1
|
Bakhite EA, Hassanien R, Farhan N, Sayed EM, Sharaky M. New tetrahydroisoquinolines bearing nitrophenyl group targeting HSP90 and RET enzymes: synthesis, characterization and biological evaluation. BMC Chem 2025; 19:46. [PMID: 39985107 PMCID: PMC11846289 DOI: 10.1186/s13065-025-01399-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 01/27/2025] [Indexed: 02/24/2025] Open
Abstract
In this study, new tetrahydroisoquinoline compounds were synthesized by reaction of 7-Acetyl-4-cyano-1,6-dimethyl-6-hydroxy-8- (3-nitrophenyl or 4-nitrophenyl)-5,6,7,8-tetrahydrosoquinoline-3(2H)-thiones with methyl iodide, chloro acetonitrile, ethyl chloroacetate to produce compounds 3-5 and reacted with N-arylchloroacetamides reagents to gave tetrahydroisoquinolin-3-ylthio) acetamides compounds 6a-c, 8a-b which can cyclized to 6,7,8,9-tetrahydrothieno[2,3-c]Isoquinoline-2-carboxamides compounds 7a-c, 9a-b. Also react with N-(benzthiazol-2-yl)-2-chloroacetamideto give compound 10. The structures of all newly synthesized compounds were characterized by elemental and spectral analyses. Also, most of the synthesized compounds were evaluated for their anticancer activities aganist MCF7 and HEPG2 cell lines. From the result we found that the most active compound against the MCF7 cell lines was compound 8b, and the most active compound against HEPG2 cell lines was compound 3. Then the effects of compound 3 on the HEPG2 cell line was investigated using an apoptotic Annexin V-FITC test and flow cytometry. Compound 3 induced a 59-fold increase in HEPG2 cell line apoptosis and cell cycle arrested at the G0-G1, G2/M phases. Moreover, the molecular docking study was applied and the result showed that compounds 8b bind to the RET enzyme with binding energies of - 6.8 kcal/mol in comparison with standard alectinib, which exhibits a binding energy of - 7.2 kcal/mol. Compound 3 can bind with HSP 90 with a binding energy (ΔG) of - 6.8 kcal/mol, which was comparable to the standard Onalespib (- 7.1 kcal/mol).
Collapse
Affiliation(s)
- Etify A Bakhite
- Chemistry Department, Faculty of Science, Assuit University, Assiut, 71516, Egypt.
| | - Reda Hassanien
- Chemistry Department, Faculty of Science, New Valley University, El-Kharja, 72511, Egypt
| | - Nasser Farhan
- Chemistry Department, Faculty of Science, New Valley University, El-Kharja, 72511, Egypt
| | - Eman M Sayed
- Chemistry Department, Faculty of Science, New Valley University, El-Kharja, 72511, Egypt.
| | - Marwa Sharaky
- Pharmacology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, 12613, El-Gize, Egypt
| |
Collapse
|
2
|
Saddik AA, Bakhite EA, Hassanien R, Farhan N, Sayed EM, Sharaky M. New 5, 6, 7, 8-Tetrahydro-Isoquinolines Bearing 2-Nitrophenyl Group Targeting RET Enzyme: Synthesis, Anticancer Activity, Apoptotic Induction and Cell Cycle Arrest. Chem Biodivers 2024:e202402758. [PMID: 39607071 DOI: 10.1002/cbdv.202402758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 11/29/2024]
Abstract
In this work, we synthesized new 5, 6, 7, 8-tetrahydroisoquinolines and 6, 7, 8, 9-tetrahydrothieno[2, 3-c]isoquinolines derivatives, and the structures of these new compounds were confirmed with different spectroscopic techniques. Furthermore, the anticancer activities of these compounds were assessed against eight tumor cell lines and one normal human skin fibroblast cell line (HSF). Subsequently, IC50 values of the synthesized compounds were determined for two specific cancer cell lines. Compound 3 exhibited the most potent antiproliferative activity against the HEPG2 cell line, whereas compound 9c demonstrated superior efficacy against the HCT116 cell line. Moreover, the mechanism of action for compound 3 on HEPG2 cells using flow cytometry and Annexin V-FITC apoptosis analysis was studied. Compound 3 caused cell cycle arrest at the G2/M with a 50-fold increase in apoptosis of the HEPG2 cell line. Finally, a molecular docking study was conducted to assess the inhibitory potential of compounds 3 and 7 against the RET enzyme. Results indicated that compounds 3 and 7 bind to the RET enzyme with binding energies of -5.2 and -5.6 kcal/mol, respectively. Although these values suggest inhibitory activity, they are less potent than the standard inhibitor, alectinib, which exhibits a binding energy of -7.2 kcal/mol.
Collapse
Affiliation(s)
- Abdelreheem A Saddik
- Chemistry Department, Faculty of Science, Assuit University, Assiut, Egypt
- Department of Materials Science and Engineering, National Yang-Ming Chiao Tung University (NYCU), Hsinchu, Taiwan
| | - Etify A Bakhite
- Chemistry Department, Faculty of Science, Assuit University, Assiut, Egypt
| | - Reda Hassanien
- Chemistry Department, Faculty of Science, New Valley University, El-Kharja, Egypt
| | - Naseer Farhan
- Chemistry Department, Faculty of Science, New Valley University, El-Kharja, Egypt
| | - Eman M Sayed
- Chemistry Department, Faculty of Science, New Valley University, El-Kharja, Egypt
- South Egypt Cancer Institute, Cancer Biology Depertment, Assuit University, Assiut, Egypt
| | - Marwa Sharaky
- Pharmacology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
3
|
Doan NQH, Tran HN, Nguyen NTM, Pham TM, Nguyen QDK, Vu TT. Synthesis, Antimicrobial - Cytotoxic Evaluation, and Molecular Docking Studies of Quinolin-2-one Hydrazones Containing Nitrophenyl or Isonicotinoyl/Nicotinoyl Moiety. Chem Biodivers 2024; 21:e202401142. [PMID: 39032128 DOI: 10.1002/cbdv.202401142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/12/2024] [Accepted: 07/19/2024] [Indexed: 07/22/2024]
Abstract
By applying the hybrid molecular strategy, in this study, we reported the synthesis of fifteen quinolin-2-one hydrazones containing nitrophenyl or nicotinonyl/isonicotinoyl moiety, followed by in vitro and in silico evaluations of their potential antimicrobial and anticancer activities. In vitro antimicrobial evaluation of the target compounds on seven pathogenic strains, applying the broth microdilution method, revealed that compound 4a demonstrated the most potential antifungal activity against C. albicans (MIC 512 μg mL-1) and C. krusei (MIC 128 μg mL-1). In vitro cytotoxic evaluation of the target compounds on three human cancer cell lines, employing the MTT method, suggested that compound 5c exhibited the most potential cytotoxicities against HepG2 (IC50 10.19 μM), A549 (IC50 20.43 μM), and MDA-MB-231 (IC50 16.82 μM) cells. Additionally, molecular docking studies were performed to investigate the binding characteristics of compounds 4a and 5c with fungal lanosterol 14α-demethylase and human topoisomerase I-II, respectively, thereby contributing to the elucidation of their in vitro antifungal and cytotoxic properties. Furthermore, compounds 4a and 5c, via SwissADME prediction, could exhibit favorable physicochemical and pharmacokinetic properties. In conclusion, this study provides valuable insights into the potential of quinolin-2-one hydrazones as promising candidates for the development of novel antimicrobial and anticancer agents in the future.
