center for Natural Products Research, University of Mississippi, MS 38677, USA; Department of Pharmaceutics and Drug Delivery, University of Mississippi, University, MS 38677, USA
| | - Hazem A Mahdy
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt.
| |
Collapse
|
28
|
Vierstraete J, Fieuws C, Willaert A, Vral A, Claes KBM. Zebrafish as an in vivo screening tool to establish PARP inhibitor efficacy. DNA Repair (Amst) 2020; 97:103023. [PMID: 33341473 DOI: 10.1016/j.dnarep.2020.103023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 09/12/2020] [Accepted: 11/09/2020] [Indexed: 01/02/2023]
Abstract
Double strand break (DSB) repair through Homologous Recombination (HR) is essential in maintaining genomic stability of the cell. Mutations in the HR pathway confer an increased risk for breast, ovarian, pancreatic and prostate cancer. PARP inhibitors (PARPi) are compounds that specifically target tumours deficient in HR. Novel PARPi are constantly being developed, but research is still heavily focussed on in vitro data, with mouse xenografts only being used in late stages of development. There is a need for assays that can: 1) provide in vivo data, 2) early in the development process of novel PARPi, 3) provide fast results and 4) at an affordable cost. Here we propose a combination of in vivo zebrafish assays to accurately quantify PARP inhibitor efficacy. We showed that PARPi display functional effects in zebrafish, generally correlating with their PARP trapping capacities. Furthermore, we displayed how olaparib mediated radiosensitization is conserved in our zebrafish model. These assays could aid the development of novel PARPi by providing early in vivo data. In addition, using zebrafish allows for high-throughput testing of combination therapies in search of novel treatment strategies.
Collapse
Affiliation(s)
- Jeroen Vierstraete
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Department of Human Structure and Repair, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Charlotte Fieuws
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Andy Willaert
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Zebrafish Facility Ghent, Ghent University, Ghent, Belgium
| | - Anne Vral
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Kathleen Bertha Michaël Claes
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University and Ghent University Hospital, Ghent, Belgium.
| |
Collapse
|
29
|
El-Zahabi MA, Sakr H, El-Adl K, Zayed M, Abdelraheem AS, Eissa SI, Elkady H, Eissa IH. Design, synthesis, and biological evaluation of new challenging thalidomide analogs as potential anticancer immunomodulatory agents. Bioorg Chem 2020; 104:104218. [DOI: 10.1016/j.bioorg.2020.104218] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/04/2020] [Accepted: 08/22/2020] [Indexed: 01/06/2023]
|
30
|
He ZX, Gong YP, Zhang X, Ma LY, Zhao W. Pyridazine as a privileged structure: An updated review on anticancer activity of pyridazine containing bioactive molecules. Eur J Med Chem 2020; 209:112946. [PMID: 33129590 DOI: 10.1016/j.ejmech.2020.112946] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/26/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022]
Abstract
Identification of potent anticancer agents with high selectivity and low toxicity remains on the way to human health. Pyridazine featuring advantageous physicochemical properties and antitumor potential usually is regarded as a central core in numerous anticancer derivatives. There are several approved pyridazine-based drugs in the market and analogues currently going through different clinical phases or registration statuses, suggesting pyridazine as a promising drug-like scaffold. The current review is intended to provide a comprehensive and updated overview of pyridazine derivatives as potential anticancer agents. In particular, we focused on their structure-activity relationship (SAR) studies, design strategies, binding modes and biological activities in the hope of offering novel insights for further rational design of more active and less toxic anticancer drugs.
Collapse
Affiliation(s)
- Zhang-Xu He
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Yun-Peng Gong
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Xin Zhang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Li-Ying Ma
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Wen Zhao
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China.
| |
Collapse
|
31
|
Singh J, Suryan A, Kumar S, Sharma S. Phthalazinone Scaffold: Emerging Tool in the Development of Target Based Novel Anticancer Agents. Anticancer Agents Med Chem 2020; 20:2228-2245. [PMID: 32767957 DOI: 10.2174/1871520620666200807220146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 11/22/2022]
Abstract
Phthalazinones are important nitrogen-rich heterocyclic compounds which have been a topic of considerable medicinal interest because of their diversified pharmacological activities. This versatile scaffold forms a common structural feature for many bioactive compounds, which leads to the design and development of novel anticancer drugs with fruitful results. The current review article discusses the progressive development of novel phthalazinone analogues that are targets for various receptors such as PARP, EGFR, VEGFR-2, Aurora kinase, Proteasome, Hedgehog pathway, DNA topoisomerase and P-glycoprotein. It describes mechanistic insights into the anticancer properties of phthalazinone derivatives and also highlights various simple and economical techniques for the synthesis of phthalazinones.
