1
|
Zhang W, Bai H, Wang Y, Wang X, Jin R, Guo H, Lai H, Tang Y, Wang Y. Identification of mIDH1 R132C/S280F Inhibitors from Natural Products by Integrated Molecular Docking, Pharmacophore Modeling and Molecular Dynamics Simulations. Pharmaceuticals (Basel) 2024; 17:336. [PMID: 38543123 PMCID: PMC10976062 DOI: 10.3390/ph17030336] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 11/19/2024] Open
Abstract
Mutant isocitrate dehydrogenase 1 (mIDH1) is a common driving factor in acute myeloid leukemia (AML), with the R132 mutation accounting for a high proportion. The U.S. Food and Drug Administration (FDA) approved Ivosidenib, a molecular entity that targets IDH1 with R132 mutations, as a promising therapeutic option for AML with mIDH1 in 2018. It was of concern that the occurrence of disease resistance or recurrence, attributed to the IDH1 R132C/S280F second site mutation, was observed in certain patients treated with Ivosidenib within the same year. Furthermore, it should be noted that most mIDH1 inhibitors demonstrated limited efficacy against mutations at this specific site. Therefore, there is an urgent need to investigate novel inhibitors targeting mIDH1 for combating resistance caused by IDH1 R132C/S280F mutations in AML. This study aimed to identify novel mIDH1 R132C/S280F inhibitors through an integrated strategy of combining virtual screening and dynamics simulations. First, 2000 hits were obtained through structure-based virtual screening of the COCONUT database, and hits with better scores than -10.67 kcal/mol were obtained through molecular docking. A total of 12 potential small molecule inhibitors were identified through pharmacophore modeling screening and Prime MM-GBSA. Dynamics simulations were used to study the binding modes between the positive drug and the first three hits and IDH1 carrying the R132C/S280F mutation. RMSD showed that the four dynamics simulation systems remained stable, and RMSF and Rg showed that the screened molecules have similar local flexibility and tightness to the positive drug. Finally, the lowest energy conformation, hydrogen bond analysis, and free energy decomposition results indicate that in the entire system the key residues LEU120, TRP124, TRP267, and VAL281 mainly contribute van der Waals forces to the interaction, while the key residues VAL276 and CYS379 mainly contribute electrostatic forces.
Collapse
Affiliation(s)
- Weitong Zhang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi’an-Xianyang New Ecomic Zone, Xianyang712046, China; (W.Z.); (H.B.); (Y.W.); (R.J.); (H.G.); (Y.T.)
| | - Hailong Bai
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi’an-Xianyang New Ecomic Zone, Xianyang712046, China; (W.Z.); (H.B.); (Y.W.); (R.J.); (H.G.); (Y.T.)
| | - Yifan Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi’an-Xianyang New Ecomic Zone, Xianyang712046, China; (W.Z.); (H.B.); (Y.W.); (R.J.); (H.G.); (Y.T.)
| | - Xiaorui Wang
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao 999078, China;
| | - Ruyi Jin
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi’an-Xianyang New Ecomic Zone, Xianyang712046, China; (W.Z.); (H.B.); (Y.W.); (R.J.); (H.G.); (Y.T.)
| | - Hui Guo
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi’an-Xianyang New Ecomic Zone, Xianyang712046, China; (W.Z.); (H.B.); (Y.W.); (R.J.); (H.G.); (Y.T.)
| | | | - Yuping Tang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi’an-Xianyang New Ecomic Zone, Xianyang712046, China; (W.Z.); (H.B.); (Y.W.); (R.J.); (H.G.); (Y.T.)
| | - Yuwei Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi’an-Xianyang New Ecomic Zone, Xianyang712046, China; (W.Z.); (H.B.); (Y.W.); (R.J.); (H.G.); (Y.T.)
