1
|
Laiolo J, Graikioti DG, Barbieri CL, Joray MB, Antoniou AI, Vera DMA, Athanassopoulos CM, Carpinella MC. Novel betulin derivatives as multidrug reversal agents targeting P-glycoprotein. Sci Rep 2024; 14:70. [PMID: 38167542 PMCID: PMC10762177 DOI: 10.1038/s41598-023-49939-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
Chemotherapy is a powerful means of cancer treatment but its efficacy is compromised by the emergence of multidrug resistance (MDR), mainly linked to the efflux transporter ABCB1/P-glycoprotein (P-gp). Based on the chemical structure of betulin, identified in our previous work as an effective modulator of the P-gp function, a series of analogs were designed, synthesized and evaluated as a source of novel inhibitors. Compounds 6g and 6i inhibited rhodamine 123 efflux in the P-gp overexpressed leukemia cells, K562/Dox, at concentrations of 0.19 µM and 0.39 µM, respectively, and increased the intracellular accumulation of doxorubicin at the submicromolar concentration of 0.098 µM. Compounds 6g and 6i were able to restore the sensitivity of K562/Dox to Dox at 0.024 µM and 0.19 µM, respectively. Structure-activity relationship analysis and molecular modeling revealed important information about the structural features conferring activity. All the active compounds fitted in a specific region involving mainly transmembrane helices (TMH) 4-6 from one homologous half and TMH 7 and 12 from the other, also showing close contacts with TMH 6 and 12. Compounds that bound preferentially to another region were inactive, regardless of their free energy of binding. It should be noted that compounds 6g and 6i were devoid of toxic effects against peripheral blood mononuclear normal cells and erythrocytes. The data obtained indicates that both compounds might be proposed as scaffolds for obtaining promising P-gp inhibitors for overcoming MDR.
Collapse
Affiliation(s)
- Jerónimo Laiolo
- Fine Chemical and Natural Products Laboratory, IRNASUS CONICET-UCC, Universidad Católica de Córdoba, Córdoba, Argentina
| | - Dafni G Graikioti
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, University of Patras, 26504, Patras, Greece
| | - Cecilia L Barbieri
- Department of Chemistry and Biochemistry, College of Exact and Natural Sciences, Universidad Nacional de Mar del Plata - QUIAMM - INBIOTEC CONICET, Mar del Plata, Argentina
| | - Mariana B Joray
- Fine Chemical and Natural Products Laboratory, IRNASUS CONICET-UCC and CIDIE CONICET-UCC, Universidad Católica de Córdoba, Córdoba, Argentina
| | - Antonia I Antoniou
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, University of Patras, 26504, Patras, Greece
| | - D Mariano A Vera
- Department of Chemistry and Biochemistry, College of Exact and Natural Sciences, Universidad Nacional de Mar del Plata - QUIAMM - INBIOTEC CONICET, Mar del Plata, Argentina.
| | | | - María C Carpinella
- Fine Chemical and Natural Products Laboratory, IRNASUS CONICET-UCC and CIDIE CONICET-UCC, Universidad Católica de Córdoba, Córdoba, Argentina.
| |
Collapse
|
2
|
Wang C, Zhang J, Wei X, Yang M, Ma W, Yu R, Liu M, Jiang T. Design, Synthesis, and Biological Evaluation of Marine Lissodendrins B Analogues as Modulators of ABCB1-Mediated Multidrug Resistance. Mar Drugs 2023; 21:md21050314. [PMID: 37233508 DOI: 10.3390/md21050314] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023] Open
Abstract
Multidrug resistance (MDR) caused by ATP-Binding Cassette Subfamily B Member 1 (ABCB1, P-glycoprotein, P-gp) is a major barrier for the success of chemotherapy in clinics. In this study, we designed and synthesized a total of 19 Lissodendrins B analogues and tested their ABCB1-mediated MDR reversal activity in doxorubicin (DOX)-resistant K562/ADR and MCF-7/ADR cells. Among all derivatives, compounds D1, D2, and D4 with a dimethoxy-substituted tetrahydroisoquinoline fragment possessed potent synergistic effects with DOX and reversed ABCB1-mediated drug resistance. Notably, the most potent compound D1 merits multiple activities, including low cytotoxicity, the strongest synergistic effect, and effectively reversing ABCB1-mediated drug resistance of K562/ADR (RF = 1845.76) and MCF-7/ADR cells (RF = 207.86) to DOX. As a reference substance, compound D1 allows for additional mechanistic studies on ABCB1 inhibition. The synergistic mechanisms were mainly related to the increased intracellular accumulation of DOX via inhibiting the efflux function of ABCB1 rather than from affecting the expression level of ABCB1. These studies suggest that compound D1 and its derivatives might be potential MDR reversal agents acting as ABCB1 inhibitors in clinical therapeutics and provide insight into a design strategy for the development of ABCB1 inhibitors.