Collapse
Affiliation(s)
- Jyoti Singh
- Chandigarh College of Pharmacy, Landran, Punjab, India
| | - Amruta Suryan
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | | | - Shweta Sharma
- Chandigarh College of Pharmacy, Landran, Punjab, India
| |
Collapse
|
32
|
Design, synthesis, molecular docking and antiproliferative activity of some novel benzothiazole derivatives targeting EGFR/HER2 and TS. Bioorg Chem 2020; 101:103976. [DOI: 10.1016/j.bioorg.2020.103976] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/21/2020] [Accepted: 05/24/2020] [Indexed: 12/13/2022]
|
33
|
Abulkhair HS, Turky A, Ghiaty A, Ahmed HE, Bayoumi AH. Novel triazolophthalazine-hydrazone hybrids as potential PCAF inhibitors: Design, synthesis, in vitro anticancer evaluation, apoptosis, and molecular docking studies. Bioorg Chem 2020; 100:103899. [DOI: 10.1016/j.bioorg.2020.103899] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 02/06/2023]
|
34
|
Turky A, Bayoumi AH, Ghiaty A, El-Azab AS, A-M Abdel-Aziz A, Abulkhair HS. Design, synthesis, and antitumor activity of novel compounds based on 1,2,4-triazolophthalazine scaffold: Apoptosis-inductive and PCAF-inhibitory effects. Bioorg Chem 2020; 101:104019. [PMID: 32615465 DOI: 10.1016/j.bioorg.2020.104019] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/03/2020] [Accepted: 06/12/2020] [Indexed: 01/07/2023]
Abstract
The antitumor activity of newly synthesised triazolophthalazines (L-45 analogues) 10-32 was evaluated in human hepatocellular carcinoma (HePG-2), breast cancer (MCF-7), prostate cancer (PC3), and colorectal carcinoma (HCT-116) cells. Compounds 17, 18, 25, and 32 showed potent antitumor activity (IC50, 2.83-13.97 μM), similar to doxorubicin (IC50, 4.17-8.87 μM) and afatinib (IC50, 5.4-11.4 μM). HePG2 was inhibited by compounds 10, 17, 18, 25, 26, and 32 (IC50, 3.06-10.5 μM), similar to doxorubicin (IC50, 4.50 μM) and afatinib (IC50, 5.4 μM). HCT-116 and MCF-7 were susceptible to compounds 10, 17, 18, 25, and 32 (IC50, 2.83-10.36 and 5.69-11.36 μM, respectively), similar to doxorubicin and afatinib (IC50 = 5.23 and 4.17, and 11.4 and 7.1 μM, respectively). Compounds 17, 25, and 32 exerted potent activities against PC3 (IC50, 7.56-12.28 μM) compared with doxorubicin (IC50, 8.87 µM) and afatinib (IC50 7.7 μM). Compounds 17 and 32 were the strongest PCAF inhibitors (IC50, 5.31 and 10.30 μM, respectively) and compounds 18 and 25 exhibited modest IC50 values (17.09 and 32.96 μM, respectively) compared with bromosporine (IC50, 5.00 μM). Compound 17 was cytotoxic to HePG2 cells (IC50, 3.06 μM), inducing apoptosis in the pre-G phase and arresting the cell cycle in the G2/M phase. Molecular docking for the most active PCAF inhibitors (17 and 32) was performed.
Collapse
Affiliation(s)
- Abdallah Turky
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Nasr City 11884, Cairo, Egypt
| | - Ashraf H Bayoumi
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Nasr City 11884, Cairo, Egypt
| | - Adel Ghiaty
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Nasr City 11884, Cairo, Egypt
| | - Adel S El-Azab
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Alaa A-M Abdel-Aziz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
| | - Hamada S Abulkhair
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Nasr City 11884, Cairo, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University - Egypt, International Costal Road, New Damietta, Egypt.