| |
Collapse
|
2
|
Wang QX, Zhang PY, Li QQ, Tong ZJ, Wu JZ, Yu SP, Yu YC, Ding N, Leng XJ, Chang L, Xu JG, Sun SL, Yang Y, Li NG, Shi ZH. Challenges for the development of mutant isocitrate dehydrogenases 1 inhibitors to treat glioma. Eur J Med Chem 2023; 257:115464. [PMID: 37235998 DOI: 10.1016/j.ejmech.2023.115464] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023]
Abstract
Glioma is one of the most common types of brain tumors, and its high recurrence and mortality rates threaten human health. In 2008, the frequent isocitrate dehydrogenase 1 (IDH1) mutations in glioma were reported, which brought a new strategy in the treatment of this challenging disease. In this perspective, we first discuss the possible gliomagenesis after IDH1 mutations (mIDH1). Subsequently, we systematically investigate the reported mIDH1 inhibitors and present a comparative analysis of the ligand-binding pocket in mIDH1. Additionally, we also discuss the binding features and physicochemical properties of different mIDH1 inhibitors to facilitate the future development of mIDH1 inhibitors. Finally, we discuss the possible selectivity features of mIDH1 inhibitors against WT-IDH1 and IDH2 by combining protein-based and ligand-based information. We hope that this perspective can inspire the development of mIDH1 inhibitors and bring potent mIDH1 inhibitors for the treatment of glioma.
Collapse
Affiliation(s)
- Qing-Xin Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Peng-Yu Zhang
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Qing-Qing Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Zhen-Jiang Tong
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Jia-Zhen Wu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Shao-Peng Yu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Yan-Cheng Yu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Ning Ding
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Xue-Jiao Leng
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Liang Chang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Jin-Guo Xu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Shan-Liang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China.
| | - Ye Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China.
| | - Nian-Guang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China.
| | - Zhi-Hao Shi
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
3
|
Liu Y, Xu W, Li M, Yang Y, Sun D, Chen L, Li H, Chen L. The regulatory mechanisms and inhibitors of isocitrate dehydrogenase 1 in cancer. Acta Pharm Sin B 2023; 13:1438-1466. [PMID: 37139412 PMCID: PMC10149907 DOI: 10.1016/j.apsb.2022.12.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/07/2022] [Accepted: 11/18/2022] [Indexed: 02/04/2023] Open
Abstract
Reprogramming of energy metabolism is one of the basic characteristics of cancer and has been proved to be an important cancer treatment strategy. Isocitrate dehydrogenases (IDHs) are a class of key proteins in energy metabolism, including IDH1, IDH2, and IDH3, which are involved in the oxidative decarboxylation of isocitrate to yield α-ketoglutarate (α-KG). Mutants of IDH1 or IDH2 can produce d-2-hydroxyglutarate (D-2HG) with α-KG as the substrate, and then mediate the occurrence and development of cancer. At present, no IDH3 mutation has been reported. The results of pan-cancer research showed that IDH1 has a higher mutation frequency and involves more cancer types than IDH2, implying IDH1 as a promising anti-cancer target. Therefore, in this review, we summarized the regulatory mechanisms of IDH1 on cancer from four aspects: metabolic reprogramming, epigenetics, immune microenvironment, and phenotypic changes, which will provide guidance for the understanding of IDH1 and exploring leading-edge targeted treatment strategies. In addition, we also reviewed available IDH1 inhibitors so far. The detailed clinical trial results and diverse structures of preclinical candidates illustrated here will provide a deep insight into the research for the treatment of IDH1-related cancers.