Collapse
Affiliation(s)
- Nam Q H Doan
- Faculty of Pharmacy, Van Lang University, 69/68 Dang Thuy Tram Street, Ward 13, Binh Thanh District, Ho Chi Minh City, 70000, Vietnam
| | - Hoan N Tran
- Faculty of Pharmacy, Van Lang University, 69/68 Dang Thuy Tram Street, Ward 13, Binh Thanh District, Ho Chi Minh City, 70000, Vietnam
| | - Nhu T M Nguyen
- Faculty of Pharmacy, Van Lang University, 69/68 Dang Thuy Tram Street, Ward 13, Binh Thanh District, Ho Chi Minh City, 70000, Vietnam
| | - Thu M Pham
- Faculty of Pharmacy, Van Lang University, 69/68 Dang Thuy Tram Street, Ward 13, Binh Thanh District, Ho Chi Minh City, 70000, Vietnam
| | - Quyen D K Nguyen
- Faculty of Pharmacy, Van Lang University, 69/68 Dang Thuy Tram Street, Ward 13, Binh Thanh District, Ho Chi Minh City, 70000, Vietnam
| | - Thanh-Thao Vu
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 41-43 Dinh Tien Hoang Street, Ben Nghe Ward, District 1, Ho Chi Minh City, 70000, Vietnam
| |
Collapse
|
4
|
Arora A, Kumar S, Kumar S, Singh SK, Dua A, Singh BK. Natural product inspired diastereoselective synthesis of sugar-derived pyrano[3,2-c]quinolones and their in-silico studies. Carbohydr Res 2024; 539:109105. [PMID: 38583285 DOI: 10.1016/j.carres.2024.109105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Herein, we report the development of a diastereoselective and efficient route to construct sugar-derived pyrano[3,2-c]quinolones utilizing 1-C-formyl glycal and 4-hydroxy quinolone annulation. This methodology will open a route to synthesize nature inspired pyrano[3,2-c]quinolones. This is the first report for the stereoselective synthesis of sugar-derived pyrano[3,2-c]quinolones, where 100% stereoselectivity was observed. A total of sixteen compounds have been synthesized in excellent yields with 100% stereoselectivity. The molecular docking of the synthesized novel natural product analogues demonstrated their binding modes within the active site of type II topoisomerase. The results of the in-silico studies displayed more negative binding energies for the all the synthesized compounds in comparison to the natural product huajiosimuline A, indicating their affinity for the active pocket. Ten out of the sixteen novel synthesized compounds were found to have comparative or relatively more negative binding energy in comparison to the standard anti-cancer drug, doxorubicin. Additionally, the scalability and viability of this protocol was illustrated by the gram scale synthesis.
Collapse
Affiliation(s)
- Aditi Arora
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Sumit Kumar
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Sandeep Kumar
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India; Department of Chemistry, Ramjas College, University of Delhi, Delhi, 110007, India
| | - Sunil K Singh
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India; Department of Chemistry, Kirori Mal College, University of Delhi, Delhi, 110007, India
| | - Amita Dua
- Department of Chemistry, Dyal Singh College, University of Delhi, Delhi, 110007, India
| | - Brajendra K Singh
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
5
|
BHUSARE NILAM, KUMAR MAUSHMI. A review on potential heterocycles for the treatment of glioblastoma targeting receptor tyrosine kinases. Oncol Res 2024; 32:849-875. [PMID: 38686058 PMCID: PMC11055995 DOI: 10.32604/or.2024.047042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/10/2024] [Indexed: 05/02/2024] Open
Abstract
Glioblastoma, the most aggressive form of brain tumor, poses significant challenges in terms of treatment success and patient survival. Current treatment modalities for glioblastoma include radiation therapy, surgical intervention, and chemotherapy. Unfortunately, the median survival rate remains dishearteningly low at 12-15 months. One of the major obstacles in treating glioblastoma is the recurrence of tumors, making chemotherapy the primary approach for secondary glioma patients. However, the efficacy of drugs is hampered by the presence of the blood-brain barrier and multidrug resistance mechanisms. Consequently, considerable research efforts have been directed toward understanding the underlying signaling pathways involved in glioma and developing targeted drugs. To tackle glioma, numerous studies have examined kinase-downstream signaling pathways such as RAS-RAF-MEK-ERK-MPAK. By targeting specific signaling pathways, heterocyclic compounds have demonstrated efficacy in glioma therapeutics. Additionally, key kinases including phosphatidylinositol 3-kinase (PI3K), serine/threonine kinase, cytoplasmic tyrosine kinase (CTK), receptor tyrosine kinase (RTK) and lipid kinase (LK) have been considered for investigation. These pathways play crucial roles in drug effectiveness in glioma treatment. Heterocyclic compounds, encompassing pyrimidine, thiazole, quinazoline, imidazole, indole, acridone, triazine, and other derivatives, have shown promising results in targeting these pathways. As part of this review, we propose exploring novel structures with low toxicity and high potency for glioma treatment. The development of these compounds should strive to overcome multidrug resistance mechanisms and efficiently penetrate the blood-brain barrier. By optimizing the chemical properties and designing compounds with enhanced drug-like characteristics, we can maximize their therapeutic value and minimize adverse effects. Considering the complex nature of glioblastoma, these novel structures should be rigorously tested and evaluated for their efficacy and safety profiles.