| |
Collapse
|
35
|
Lin M, Pan C, Xu W, Li J, Zhu X. Leonurine Promotes Cisplatin Sensitivity in Human Cervical Cancer Cells Through Increasing Apoptosis and Inhibiting Drug-Resistant Proteins. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:1885-1895. [PMID: 32523334 PMCID: PMC7237110 DOI: 10.2147/dddt.s252112] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/27/2020] [Indexed: 12/21/2022]
Abstract
Background Cisplatin-based neoadjuvant chemotherapy and concurrent radiotherapy and chemotherapy are the main treatment for advanced cervical cancer. However, the development of multidrug resistance (MDR) leads to chemotherapy failure, tumor recurrence and poor survival. In this research, we investigated the effect and corresponding mechanism of leonurine on cisplatin sensitivity of cervical cancer cells. Methods Anti-cervical cancer efficacy of leonurine and leonurine combined with cisplatin was examined in C33A and Ms751 cells. The cell counting kit-8 assay and bromodeoxyuridine assay were applied for measuring cell proliferation. CompuSyn software was used to calculate the combination index and assess the synergistic effect of leonurine and cisplatin on cell proliferation. The cell cycle distribution and cell apoptosis were analyzed by flow cytometry. The expression of cleaved caspase-3, poly ADP-ribose polymerase (PARP), B-cell lymphoma-2 associated X (BAX), B-cell lymphoma-2 (BCL-2), P glycoprotein (P-Gp) protein and multiple drug resistance protein 1 (MRP1) was analyzed by Western blotting. Results Leonurine had time- and dose-dependent anti-proliferative effects on C33A and MS751 cells. Leonurine and cisplatin combination was more efficacious in inhibiting the growth of cervical cancer cells than either of the two drugs. The combined application has shown that the cervical cancer cells were arrested at G1 phase after treatments. Moreover, flow cytometry analysis indicated that the combined treatment could cause more cell apoptosis than the single drug treatment. Consistently, combined treatment elevated BAX/BCL-2 ratio, and the expression of BAX, PARP and cleaved caspase-3 proteins. Mechanistic investigations uncovered that the tumor-inhibiting effects of the co-treatment were mediated by repressing MDR, including MRP1 and P-Gp protein, thereby enhancing the efficiency of cisplatin. Conclusion Leonurine and cisplatin have synergistic antitumorigenic effects on cervical cancer. Combination with leonurine may serve as a novel strategy for enhancing cisplatin sensitivity via the inhibition of the expression of MRP1 and P-Gp.
Collapse
Affiliation(s)
- Min Lin
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China
| | - Chunyu Pan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China
| | - Wenbin Xu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China
| | - Jingwei Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China
| |
Collapse
|
36
|
Li S, Li XY, Zhang TJ, Zhu J, Xue WH, Qian XH, Meng FH. Design, synthesis and biological evaluation of erythrina derivatives bearing a 1,2,3-triazole moiety as PARP-1 inhibitors. Bioorg Chem 2020; 96:103575. [DOI: 10.1016/j.bioorg.2020.103575] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/15/2022]
|
37
|
Al-Sanea MM, Gotina L, Mohamed MF, Grace Thomas Parambi D, Gomaa HAM, Mathew B, Youssif BGM, Alharbi KS, Elsayed ZM, Abdelgawad MA, Eldehna WM. Design, Synthesis and Biological Evaluation of New HDAC1 and HDAC2 Inhibitors Endowed with Ligustrazine as a Novel Cap Moiety. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:497-508. [PMID: 32103894 PMCID: PMC7008064 DOI: 10.2147/dddt.s237957] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 01/06/2020] [Indexed: 12/11/2022]
Abstract
Introduction Histone deacetylases (HDACs) represent one of the most validated cancer targets. The inhibition of HDACs has been proven to be a successful strategy for the development of novel anticancer candidates. Methods This work describes design and synthesis of a new set of HDAC inhibitors (7a-c and 8a, b) utilizing ligustrazine as a novel cap moiety, and achieving the pharmacophoric features required to induce the desired inhibition. Results The newly synthesized derivatives were evaluated for their potential inhibitory activity toward two class I histone deacetylases, namely HDAC1 and HDAC2. The tested ligustrazine-based compounds were more potent toward HDAC2 (IC50 range: 53.7–205.4 nM) than HDAC1 (IC50 range: 114.3–2434.7 nM). Furthermore, the antiproliferative activities against two HDAC-expressing cancer cell lines; HT-29 and SH-SY5Y were examined by the MTT assay. Moreover, a molecular docking study of the designed HDAC inhibitors (7a-c and 8a,b) was carried out to investigate their binding pattern within their prospective targets; HDAC1 (PDB-ID: 4BKX) and HDAC2 (PDB-ID: 6G3O). Discussion Compound 7a was found to be the most potent analog in this study toward HDAC1 and HDAC2 with IC50 values equal 114.3 and 53.7 nM, respectively. Moreover, it was the most effective counterpart (IC50 = 1.60 µM), with 4.7-fold enhanced efficiency than reference drug Gefitinib (IC50 = 7.63 µM) against SH-SY5Y cells. Whereas, compound 8a (IC50 = 1.96 µM) was the most active member toward HT-29 cells, being 2.5-times more potent than Gefitinib (IC50 = 4.99 µM). Collectively, these results suggest that 7a merits further optimization and development as an effective new HDACI lead compound.