Collapse
|
4
|
Tian W, Zhang W, Wang Y, Jin R, Wang Y, Guo H, Tang Y, Yao X. Recent advances of IDH1 mutant inhibitor in cancer therapy. Front Pharmacol 2022; 13:982424. [PMID: 36091829 PMCID: PMC9449373 DOI: 10.3389/fphar.2022.982424] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/02/2022] [Indexed: 11/23/2022] Open
Abstract
Isocitrate dehydrogenase (IDH) is the key metabolic enzyme that catalyzes the conversion of isocitrate to α-ketoglutarate (α-KG). Two main types of IDH1 and IDH2 are present in humans. In recent years, mutations in IDH have been observed in several tumors, including glioma, acute myeloid leukemia, and chondrosarcoma. Among them, the frequency of IDH1 mutations is higher than IDH2. IDH1 mutations have been shown to increase the conversion of α-KG to 2-hydroxyglutarate (2-HG). IDH1 mutation-mediated accumulation of 2-HG leads to epigenetic dysregulation, altering gene expression, and impairing cell differentiation. A rapidly emerging therapeutic approach is through the development of small molecule inhibitors targeting mutant IDH1 (mIDH1), as evidenced by the recently approved of the first selective IDH1 mutant inhibitor AG-120 (ivosidenib) for the treatment of IDH1-mutated AML. This review will focus on mIDH1 as a therapeutic target and provide an update on IDH1 mutant inhibitors in development and clinical trials.
Collapse
Affiliation(s)
- Wangqi Tian
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Weitong Zhang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Yifan Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Ruyi Jin
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Yuwei Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Hui Guo
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Yuping Tang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Xiaojun Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, China
| |
Collapse
|
5
|
Zhabinskii VN, Drasar P, Khripach VA. Structure and Biological Activity of Ergostane-Type Steroids from Fungi. Molecules 2022; 27:2103. [PMID: 35408501 PMCID: PMC9000798 DOI: 10.3390/molecules27072103] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 12/24/2022] Open
Abstract
Mushrooms are known not only for their taste but also for beneficial effects on health attributed to plethora of constituents. All mushrooms belong to the kingdom of fungi, which also includes yeasts and molds. Each year, hundreds of new metabolites of the main fungal sterol, ergosterol, are isolated from fungal sources. As a rule, further testing is carried out for their biological effects, and many of the isolated compounds exhibit one or another activity. This study aims to review recent literature (mainly over the past 10 years, selected older works are discussed for consistency purposes) on the structures and bioactivities of fungal metabolites of ergosterol. The review is not exhaustive in its coverage of structures found in fungi. Rather, it focuses solely on discussing compounds that have shown some biological activity with potential pharmacological utility.
Collapse
Affiliation(s)
- Vladimir N. Zhabinskii
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Str., 5/2, 220141 Minsk, Belarus;
| | - Pavel Drasar
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Technicka 5, CZ-166 28 Prague, Czech Republic;
| | - Vladimir A. Khripach
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Str., 5/2, 220141 Minsk, Belarus;
| |
Collapse
|
6
|
Yang Y, Xiang K, Sun D, Zheng M, Song Z, Li M, Wang X, Li H, Chen L. Withanolides from dietary tomatillo suppress HT1080 cancer cell growth by targeting mutant IDH1. Bioorg Med Chem 2021; 36:116095. [PMID: 33735687 DOI: 10.1016/j.bmc.2021.116095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 11/16/2022]
Abstract
Isocitrate dehydrogenase (IDH) is one key rate-limiting enzyme in the tricarboxylic acid cycle, which is related to various cancers. Tomatillo (Physalis ixocarpa), a special tomato, is widely consumed as nutritious vegetable in Mexico, USA, etc. As a rich source for withanolides, the fruits of P. ixocarpa were investigated, leading to the isolation of 11 type-A withanolides including 4 new ones (1 is an artificial withanolide). All these withanolides were evaluated for their inhibition on mutant IDH1 enzyme activity. Among them, physalin F (11) exhibited potent enzyme inhibitory activity and binding affinity with mutant IDH1. It inhibits the proliferation of HT1080 cells by selectively inhibiting the activity of mutant IDH1. Since Ixocarpalactone A, another major type-B withanolide in this plant, could act on another energy metabolism target PHGDH, the presence of different types of withanolides in tomatillo and their synergistic effect could make it a potential antitumor functional food or drug.
Collapse
Affiliation(s)
- Yueying Yang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ke Xiang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dejuan Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Mengzhu Zheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhuorui Song
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Mingxue Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xuanbin Wang
- Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China.