Collapse
Affiliation(s)
- NILAM BHUSARE
- Somaiya Institute for Research & Consultancy, Somaiya Vidyavihar University, Vidyavihar (East), Mumbai, 400077, India
| | - MAUSHMI KUMAR
- Somaiya Institute for Research & Consultancy, Somaiya Vidyavihar University, Vidyavihar (East), Mumbai, 400077, India
| |
Collapse
|
6
|
Zhao YQ, Li X, Guo HY, Shen QK, Quan ZS, Luan T. Application of Quinoline Ring in Structural Modification of Natural Products. Molecules 2023; 28:6478. [PMID: 37764254 PMCID: PMC10534720 DOI: 10.3390/molecules28186478] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Natural compounds are rich in pharmacological properties that are a hot topic in pharmaceutical research. The quinoline ring plays important roles in many biological processes in heterocycles. Many pharmacological compounds, including saquinavir and chloroquine, have been marketed as quinoline molecules with good anti-viral and anti-parasitic properties. Therefore, in this review, we summarize the medicinal chemistry of quinoline-modified natural product quinoline derivatives that were developed by several research teams in the past 10 years and find that these compounds have inhibitory effects on bacteria, viruses, parasites, inflammation, cancer, Alzheimer's disease, and others.
Collapse
Affiliation(s)
- Yu-Qing Zhao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China; (Y.-Q.Z.); (X.L.); (H.-Y.G.); (Q.-K.S.)
| | - Xiaoting Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China; (Y.-Q.Z.); (X.L.); (H.-Y.G.); (Q.-K.S.)
| | - Hong-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China; (Y.-Q.Z.); (X.L.); (H.-Y.G.); (Q.-K.S.)
| | - Qing-Kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China; (Y.-Q.Z.); (X.L.); (H.-Y.G.); (Q.-K.S.)
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China; (Y.-Q.Z.); (X.L.); (H.-Y.G.); (Q.-K.S.)
| | - Tian Luan
- Department of Pharmacy, Shenyang Medical College, Shenyang 110034, China
| |
Collapse
|
7
|
Singh Y, Bhatia N, Biharee A, Kulkarni S, Thareja S, Monga V. Developing our knowledge of the quinolone scaffold and its value to anticancer drug design. Expert Opin Drug Discov 2023; 18:1151-1167. [PMID: 37592843 DOI: 10.1080/17460441.2023.2246366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/07/2023] [Indexed: 08/19/2023]
Abstract
INTRODUCTION The quinolone scaffold is a bicyclic benzene-pyridinic ring scaffold with nitrogen at the first position and a carbonyl group at the second or fourth position. It is endowed with a diverse spectrum of pharmacological activities, including antitumor activity, and has progressed into various development phases of clinical trials for their target-specific anticancer activity. AREAS COVERED The present review covers both classes of quinolones, i.e. quinolin-2(H)-one and quinolin-4(H)-one as anticancer agents, along with their possible mode of binding. Furthermore, their structure-activity relationships, molecular mechanisms, and pharmacokinetic properties are also covered to provide insight into their structural requirements for their rational design as anticancer agents. EXPERT OPINION Synthetic feasibility and ease of derivatization at multiple positions, has allowed medicinal chemists to explore quinolones and their chemical diversity to discover newer anticancer agents. The presence of both hydrogen bond donor (-NH) and acceptor (-C=O) functionality in the basic scaffold at two different positions, has broadened the research scope. In particular, substitution at the -NH functionality of the quinolone motif has provided ample space for suitable functionalization and appropriate substitution at the quinolone's third, sixth, and seventh carbons, resulting in selective anticancer agents binding specifically with various drug targets.
Collapse
Affiliation(s)
- Yogesh Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Neha Bhatia
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Avadh Biharee
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Swanand Kulkarni
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Vikramdeep Monga
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| |
Collapse
|
8
|
El-Sheref EM, Tawfeek HN, Hassan AA, Bräse S, Elbastawesy MAI, Gomaa HAM, Mostafa YA, Youssif BGM. Synthesis of novel amidines via one-pot three component reactions: Selective topoisomerase I inhibitors with antiproliferative properties. Front Chem 2022; 10:1039176. [PMID: 36465858 PMCID: PMC9716094 DOI: 10.3389/fchem.2022.1039176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/07/2022] [Indexed: 03/26/2024] Open
Abstract
Novel series of amidines were synthesized via the interaction between alicyclic amines, cyclic ketones, and a highly electrophilic 4-azidoquinolin-2(1H)-ones without any catalyst or additive. All the obtained products were elucidated based on NMR spectroscopy, mass spectrometry, and elemental analysis. The reaction conditions were optimized using cyclohexanone (2), piperidine (3a), and 4-azido-quinolin-2(1H)-one (1a) under an air atmosphere. The new compounds 4a-l and 5a-c were tested for antiproliferative activity against four cancer cell lines using doxorubicin as a reference drug. The most potent derivatives were compounds 4b, 4d, 4e, 4i, and 5c, with GI50 ranging from 1.00 µM to 1.50 µM. Compound 5c was the most effective derivative against the four cancer cell lines, outperforming doxorubicin. The compounds 4b, 4d, 4e, 4i, and 5c were studied further as topoisomerase I and IIα inhibitors. The compounds tested showed selective inhibition of topo I over topo IIα. Finally, docking studies explain why these compounds prefer topo I over topo IIα.