Collapse
Affiliation(s)
- Mohammad M Al-Sanea
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Aljouf 2014, Saudi Arabia
| | - Lizaveta Gotina
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Mamdouh Fa Mohamed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt
| | - Della Grace Thomas Parambi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Aljouf 2014, Saudi Arabia
| | - Hesham A M Gomaa
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf 2014, Saudi Arabia.,Department of Biochemistry, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, Kerala 678557, India
| | - Bahaa G M Youssif
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Khalid Saad Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakakah 72341, Saudi Arabia
| | - Zainab M Elsayed
- Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Aljouf 2014, Saudi Arabia.,Department of Pharmaceutical Organic Chemistry, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Wagdy M Eldehna
- Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
38
|
Design, synthesis and biological evaluation of novel phthalazinone acridine derivatives as dual PARP and Topo inhibitors for potential anticancer agents. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.06.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
39
|
Said MA, Eldehna WM, Nocentini A, Fahim SH, Bonardi A, Elgazar AA, Kryštof V, Soliman DH, Abdel-Aziz HA, Gratteri P, Abou-Seri SM, Supuran CT. Sulfonamide-based ring-fused analogues for CAN508 as novel carbonic anhydrase inhibitors endowed with antitumor activity: Design, synthesis, and in vitro biological evaluation. Eur J Med Chem 2020; 189:112019. [PMID: 31972394 DOI: 10.1016/j.ejmech.2019.112019] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/27/2019] [Accepted: 12/27/2019] [Indexed: 11/17/2022]
Abstract
In the present study, we report the design and synthesis of novel CAN508 sulfonamide-based analogues (4, 8a-e, 9a-h and 10a-e) as novel carbonic anhydrase (CA) inhibitors with potential CDK inhibitory activity. A bioisosteric replacement approach was adopted to replace the phenolic OH of CAN508 with a sulfamoyl group to afford compound 4. Thereafter, a ring-fusion approach was utilized to furnish the 5/5 fused imidazopyrazoles 8a-e which were subsequently expanded to 6/5 pyrazolopyrimidines 9a-h and 10a-e. All the synthesized analogues were evaluated for their inhibitory activity toward isoforms hCA I, II, IX and XII. The target tumor-associated isoforms hCA IX and XII were effectively inhibited with KIs ranges 6-67.6 and 10.1-88.6 nM, respectively. Furthermore, all compounds were evaluated for their potential CDK2 and 9 inhibitory activities. Pyrazolopyrimidines 9d, 9e and 10b displayed weak CDK2 inhibitory activity (IC50 = 6.4, 8.0 and 11.6 μM, respectively), along with abolished CDK9 inhibitory activity. This trend suggested that pyrazolopyrimidine derivatives merit further optimization to furnish more effective CDK2 inhibitor lead. On account of their excellent activity and selectivity towards hCA IX and XII, pyrazolopyrimidines 10 were evaluated for their anti-proliferative activity toward breast cancer MCF-7 and MDA-MB-468 cell lines under normoxic and hypoxic conditions. The most potent anti-proliferative agents 10a, 10c and 10d significantly increased cell percentage at sub-G1 and G2-M phases with concomitant decrease in the S phase population in MCF-7 treated cells. Finally, a docking study was undertaken to investigate the binding mode for the most selective hCA IX and XII inhibitors 10a-e, within hCA II, IX and XII active sites.
Collapse
Affiliation(s)
- Mohamed A Said
- Department of Pharmaceutical Chemistry, College of Pharmacy, Egyptian Russian University, Badr City, Cairo, P.O. Box 11829, Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt.
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy; Department of NEUROFARBA - Pharmaceutical and Nutraceutical Section; Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Firenze, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Samar H Fahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Egypt
| | - Alessandro Bonardi
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy; Department of NEUROFARBA - Pharmaceutical and Nutraceutical Section; Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Firenze, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Abdullah A Elgazar
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Vladimír Kryštof
- Laboratory of Growth Regulators, Palacky University & Institute of Experimental Botany, The Czech Academy of Sciences, Slechtitelu 27, 78371, Olomouc, Czech Republic; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Hnevotinská 5, 77900, Olomouc, Czech Republic
| | - Dalia H Soliman
- Department of Pharmaceutical Chemistry, College of Pharmacy, Egyptian Russian University, Badr City, Cairo, P.O. Box 11829, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al Azhar University, Cairo, P.O. Box 11471, Egypt
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Dokki, Cairo, 12622, Egypt
| | - Paola Gratteri
- Department of NEUROFARBA - Pharmaceutical and Nutraceutical Section; Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Firenze, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Sahar M Abou-Seri
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Egypt.