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
7
|
Nature-derived anticancer steroids outside cardica glycosides. Fitoterapia 2020; 147:104757. [PMID: 33069834 DOI: 10.1016/j.fitote.2020.104757] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 12/23/2022]
Abstract
Steriods which are ubiquitous in natural resources are important components of cell membranes and involved in several physiological functions. Steriods not only exerted the anticancer activity through inhibition of various enzymes and receptors in cancer cells, inclusive of aromatase, sulfatase, 5α-reductase, hydroxysteroid dehydrogenase and CYP 17, but also exhibited potential activity against various cancer forms including multidrug-resistant cancer with low cytotoxicity, and high bioavailability. Accordingly, steroids are useful scaffolds for the discovery of novel anticancer agents. This review aims to outline the advances of nature-derived steroids outside cardica glycosides with anticancer potential, covering the articles published between Jan. 2015 and Aug. 2020.
Collapse
|
8
|
Zhang X, Yang L, Wang W, Wu Z, Wang J, Sun W, Li XN, Chen C, Zhu H, Zhang Y. Flavipesines A and B and Asperchalasines E-H: Cytochalasans and Merocytochalasans from Aspergillus flavipes. JOURNAL OF NATURAL PRODUCTS 2019; 82:2994-3001. [PMID: 31674782 DOI: 10.1021/acs.jnatprod.9b00512] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Flavipesines A and B (1 and 2) and asperchalasines E-H (3-6), two cytochalasans with an unusual ring system and four merocytochalasans possessing a 5/6/11/5/5/6 ring system, were isolated from Aspergillus flavipes, along with three related compounds (7-9). Their structures, including absolute configurations, were determined on the basis of data from HRESIMS, NMR, ECD, molecular modeling, and single-crystal X-ray diffraction. Flavipesines A and B (1 and 2) represent the first examples of cytochalasans possessing a 5/6/7/6 ring system with a C-18-O-C-21 bridge. Compounds 3, 7, and 9 show moderate inhibitory activities against isocitrate dehydrogenase 1 (IDH1). This is the first report on the IDH1 inhibitory activities of cytochalasans.
Collapse
Affiliation(s)
- Xiaotian Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Lu Yang
- Department of Chemistry, Faculty of Science , Western University , 1151 Richmond Street , London , Ontario N6A 3K7 , Canada
| | - Wenjing Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Zhaodi Wu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Jianping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Weiguang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Xiao-Nian Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China , Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650204 , People's Republic of China
| | - Chunmei Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Hucheng Zhu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| |
Collapse
|
9
|
Zheng M, Guo J, Xu J, Yang K, Tang R, Gu X, Li H, Chen L. Ixocarpalactone A from dietary tomatillo inhibits pancreatic cancer growth by targeting PHGDH. Food Funct 2019; 10:3386-3395. [DOI: 10.1039/c9fo00394k] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
3-Phosphoglycerate dehydrogenase (PHGDH) has been reported to associate with tumorigenesis in many cancers. IoxA, a natural withanolide obtained from dietary tomatillo (Physalis ixocarpa), was identified as the novel natural PHGDH inhibitor with high targeting and low toxicities for treatment of pancreatic cancers.
Collapse
Affiliation(s)
- Mengzhu Zheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- School of Pharmacy
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430030
| | - Jing Guo
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- School of Pharmacy
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430030
| | - Jiamin Xu
- Wuya College of Innovation
- Key Laboratory of Structure-Based Drug Design & Discovery
- Ministry of Education
- Shenyang Pharmaceutical University
- Shenyang 110016
| | - Kaiyin Yang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- School of Pharmacy
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430030
| | - Ruotian Tang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- School of Pharmacy
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430030
| | - Xiaoxia Gu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- School of Pharmacy
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430030
| | - Hua Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- School of Pharmacy
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430030
| | - Lixia Chen
- Wuya College of Innovation
- Key Laboratory of Structure-Based Drug Design & Discovery
- Ministry of Education
- Shenyang Pharmaceutical University
- Shenyang 110016
| |
Collapse
|