Collapse
Affiliation(s)
| | - Hendawy N. Tawfeek
- Chemistry Department, Faculty of Science, Minia University, El Minia, Egypt
| | - Alaa A. Hassan
- Chemistry Department, Faculty of Science, Minia University, El Minia, Egypt
| | - S. Bräse
- Institute of Biological and Chemical Systems, IBCS-FMS, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | | | - Hesham A. M. Gomaa
- Pharmacology Department, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Yaser A. Mostafa
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Bahaa G. M. Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| |
Collapse
|
9
|
Uppal J, Mir PA, Chawla A, Kumar N, Kaur G, Bedi PMS, Bhandari DD. Pyranoquinolone derivatives: A potent multi‐targeted pharmacological scaffold. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jasreen Uppal
- Department of Pharmaceutical Chemistry University Institute of Pharma Sciences, Chandigarh University Gharuan, Mohali India
- Department of Pharmaceutical Chemistry Khalsa College of Pharmacy Amritsar India
| | - Prince Ahad Mir
- Department of Pharmaceutical Chemistry Khalsa College of Pharmacy Amritsar India
| | - Apporva Chawla
- Department of Pharmaceutical Chemistry Khalsa College of Pharmacy Amritsar India
| | - Nishant Kumar
- Department of Pharmaceutical Chemistry Khalsa College of Pharmacy Amritsar India
| | - Gurinder Kaur
- Department of Pharmaceutical Chemistry University Institute of Pharma Sciences, Chandigarh University Gharuan, Mohali India
- Department of Pharmaceutical Sciences GNDU Amritsar India
| | | | - Divya Dhawal Bhandari
- Department of Pharmaceutical Chemistry University Institute of Pharma Sciences, Chandigarh University Gharuan, Mohali India
| |
Collapse
|
10
|
Ilakiyalakshmi M, Arumugam Napoleon A. Review on recent development of quinoline for anticancer activities. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
11
|
Dhivya LS, Sarvesh S, S AS. Inhibition of Mycobacterium tuberculosis InhA (Enoyl-acyl carrier protein reductase) by synthetic Chalcones: a molecular modelling analysis and in-vitro evidence. J Biomol Struct Dyn 2022:1-19. [PMID: 35751128 DOI: 10.1080/07391102.2022.2086922] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Tuberculosis (TB) is a serious infectious disease caused by the bacillus Mycobacterium tuberculosis (Mtb). The World Health Organization (WHO) estimates that 1.8 million people die each year from TB, with 10 million new cases being registered each year. In this study, 50 Chalcones were developed, five of which were synthesized, and their inhibitory effects against Mtb were studied. The discovery of new powerful inhibitors with IC50 values in the sub-micro molar range resulted from the development of structure-activity relationships (SAR). The goal of the molecular modelling studies was to uncover the most important structural criteria underpinning the binding affinity and selectivity of this class of inhibitors as possible anti-TB drugs. Because of their great efficacy and selectivity, our developed nitro and benzyloxy substituted Chalcones compounds appear to be promising anti-TB therapies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- L S Dhivya
- Dr. APJ Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kancheepuram, Tamil Nadu, India
| | - Sabarathinam Sarvesh
- Drug Testing Laboratory, Interdisciplinary Institute of Indian System of Medicine (IIISM), SRM Institute of Science and Technology, Kancheepuram, Tamil Nadu, India
| | - Ankul Singh S
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kancheepuram, Tamil Nadu, India
| |
Collapse
|
12
|
Pan X, Pei J, Wang A, Shuai W, Feng L, Bu F, Zhu Y, Zhang L, Wang G, Ouyang L. Development of small molecule extracellular signal-regulated kinases (ERKs) inhibitors for cancer therapy. Acta Pharm Sin B 2022; 12:2171-2192. [PMID: 35646548 PMCID: PMC9136582 DOI: 10.1016/j.apsb.2021.12.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/18/2021] [Accepted: 12/22/2021] [Indexed: 01/09/2023] Open
Abstract
The mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway is widely activated by a variety of extracellular stimuli, and its dysregulation is associated with the proliferation, invasion, and migration of cancer cells. ERK1/2 is located at the distal end of this pathway and rarely undergoes mutations, making it an attractive target for anticancer drug development. Currently, an increasing number of ERK1/2 inhibitors have been designed and synthesized for antitumor therapy, among which representative compounds have entered clinical trials. When ERK1/2 signal transduction is eliminated, ERK5 may provide a bypass route to rescue proliferation, and weaken the potency of ERK1/2 inhibitors. Therefore, drug research targeting ERK5 or based on the compensatory mechanism of ERK5 for ERK1/2 opens up a new way for oncotherapy. This review provides an overview of the physiological and biological functions of ERKs, focuses on the structure-activity relationships of small molecule inhibitors targeting ERKs, with a view to providing guidance for future drug design and optimization, and discusses the potential therapeutic strategies to overcome drug resistance.
Collapse
Affiliation(s)
- Xiaoli Pan
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Junping Pei
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Aoxue Wang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Wen Shuai
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Lu Feng
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Faqian Bu
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Yumeng Zhu
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
13
|
Design and Synthesis of (2- oxo-1,2-Dihydroquinolin-4-yl)-1,2,3-triazole Derivatives via Click Reaction: Potential Apoptotic Antiproliferative Agents. Molecules 2021; 26:molecules26226798. [PMID: 34833890 PMCID: PMC8620910 DOI: 10.3390/molecules26226798] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/01/2021] [Accepted: 11/08/2021] [Indexed: 11/18/2022] Open
Abstract
A mild and versatile method based on Cu-catalyzed [2+3] cycloaddition (Huisgen-Meldal-Sharpless reaction) was developed to tether 3,3’-((4-(prop-2-yn-1-yloxy)phenyl)methylene)bis(4-hydroxyquinolin-2(1H)-ones) with 4-azido-2-quinolones in good yields. This methodology allowed attaching three quinolone molecules via a triazole linker with the proposed mechanism. The products are interesting precursors for their anti-proliferative activity. Compound 8g was the most active one, achieving IC50 = 1.2 ± 0.2 µM and 1.4 ± 0.2 µM against MCF-7 and Panc-1 cell lines, respectively. Moreover, cell cycle analysis of cells MCF-7 treated with 8g showed cell cycle arrest at the G2/M phase (supported by Caspase-3,8,9, Cytochrome C, BAX, and Bcl-2 studies). Additionally, significant pro-apoptotic activity is indicated by annexin V-FITC staining.
Collapse
|
14
|
Elshaier YAMM, Aly AA, El-Aziz MA, Fathy HM, Brown AB, Ramadan M. A review on the synthesis of heteroannulated quinolones and their biological activities. Mol Divers 2021; 26:2341-2370. [PMID: 34698911 DOI: 10.1007/s11030-021-10332-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/30/2021] [Indexed: 10/20/2022]
Abstract
The quinoline scaffold has become an important construction motif for the development of new drugs. The quinolones and their heteroannulated derivatives have high importance due to their diverse spectrum of biological activities as antifungal, anti-inflammatory, anti-diabetes, anti-Alzheimer's disease, antioxidant and diuretic activities. This review summarizes the various new, efficient and convenient synthetic approaches to synthesize diverse quinolone-based scaffolds and their biological activities. We also dealt with the important mechanism, the route and type of reactions of the obtained products. The biological activities of some heteroannulated quinolones were also discussed.