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy.
| |
Collapse
|
40
|
Design, synthesis and biological evaluation of homoerythrina alkaloid derivatives bearing a triazole moiety as PARP-1 inhibitors and as potential antitumor drugs. Bioorg Chem 2020; 94:103385. [DOI: 10.1016/j.bioorg.2019.103385] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 10/08/2019] [Accepted: 10/21/2019] [Indexed: 11/22/2022]
|
41
|
Bua S, Lomelino C, Murray AB, Osman SM, ALOthman ZA, Bozdag M, Abdel-Aziz HA, Eldehna WM, McKenna R, Nocentini A, Supuran CT. "A Sweet Combination": Developing Saccharin and Acesulfame K Structures for Selectively Targeting the Tumor-Associated Carbonic Anhydrases IX and XII. J Med Chem 2019; 63:321-333. [PMID: 31794211 DOI: 10.1021/acs.jmedchem.9b01669] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The sweeteners saccharin (SAC) and acesulfame K (ACE) recently entered the topic of anticancer human carbonic anhydrase (CA, EC 4.2.1.1) inhibitors, as they showed to selectively inhibit the tumor-associated CAs IX/XII over ubiquitous CAs. A drug design strategy is here reported, which took SAC and ACE as leads and produced a series of 2H-benzo[e][1,2,4]thiadiazin-3(4H)-one-1,1-dioxides (BTD). Many derivatives showed greater potency (KIs-CA IX 19.1-408.5 nM) and selectivity (II/IX SI 2-76) than the leads (KIs-CA IX 103, 2400 nM; II/IX-SI 56, >4) against CA IX/XII over off-target isoforms. A thorough X-ray crystallographic study depicted their binding mode to both CA II and IX-mimic. The most representative BTDs were characterized in vitro for their antitumor activity against A549, PC-3, and HCT-116 cancer cell lines both in normoxia and hypoxia. The two most effective compounds were assayed for their effect on several apoptosis markers, identifying promising leads for the development of new anticancer drugs.
Collapse
Affiliation(s)
- Silvia Bua
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences , University of Florence , via Ugo Schiff 6 , 50019 Sesto Fiorentino, Florence , Italy
| | - Carrie Lomelino
- Department of Biochemistry and Molecular Biology , University of Florida , 1200 Newell Drive , Gainesville , Florida 32610 , United States
| | - Akilah B Murray
- Department of Biochemistry and Molecular Biology , University of Florida , 1200 Newell Drive , Gainesville , Florida 32610 , United States
| | - Sameh M Osman
- Chemistry Department, College of Science , King Saud University , PO Box 2455, Riyadh 11451 , Saudi Arabia
| | - Zeid A ALOthman
- Chemistry Department, College of Science , King Saud University , PO Box 2455, Riyadh 11451 , Saudi Arabia
| | - Murat Bozdag
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences , University of Florence , via Ugo Schiff 6 , 50019 Sesto Fiorentino, Florence , Italy
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry , National Research Center , Dokki, Giza 12622 , Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy , Kafrelsheikh University , Kafrelsheikh 33516 , Egypt
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology , University of Florida , 1200 Newell Drive , Gainesville , Florida 32610 , United States
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences , University of Florence , via Ugo Schiff 6 , 50019 Sesto Fiorentino, Florence , Italy
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences , University of Florence , via Ugo Schiff 6 , 50019 Sesto Fiorentino, Florence , Italy
| |
Collapse
|
42
|
Eldehna WM, Hassan GS, Al-Rashood ST, Al-Warhi T, Altyar AE, Alkahtani HM, Almehizia AA, Abdel-Aziz HA. Synthesis and in vitro anticancer activity of certain novel 1-(2-methyl-6-arylpyridin-3-yl)-3-phenylureas as apoptosis-inducing agents. J Enzyme Inhib Med Chem 2019; 34:322-332. [PMID: 30722708 PMCID: PMC6366416 DOI: 10.1080/14756366.2018.1547286] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 12/13/2022] Open
Abstract
In connection with our research program on the development of novel anticancer candidates, herein we report the design and synthesis of novel series of 1-(2-methyl-6-arylpyridin-3-yl)-3-phenylureas 5a-l. The target pyridins were evaluated for their in vitro anticancer activity against two cancer cell lines: non-small cell lung cancer A549 cell line and colon cancer HCT-116 cell line. Compound 5l emerged as the most active congener towards both A549 and HCT-116 cell lines with IC50 values equal to 3.22 ± 0.2 and 2.71 ± 0.16 µM, respectively, which are comparable to those of Doxorubicin; 2.93 ± 0.28 and 3.10 ± 0.22, respectively. Furthermore, compound 5l stood out as the most potent pyridine derivative (mean % GI = 40), at US-NCI Developmental Therapeutic Program anticancer assay, with broad-spectrum antitumor activity against the most tested cancer cell lines from all subpanels. Compound 5l was able to provoke apoptosis in HCT-116 cells as evidenced by the decreased expression of the anti-apoptotic Bcl-2 protein, and the enhanced expression of the pro-apoptotic proteins levels; Bax, cytochrome C, p53, caspase-3 and caspase-9. Moreover, 5l disrupted the HCT-116 cell cycle via alteration of the Sub-G1 phase and arresting the G2-M stage. Also, 5l showed a significant increase in the percent of annexinV-FITC positive apoptotic cells from 1.99 to 15.76%.
Collapse
Affiliation(s)
- Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Ghada S. Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Sara T. Al-Rashood
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Tarfah Al-Warhi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ahmed E. Altyar
- Department of Clinical Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hamad M. Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdulrahman A. Almehizia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hatem A. Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Cairo, Egypt
| |
Collapse
|
43
|
Zhong Y, Meng Y, Xu X, Zhao L, Li Z, You Q, Bian J. Design, synthesis and evaluation of phthalazinone thiohydantoin-based derivative as potent PARP-1 inhibitors. Bioorg Chem 2019; 91:103181. [DOI: 10.1016/j.bioorg.2019.103181] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 06/28/2019] [Accepted: 08/01/2019] [Indexed: 11/27/2022]
|
44
|
Synthesis and biological activity of structurally diverse phthalazine derivatives: A systematic review. Bioorg Med Chem 2019; 27:3979-3997. [DOI: 10.1016/j.bmc.2019.07.050] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/27/2019] [Accepted: 07/30/2019] [Indexed: 12/21/2022]
|
45
|
Eldehna WM, Abdelrahman MA, Nocentini A, Bua S, Al-Rashood ST, Hassan GS, Bonardi A, Almehizia AA, Alkahtani HM, Alharbi A, Gratteri P, Supuran CT. Synthesis, biological evaluation and in silico studies with 4-benzylidene-2-phenyl-5(4H)-imidazolone-based benzenesulfonamides as novel selective carbonic anhydrase IX inhibitors endowed with anticancer activity. Bioorg Chem 2019; 90:103102. [PMID: 31299596 DOI: 10.1016/j.bioorg.2019.103102] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/13/2019] [Accepted: 07/01/2019] [Indexed: 12/18/2022]
Abstract
In the presented work, we report the synthesis of a series of 4-benzylidene-2-phenyl-5(4H)-imidazolone-based benzenesulfonamides 7a-fvia the Erlenmeyer-Plöchl reaction. All the prepared imidazolones 7a-f were evaluated as inhibitors of human (h) carbonic anhydrases (CA, EC 4.2.1.1) cytosolic isoforms hCA I and II, as well as transmembrane tumor-associated isoforms hCA IX and XII. All the tested hCA isoforms were inhibited by the prepared imidazolones 7a-f in variable degrees with the following KIs ranges: 673.2-8169 nM for hCA I, 61.2-592.1 nM for hCA II, 23-155.4 nM for hCA XI, and 21.8-179.6 nM for hCA XII. In particular, imidazolones 7a, 7e, and 7f exhibited good selectivity towards the tumor-associated isoforms (CAs IX and XII) over the off-target cytosolic (CAs I and II) with selectivity index (SI) in the range of 6.2-19.4 and 3.3-8, respectively. Moreover, imidazolones 7a-f were screened for their anticancer activity in one dose (10-5 M) assay against a panel of 60 cancer cell lines according to US-NCI protocol. Furthermore, 7a, 7e and 7f were evaluated for their anti-proliferative activity against colorectal cancer HCT-116 and breast cancer MCF-7 cell lines. Furthermore, 7e and 7f were screened for cell cycle disturbance and apoptosis induction in HCT-116 cells. Finally, a molecular docking study was carried out to rationalize the obtained results.