Collapse
Affiliation(s)
- Yaseen A M M Elshaier
- Organic & Medicinal Chemistry Department, Faculty of Pharmacy, University of Sadat City, Menoufia, 32958, Egypt
| | - Ashraf A Aly
- Chemistry Department, Faculty of Science, Minia University, El-Minia, 61519, Egypt.
| | - Mohamed Abd El-Aziz
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, El-Minia, 61519, Egypt
| | - Hazem M Fathy
- Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, 71524, Egypt
| | - Alan B Brown
- Chemistry Department, Florida Institute of Technology, Melbourne, FL, 32901, USA
| | - Mohamed Ramadan
- Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, 71524, Egypt
| |
Collapse
|
15
|
Mostafa SM, Aly AA, Sayed SM, Raslan MA, Ahmed AE, Nafady A, Ishak EA, Shawky AM, Abdelhafez ESM. New Quinoline-2-one/thiazolium bromide Derivatives; Synthesis, Characterization and Mechanism of Formation. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Recent developments in mitogen activated protein kinase inhibitors as potential anticancer agents. Bioorg Chem 2021; 114:105161. [PMID: 34328852 DOI: 10.1016/j.bioorg.2021.105161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 01/06/2023]
Abstract
The mitogen activated protein kinase (MAPK) belongs to group of kinase that links the extracellular stimuli to intracellular response. The MAPK signalling pathway (RAS-RAF-MEK-ERK) involved in different pathological conditions like cancer, caused due to genetic or any other factor such as physical or environmental. Many studies have been conducted on the pathological view of MAPK cascade and its associated element like RAS, RAF, MEK, ERK or its isoforms, and still the research is going on particularly with respect to its activation, regulation and inhibition. The MAPK signalling pathway has become the area of research to identify new target for the management of cancer. A number of heterocyclics are key to fight with the cancer associated with these enzymes thus give some hope in the management of cancer by inhibiting MAPK cascade. In the present article, we have focussed on MAPK signalling pathway and role of different heterocyclic scaffolds bearing nitrogen, sulphur and oxygen and about their potential to block MAPK signalling pathway. The heterocyclics are gaining importance due to high potency and selectivity with less off-target effects against different targets involved in the MAPK signalling pathway. We have tried to cover recent advancements in the MAPK signalling pathway inhibitors with an aim to get better understanding of the mechanism of action of the compounds. Several compounds in the preclinical and clinical studies have been thoroughly dealt with. In addition to the synthetic compounds, a significant number of natural products containing heterocyclic moieties as MAPK signalling pathway inhibitors have been put together. The structure activity relationship along with docking studies have been discussed to apprehend the mechanistic studies of various compounds that will ultimately help to design and develop more MAPK signalling pathway inhibitors.
Collapse
|
17
|
Sharma S, Singh A, Sharma S, Sharma R, Singh J, Kinarivala N, Nepali K, Liou JP. Tailored Quinolines Demonstrate Flexibility to Exert Antitumor Effects through Varied Mechanisms-A Medicinal Perspective. Anticancer Agents Med Chem 2021; 21:288-315. [PMID: 32900354 DOI: 10.2174/1871520620666200908104303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/24/2020] [Accepted: 08/08/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Quinoline is considered to be a privileged heterocyclic ring owing to its presence in diverse scaffolds endowed with promising activity profiles. In particular, quinoline containing compounds have exhibited substantial antiproliferative effects through the diverse mechanism of actions, which indicates that the heteroaryl unit is flexible as well as accessible to subtle structural changes that enable its inclusion in chemically distinct anti-tumor constructs. METHODS Herein, we describe a medicinal chemistry perspective on quinolines as anticancer agents by digging into the peer-reviewed literature as well as patents published in the past few years. RESULTS This review will serve as a guiding tool for medicinal chemists and chemical biologists to gain insights about the benefits of quinoline ring installation to tune the chemical architectures for inducing potent anticancer effects. CONCLUSION Quinoline ring containing anticancer agents presents enough optimism and promise in the field of drug discovery to motivate the researchers towards the continued explorations on such scaffolds. It is highly likely that adequate efforts in this direction might yield some potential cancer therapeutics in the future.
Collapse
Affiliation(s)
- Sachin Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Arshdeep Singh
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Sahil Sharma
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Ram Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Jagjeet Singh
- School of Pharmacy, University of Queensland, Brisbane, QLD, Australia
| | - Nihar Kinarivala
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Jing P Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
18
|
Aly AA, Hassan AA, Makhlouf MM, Alshammari MB, Mohamed Naguib Abdel Hafez S, Refaie MMM, Bräse S, Nieger M, Ramadan M. Design and synthesis of hydrazinecarbothioamide sulfones as potential antihyperglycemic agents. Arch Pharm (Weinheim) 2021; 354:e2000336. [PMID: 33410162 DOI: 10.1002/ardp.202000336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/10/2020] [Accepted: 12/05/2020] [Indexed: 12/11/2022]
Abstract
New hydrazinecarbothioamides with a phenylsulfonyl group were synthesized and their structures were identified by different spectroscopic data (1 H NMR, 13 C NMR, two-dimensional NMR, mass spectrometry, elemental analysis, and single-crystal X-ray analysis). The mechanism describing the formation of the products was also discussed. The antidiabetic activity of the isolated products was investigated histochemically. The synthesized sulfonylalkylthiosemicarbazide exhibited antihyperglycemic activity in streptozotocin-induced diabetic mice. Compounds 5a and 5c significantly lowered the blood glucose level to 103.3 ± 1.8 and 102 ± 3.9 mg/dl, respectively. Also, they caused a significant decrease in malondialdehyde levels and normalized the glutathione levels in streptozotocin-induced diabetic mice, compared with the diabetic group. The results suggest that the synthesized hydrazinocarbothioamides may effectively inhibit the development of oxidative stress in diabetes.
Collapse
Affiliation(s)
- Ashraf A Aly
- Department of Chemistry, Faculty of Science, Minia University, El-Minia, Egypt
| | - Alaa A Hassan
- Department of Chemistry, Faculty of Science, Minia University, El-Minia, Egypt
| | - Maysa M Makhlouf
- Department of Chemistry, Faculty of Science, Minia University, El-Minia, Egypt
| | - Mohammed B Alshammari
- Prince Sattam bin Abdulaziz Department of Chemistry, College of Sciences and Humanities, Alkharj, Saudi Arabia
| | | | - Marwa M M Refaie
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia, Egypt
| | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany.,Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, Germany
| | - Martin Nieger
- Department of Chemistry, University of Helsinki, Helsinki 00014, Helsinki, A. I. Virtasen aukio I, Finland
| | - Mohamed Ramadan
- Department of Pharmaceutical Organic Chemistry, Faculty Pharmacy, Al-Azahr University, Assiut Branch, Assiut, Egypt
| |
Collapse
|
19
|
Saeed AM, AlNeyadi SS, Abdou IM. Anticancer activity of novel Schiff bases and azo dyes derived from 3-amino-4-hydroxy-2H-pyrano[3,2-c]quinoline-2,5(6H)-dione. HETEROCYCL COMMUN 2020. [DOI: 10.1515/hc-2020-0116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Abstract
New Schiff bases and azo dyes derivatives have been synthesized via appropriate conventional methods using pyranoquinolinone as a starting material. The compounds obtained were characterized by spectral analysis and evaluated for anticancer activity in several human tumor cell lines: MCF-7 breast cancer, HepG2 liver cancer and HCT-116 colon carcinoma. 5-fluorouracil was used as a reference drug. The in vitro cytotoxicity screening results revealed that all tested compounds showed promising activity against MCF-7 cells. In particular, compounds 6a, 6b, and 7b showed excellent activity against the three human tumor cell lines. Structure-activity relationship studies indicated that the azo derivative with a trifluoromethoxy group (compound 7b) was the most potent candidate against the three human tumor cell lines (IC50, 1.82-8.06 μg/mL). Our findings highlight pyranoquinolinone analogues as a promising class of compounds for new anticancer therapies.
Collapse
Affiliation(s)
| | - Shaikha S. AlNeyadi
- Department of Chemistry, College of Science, UAE University Al-Ain , Al-Ain UAE
| | - Ibrahim M. Abdou
- Department of Chemistry, College of Science, UAE University Al-Ain , Al-Ain UAE
| |
Collapse
|
20
|
Ramadan M, Abd El-Aziz M, Elshaier YA, Youssif BG, Brown AB, Fathy HM, Aly AA. Design and synthesis of new pyranoquinolinone heteroannulated to triazolopyrimidine of potential apoptotic antiproliferative activity. Bioorg Chem 2020; 105:104392. [DOI: 10.1016/j.bioorg.2020.104392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/03/2020] [Accepted: 10/15/2020] [Indexed: 01/07/2023]
|
21
|
Alshammari MB, Ramadan M, Aly AA, El-Sheref EM, Bakht MA, Ibrahim MAA, Shawky AM. Synthesis of potentially new schiff bases of N-substituted-2-quinolonylacetohydrazides as anti-COVID-19 agents. J Mol Struct 2020; 1230:129649. [PMID: 33223566 PMCID: PMC7668221 DOI: 10.1016/j.molstruc.2020.129649] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 11/07/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023]
Abstract
We report herein a new series of synthesized N-substituted-2-quinolonylacetohydrazides aiming to evaluate their activity towards SARS-CoV-2. The structures of the obtained products were fully confirmed by NMR, mass, IR spectra and elemental analysis as well. Molecular docking calculations showed that most of the tested compounds possessed good binding affinity to the SARS-CoV-2 main protease (Mpro) comparable toRemdesivir.
Collapse
Affiliation(s)
- Mohammed B Alshammari
- Chemistry Department, College of Sciences and Humanities, Prince Sattam bin Abdulaziz University, P.O. Box 83, Al-Kharij 11942, Saudi Arabia
| | - Mohamed Ramadan
- Department of Organic Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Egypt
| | - Ashraf A Aly
- Chemistry Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
| | - Essmat M El-Sheref
- Chemistry Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
| | - Md Afroz Bakht
- Chemistry Department, College of Sciences and Humanities, Prince Sattam bin Abdulaziz University, P.O. Box 83, Al-Kharij 11942, Saudi Arabia
| | - Mahmoud A A Ibrahim
- Chemistry Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
| | - Ahmed M Shawky
- Science and Technology Unit (STU), Umm Al-Qura University, Makkah 21955, Saudi Arabia
| |
Collapse
|
22
|
Li N, Ou J, Bao N, Chen C, Shi Z, Chen L, Sun J. Design, synthesis and biological evaluation of novel plumbagin derivatives as potent antitumor agents with STAT3 inhibition. Bioorg Chem 2020; 104:104208. [DOI: 10.1016/j.bioorg.2020.104208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/15/2020] [Accepted: 08/25/2020] [Indexed: 12/20/2022]
|
23
|
Shen GN, Li J, Jin YH, Sun HN, Hao YY, Jin MH, Liu R, Li WL, Zhang YQ, Yu JB, Yu NN, Wang WD, Yu LY, Kim JS, Kwon T, Han YH. The compound 2-benzylthio-5,8-dimethoxynaphthalene-1,4-dione leads to apoptotic cell death by increasing the cellular reactive oxygen species levels in Ras-mutated liver cancer cells. Exp Ther Med 2020; 20:82. [PMID: 32968439 PMCID: PMC7500053 DOI: 10.3892/etm.2020.9209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 07/07/2020] [Indexed: 12/11/2022] Open
Abstract
The aim of the present study was to verify the pro-apoptotic anticancer potential of several 5,8-dimethoxy-1,4-phthoquinone (DMNQ) derivatives in Ras-mediated tumorigenesis. MTT assays were used to detect cellular viability and flow cytometry was performed to assess intracellular reactive oxygen species (ROS) levels and apoptosis. The expression levels of proteins were detected via western blotting. Among the 12 newly synthesized DMNQ derivatives, 2-benzylthio-5,8-dimethoxynaphthalene-1,4-dione (BZNQ; component #1) significantly reduced cell viability both in mouse NIH3T3 embryonic fibroblasts cells (NC) and H-RasG12V transfected mouse NIH3T3 embryonic fibroblasts cells (NR). Moreover, BZNQ resulted in increased cytotoxic sensitivity in Ras-mutant transfected cells. Furthermore, the reactive oxygen species (ROS) levels in H-RasG12V transfected HepG2 liver cancer cells (HR) were significantly higher compared with the levels in HepG2 liver cancer cells (HC) following BZNQ treatment, which further resulted in increased cellular apoptosis. Eliminating cellular ROS using an ROS scavenger N-acetyl-L-cysteine markedly reversed BZNQ-induced cellular ROS accumulation and cell apoptosis in HC and HR cells. Western blotting results revealed that BZNQ significantly downregulated H-Ras protein expression and inhibited the Ras-mediated downstream signaling pathways such as protein kinase B, extracellular signal-related kinase and glycogen synthase kinase phosphorylation and β-catenin protein expression. These results indicated that the novel DMNQ derivative BZNQ may be a therapeutic drug for Ras-mediated liver tumorigenesis. The results of the current study suggest that BZNQ exerts its effect by downregulating H-Ras protein expression and Ras-mediated signaling pathways.