Collapse
Affiliation(s)
- Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt.
| | - Mohamed A Abdelrahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo 11829, Egypt
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy; Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Silvia Bua
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Sara T Al-Rashood
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ghada S Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Alessandro Bonardi
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy; Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Abdulrahman A Almehizia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Hamad M Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Amal Alharbi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Paola Gratteri
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy.
| |
Collapse
|
46
|
Abdelrahman MA, Eldehna WM, Nocentini A, Bua S, Al-Rashood ST, Hassan GS, Bonardi A, Almehizia AA, Alkahtani HM, Alharbi A, Gratteri P, Supuran CT. Novel Diamide-Based Benzenesulfonamides as Selective Carbonic Anhydrase IX Inhibitors Endowed with Antitumor Activity: Synthesis, Biological Evaluation and In Silico Insights. Int J Mol Sci 2019; 20:ijms20102484. [PMID: 31137489 PMCID: PMC6566410 DOI: 10.3390/ijms20102484] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 12/17/2022] Open
Abstract
In this work, we present the synthesis and biological evaluation of novel series of diamide-based benzenesulfonamides 5a–h as inhibitors of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1) isoforms hCA I, II, IX and XII. The target tumor-associated isoforms hCA IX and XII were undeniably the most affected ones (KIs: 8.3–123.3 and 9.8–134.5 nM, respectively). Notably, diamides 5a and 5h stood out as a single-digit nanomolar hCA IX inhibitors (KIs = 8.8 and 8.3 nM). The SAR outcomes highlighted that bioisosteric replacement of the benzylidene moiety, compounds 5a–g, with the hetero 2-furylidene moiety, compound 5h, achieved the best IX/I and IX/II selectivity herein reported with SIs of 985 and 13.8, respectively. Molecular docking simulations of the prepared diamides within CA IX active site revealed the ability of 5h to establish an additional H-bond between the heterocyclic oxygen and HE/Gln67. Moreover, benzenesulfonamides 5a, 5b and 5h were evaluated for their antitumor activity against renal cancer UO-31 cell line. Compound 5h was the most potent derivative with about 1.5-fold more enhanced activity (IC50 = 4.89 ± 0.22 μM) than the reference drug Staurosporine (IC50 = 7.25 ± 0.43 μM). Moreover, 5a and 5h were able to induce apoptosis in UO-31 cells as evidenced by the significant increase in the percent of annexinV-FITC positive apoptotic cells by 22.5- and 26.5-folds, respectively.
Collapse
Affiliation(s)
- Mohamed A Abdelrahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo 11829, Egypt.
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt.
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, Sesto Fiorentino, 50019 Firenze, Italy.
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Polo Scientifico, Via U. Schiff 6, Sesto Fiorentino, 50019 Firenze, Italy.
| | - Silvia Bua
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, Sesto Fiorentino, 50019 Firenze, Italy.
| | - Sara T Al-Rashood
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
| | - Ghada S Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Alessandro Bonardi
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, Sesto Fiorentino, 50019 Firenze, Italy.
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Polo Scientifico, Via U. Schiff 6, Sesto Fiorentino, 50019 Firenze, Italy.
| | - Abdulrahman A Almehizia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
| | - Hamad M Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
| | - Amal Alharbi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
| | - Paola Gratteri
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Polo Scientifico, Via U. Schiff 6, Sesto Fiorentino, 50019 Firenze, Italy.
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, Sesto Fiorentino, 50019 Firenze, Italy.
| |
Collapse
|
47
|
Discovery of 2-(1-(3-(4-Chloroxyphenyl)-3-oxo- propyl)pyrrolidine-3-yl)-1 H-benzo[d]imidazole-4-carboxamide: A Potent Poly(ADP-ribose) Polymerase (PARP) Inhibitor for Treatment of Cancer. Molecules 2019; 24:molecules24101901. [PMID: 31108884 PMCID: PMC6572064 DOI: 10.3390/molecules24101901] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/29/2019] [Accepted: 05/02/2019] [Indexed: 01/02/2023] Open
Abstract
A series of benzimidazole carboxamide derivatives have been synthesized and characterized by 1H-NMR, 13C-NMR and HRMS. PARP inhibition assays and cellular proliferation assays have also been carried out. Compounds 5cj and 5cp exhibited potential anticancer activities with IC50 values of about 4 nM against both PARP-1 and PARP-2, similar to the reference drug veliparib. The two compounds also displayed slightly better in vitro cytotoxicities against MDA-MB-436 and CAPAN-1 cell lines than veliparib and olaparib, with values of 17.4 µM and 11.4 µM, 19.8 µM and 15.5 µM, respectively. The structure-activity relationship based on molecular docking was discussed as well.