Collapse
Affiliation(s)
- Gui-Nan Shen
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Jing Li
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Ying-Hua Jin
- Library and Information Center, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Hu-Nan Sun
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Ying-Ying Hao
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Mei-Hua Jin
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Ren Liu
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Wei-Long Li
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Yong-Qing Zhang
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Jia-Bin Yu
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Nan-Nan Yu
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Wei-Dong Wang
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Li-Yun Yu
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Ji-Su Kim
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeonbuk 56216, Republic of Korea
| | - Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeonbuk 56216, Republic of Korea
| | - Ying-Hao Han
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| |
Collapse
|
24
|
Synthesis of 3,3'-methylenebis(4-hydroxyquinolin-2(1H)-ones) of prospective anti-COVID-19 drugs. Mol Divers 2020; 25:461-471. [PMID: 32926254 PMCID: PMC7487287 DOI: 10.1007/s11030-020-10140-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/02/2020] [Indexed: 10/30/2022]
Abstract
During formylation of 2-quinolones by DMF/Et3N mixture, the unexpected 3,3'-methylenebis(4-hydroxyquinolin-2(1H)-ones) were formed. The discussed mechanism was proved as due to the formation of 4-formyl-2-quinolone as intermediate. Reaction of the latter compound with the parent quinolone under the same reaction condition gave also the same product. The structure of the obtained products was elucidated via NMR, IR and mass spectra. X-ray structure analysis proved the anti-form of the obtained compounds, which were stabilized by the formation hydrogen bond. Molecular docking calculations showed that most of the synthesized compounds possessed good binding affinity to the SARS-CoV-2 main protease (Mpro) in comparable to Darunavir.
Collapse
|
25
|
Aly AA, Hassan AA, Mohamed NK, Abd El-Haleem LE, Bräse S. Regioselective synthesis of new 7,8-dichlorobenzofuro[3,2- c]quinoline-6,9,10(5 H)-triones from reactions of 4-hydroxy-2-quinolones with 3,4,5,6-tetrachloro-1,2-benzoquinone. JOURNAL OF CHEMICAL RESEARCH 2020. [DOI: 10.1177/1747519820902669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A novel series of 7,8-dichlorobenzofuro[3,2- c]quinoline-6,9,10(5 H)-triones was obtained regioselectively in good yields. The products were formed by the reactions of the 4-hydroxy-2(1 H)-quinolinones with 3,4,5,6-tetrachloro-1,2-benzoquinone in tetrahydrofuran as the solvent. Infrared, nuclear magnetic resonance (two-dimensional nuclear magnetic resonance), mass spectra and elemental analysis were used to elucidate the structures of new compounds.
Collapse
Affiliation(s)
- Ashraf A Aly
- Chemistry Department, Faculty of Science, Minia University, El-Minia, Egypt
| | - Alaa A Hassan
- Chemistry Department, Faculty of Science, Minia University, El-Minia, Egypt
| | - Nasr K Mohamed
- Chemistry Department, Faculty of Science, Minia University, El-Minia, Egypt
| | | | - Stefan Bräse
- Institute of Biological and Chemical Systems -Functional Molecular Systems (IBCS-FMS), Karlsruhe Institue of Technology, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
26
|
Abstract
Cancer, still in the limelight due to its dreadful nature, shows overexpression of multiple signaling macromolecules leading to failure of many chemotherapeutic agents and acquired resistance to chemotherapy. These factors highlight the significance of shifting toward targeted therapy in cancer research. Recently, ERKs (ERK1 and 2) have been established as a promising target for the management of various types of solid tumors, due to their aberrant involvement in cell growth and progression. Several ERKs inhibitors have reached clinical trials for the management of cancer and their derivatives are being continuously reported with noteworthy anticancer effect. This review highlights the recent reports on various chemical classes involved in the development of ERKs inhibitors along with their in vitro and in vivo activity and structure-activity relationship profile.
Collapse
|
27
|
Elbastawesy MA, Ramadan M, El-Shaier YA, Aly AA, Abuo-Rahma GEDA. Arylidenes of Quinolin-2-one scaffold as Erlotinib analogues with activities against leukemia through inhibition of EGFR TK/ STAT-3 pathways. Bioorg Chem 2020; 96:103628. [DOI: 10.1016/j.bioorg.2020.103628] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 12/21/2019] [Accepted: 01/25/2020] [Indexed: 02/06/2023]
|
28
|
Formation of furo[3,2-c]quinolone-2-carbonitriles and 4-oxo-4,5-dihydrofuro[3,2-c]quinolone-2-carboxamides from reaction of quinoline-2,4-diones with 2-[bis(methylthio)methylene]malononitrile. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-019-02541-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
29
|
Aly AA, Sayed SM, Abdelhafez ESM, Abdelhafez SMN, Abdelzaher WY, Raslan MA, Ahmed AE, Thabet K, El-Reedy AA, Brown AB, Bräse S. New quinoline-2-one/pyrazole derivatives; design, synthesis, molecular docking, anti-apoptotic evaluation, and caspase-3 inhibition assay. Bioorg Chem 2020; 94:103348. [DOI: 10.1016/j.bioorg.2019.103348] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/13/2019] [Accepted: 10/05/2019] [Indexed: 12/12/2022]
|
30
|
Shyamsivappan S, Saravanan A, Vivek R, Suresh T, Shankar R, Gothandam KM, Mohan PS. Novel phenyl and thiophene dispiro indenoquinoxaline pyrrolidine quinolones induced apoptosis via G1/S and G2/M phase cell cycle arrest in MCF-7 cells. NEW J CHEM 2020. [DOI: 10.1039/d0nj02588g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
New phenyl and thiophene dispiro indeno quinoxaline pyrrolidine quinolone analogues were synthesized by a one-pot four-component [3+2] cycloaddition reaction between (E)-3-arylidene-2,3-dihydro-8-nitro-4-quinolones, o-phenylenediamine, ninhydrin, and benzylamine/thiophenemethylamine.