Collapse
|
48
|
Gao Y, Liu D, Fu Z, Huang W. Facile Synthesis of 2,2-Diacyl Spirocyclohexanones via an N-Heterocyclic Carbene-Catalyzed Formal [3C + 3C] Annulation. Org Lett 2019; 21:926-930. [PMID: 30714381 DOI: 10.1021/acs.orglett.8b03892] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A novel strategy for the construction of 2,2-diacyl spirocyclohexanones 3 has been demonstrated on the basis of an NHC-catalyzed [3C + 3C] annulation of potassium 2-oxo-3-enoates with 2-ethylidene 1,3-indandiones. Furthermore, enantioenriched 3 was obtained in good to excellent yields with good enantioselectivities when chiral N-heterocyclic carbene (NHC) was employed. Notably, ring opening of the resulting 2,2-diacyl spirocyclohexanones 3 with hydrazine led to the formation of phthalazinones in good to excellent yields.
Collapse
Affiliation(s)
- Yaru Gao
- Shaanxi Institute of Flexible Electronics (SIFE) , Northwestern Polytechnical University (NPU) , 127 West Youyi Road , Xi'an 710072 , China.,Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , China
| | - Dehai Liu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , China
| | - Zhenqian Fu
- Shaanxi Institute of Flexible Electronics (SIFE) , Northwestern Polytechnical University (NPU) , 127 West Youyi Road , Xi'an 710072 , China.,Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , China
| | - Wei Huang
- Shaanxi Institute of Flexible Electronics (SIFE) , Northwestern Polytechnical University (NPU) , 127 West Youyi Road , Xi'an 710072 , China.,Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , China
| |
Collapse
|
49
|
Jain PG, Patel BD. Medicinal chemistry approaches of poly ADP-Ribose polymerase 1 (PARP1) inhibitors as anticancer agents - A recent update. Eur J Med Chem 2019; 165:198-215. [PMID: 30684797 DOI: 10.1016/j.ejmech.2019.01.024] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/28/2018] [Accepted: 01/11/2019] [Indexed: 12/14/2022]
Abstract
Poly (ADP-ribose) Polymerase1 (PARP1) is a member of 17 membered PARP family having diversified biological functions such as synthetic lethality, DNA repair, apoptosis, necrosis, histone binding etc. It is primarily a chromatin-bound nuclear enzyme that gets activated by DNA damage. It binds to DNA signal- and double-strand breaks, does parylation of target proteins (using NAD+ as a substrate) like histones and other DNA repair proteins and modifies them as a part of DNA repair mechanism. Inhibition of PARP1 prevents the DNA repair and leads to cell death. Clinically, PARP1 Inhibitors have shown their potential in treating BRCAm breast and ovarian cancers and trials are going on for the treatment of other solid tumors like pancreatic, prostate, colorectal etc. as a single agent or in combination. There are currently three FDA approved PARP1 inhibitors namely Olaparib, Rucaparib and Niraparib in the market while Veliparib and Talazoparib are in the late stage of clinical development. All these molecules are nonselective PARP1 inhibitors with concurrent inhibition of PARP2 with similar potency. In addition, resistance to marketed PARP1 inhibitors has been reported. Overall, looking at the success rate of PARP1 inhibitors into various solid tumors, there is an urge of a novel and selective PARP1 inhibitors. This review provides an update on various newer heterocyclic PARP1 inhibitors reported in last three years along with their structural design strategies. We classified them into two main chemical classes; NAD analogues and non-NAD analogues and discussed the medicinal chemistry approaches of each class. To understand the structural features required for in-silico designing of next-generation PARP1 inhibitors, we also reported the crucial amino acid interactions of these inhibitors at the target site. Thus, present review provides the insight on recent development on new lead structures as PARP1 inhibitors, their SAR, an overview of in-vitro and in-vivo screening methods, current challenges and opinion on future designing of more selective and safe PARP1 inhibitors.
Collapse
Affiliation(s)
- Priyancy G Jain
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Bhumika D Patel
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India.
| |
Collapse
|
50
|
Vysokova OА, Kalinina TA, Slepukhin PА, Pospelova TА, Obydennov KL, Glukhareva TV. Synthesis of 5-(5-amino-1H-pyrazol-1-yl)-1,2,3-thiadiazole-4-carboxylic acid ethyl esters and their cyclization into pyrazolo[1,5-a][1,2,3]thiadiazolo[4,5-e]pyrimidin-4(5H)-ones. Chem Heterocycl Compd (N Y) 2018. [DOI: 10.1007/s10593-018-2396-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|