Collapse
Affiliation(s)
| | | | - Raju Vivek
- Cancer Research Program (CRP)
- Bio-Nano Therapeutics Research Laboratory
- School of Life Sciences
- Department of Zoology
- Bharathiar University
| | | | | | - K. M. Gothandam
- School of Bio-Sciences and Technology
- Vellore Institute of Technology
- Vellore
- India
| | | |
Collapse
|
31
|
Synthesis of New Fused Heterocyclic 2-Quinolones and 3-Alkanonyl-4-Hydroxy-2-Quinolones. Molecules 2019; 24:molecules24203782. [PMID: 31640196 PMCID: PMC6832483 DOI: 10.3390/molecules24203782] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/07/2019] [Accepted: 10/17/2019] [Indexed: 11/17/2022] Open
Abstract
Herein, we report the synthesis of 5,12-dihydropyrazino[2,3-c:5,6-c′]difuro[2,3-c:4,5-c′]-diquinoline-6,14(5H,12H)diones, 2-(4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-1,4-diphenyl- butane-1,4-diones and 4-(benzo-[d]oxazol-2-yl)-3-hydroxy-1H-[4,5]oxazolo[3,2-a]pyridine-1-one. The new candidates were synthesized and identified by different spectroscopic techniques, and X-ray crystallography.
Collapse
|
32
|
Elbastawesy MA, Aly AA, Ramadan M, Elshaier YA, Youssif BG, Brown AB, El-Din A Abuo-Rahma G. Novel Pyrazoloquinolin-2-ones: Design, synthesis, docking studies, and biological evaluation as antiproliferative EGFR-TK inhibitors. Bioorg Chem 2019; 90:103045. [DOI: 10.1016/j.bioorg.2019.103045] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 01/30/2023]
|
33
|
4-Hydroxy-2-quinolones: syntheses, reactions and fused heterocycles. Mol Divers 2019; 24:477-524. [DOI: 10.1007/s11030-019-09952-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 04/05/2019] [Indexed: 02/08/2023]
|
34
|
Hassan AA, Aly AA, Mohamed NK, El Shaieb KM, Makhlouf MM, Abdelhafez ESMN, Bräse S, Nieger M, Dalby KN, Kaoud TS. Design, synthesis, and DNA interaction studies of furo-imidazo[3.3.3]propellane derivatives: Potential anticancer agents. Bioorg Chem 2019; 85:585-599. [PMID: 30878891 PMCID: PMC6543821 DOI: 10.1016/j.bioorg.2019.02.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 11/26/2022]
Abstract
A large number of natural products containing the propellane scaffold have been reported to exhibit cytotoxicity against several cancers; however, their mechanism of action is still unknown. Anticancer drugs targeting DNA are mainly composed of small planar molecule/s that can interact with the DNA helix, causing DNA malfunction and cell death. The aim of this study was to design and synthesize propellane derivatives that can act as DNA intercalators and/or groove binders. The unique structure of the propellane derivatives and their ability to display planar ligands with numerous possible geometries, renders them potential starting points to design new drugs targeting DNA in cancer cells. New substituted furo-imidazo[3.3.3]propellanes were synthesized via the reaction of substituted alkenylidene-hydrazinecarbothioamides with 2-(1,3-dioxo-2,3-dihydro-1H-2-ylidene)propanedinitrile in tetrahydrofuran at room temperature. The structures of the products were confirmed by a combination of elemental analysis, NMR, ESI-MS, IR and single crystal X-ray analysis. Interestingly, 5c, 5d and 5f showed an ability to interact with Calf Thymus DNA (CT-DNA). Their DNA-binding mode was investigated using a combination of absorption spectroscopy, DNA melting, viscosity, CD spectroscopy measurements, as well as competitive binding studies with several dyes. Their cytotoxicity was evaluated against the NCI-60 panel of cancer cell lines. 5c, 5d and 5f exhibited similar anti-proliferative activity against the A549 non-small cell lung cancer (NSCLC) cell line. Further mechanistic studies revealed their ability to induce DNA damage in the A549 cell line, as well as apoptosis, evidenced by elevated Annexin V expression, enhanced caspase 3/7 activation and PARP cleavage. In this study, we present the potential for designing novel propellanes to provoke cytotoxic activity, likely through DNA binding-induced DNA damage and apoptosis.
Collapse
Affiliation(s)
- Alaa A Hassan
- Chemistry Department, Faculty of Science, Minia University, El-Minia 61519, Egypt.
| | - Ashraf A Aly
- Chemistry Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
| | - Nasr K Mohamed
- Chemistry Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
| | - Kamal M El Shaieb
- Chemistry Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
| | - Maysa M Makhlouf
- Chemistry Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
| | | | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, Karlsruhe 76131, Germany; Institute of Toxicology and Genetics, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Martin Nieger
- Department of Chemistry, University of Helsinki, P.O. Box 55, A.I. Virtasen aukio I, Helsinki 00014, Finland
| | - Kevin N Dalby
- Division of Chemical Biology and Medicinal Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | - Tamer S Kaoud
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, El-Minia 61519, Egypt; Division of Chemical Biology and Medicinal Chemistry, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
35
|
Synthesis of new 4-(1,2,3-triazolo)quinolin-2(1H)-ones via Cu-catalyzed [3 + 2] cycloaddition. MONATSHEFTE FUR CHEMIE 2019. [DOI: 10.1007/s00706-018-2342-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|