Collapse
Affiliation(s)
- Chaoming Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Innovation Center for Marine Drug Screening & Evaluation and Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Jinman Zhang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xianfeng Wei
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Mengke Yang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Innovation Center for Marine Drug Screening & Evaluation and Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Weiping Ma
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Rilei Yu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Innovation Center for Marine Drug Screening & Evaluation and Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Ming Liu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Innovation Center for Marine Drug Screening & Evaluation and Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Tao Jiang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Innovation Center for Marine Drug Screening & Evaluation and Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| |
Collapse
|
3
|
Jiang C, Pan T, Jiang Y, Zhang Z, Zeng M, Sun S, Li Z, Wu Y, Qiu J, Niu M, Gu X. Design and evaluation of dibenzoazepine-tetrahydroisoquinoline hybrids as potential P-glycoprotein inhibitors against multidrug resistant K562/A02 cells. Eur J Med Chem 2023; 249:115150. [PMID: 36708676 DOI: 10.1016/j.ejmech.2023.115150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/09/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023]
Abstract
Multidrug resistance (MDR) caused by P-glycoprotein (P-gp) is a main barrier to the success of cancer chemotherapies. In this study, fourteen novel dibenzoazepine-tetrahydroisoquinoline hybrids were prepared as potential P-gp inhibitors to surmount MDR caused by P-gp. Amongst them, 8a displayed the most potent inhibition effect on P-gp, thus effectively reversing P-gp-mediated drug resistance with a reversal fold (RF) value of 93.17 in K562/A02 cells. Excitingly, the EC50 value of 8a on MDR reversing effect was 48.74 nM, which was nearly two thousand-fold lower than its IC50 value (95.94 μM) for intrinsic cytotoxicity on K562/A02 cells. Further investigation showed that 8a exerted the MDR reversal effect through impairing P-gp function rather than affecting its expression. Molecular docking and CETSA results illustrated that 8a possessed a relatively high affinity for P-gp, thus effectively improving the stability of P-gp. Furthermore, 8a exhibited a much poorer inhibitory effect on CYP3A4 activity than CYP3A4 inhibitor ketoconazole, thus might not cause unfavorable drug-drug interactions. These data together suggested that 8a may be a promising lead to design P-gp inhibitors, and warranted further investigation on overcoming P-gp-mediated MDR.
Collapse
Affiliation(s)
- Chunyu Jiang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Ting Pan
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Yunxiang Jiang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Zhiyu Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Meifeng Zeng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Shuang Sun
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Zheng Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Yiqing Wu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Jingying Qiu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Mingshan Niu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China; Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221004, People's Republic of China.
| | - Xiaoke Gu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China.
| |
Collapse
|
4
|
Exploration of novel phthalazinone derivatives as potential efflux transporter inhibitors for reversing multidrug resistance and improving the oral absorption of paclitaxel. Eur J Med Chem 2022; 233:114231. [PMID: 35247755 DOI: 10.1016/j.ejmech.2022.114231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 11/23/2022]
Abstract
Chemotherapy is an important means of cancer treatment. However, overexpression of efflux transporters (including but not limited to P-gp and BCRP) can lead to resistance to cancer chemotherapy. Multiple-target inhibitors of efflux transporter can be overcome the resistance and improve the oral bioavailability of chemotherapy drugs. Therefore, we designed and synthesized a series of phthalazinone ring derivatives (1-20) with different aromatic heterocycles substituents on the amide bond for dual inhibition of P-gp and BCRP. Most target compounds significantly increased the accumulation of P-gp substrates in the chemo-resistant cancer cell lines by inhibiting the efflux of transporters. Compound 19 in particular showed stronger MDR reversal compared to Gefitinib and Verapamil, and comparable to that of the BCRP inhibitor Ko143. In addition, compound 19 improved intestinal absorption of paclitaxel (PTX) and enhanced the bioavailability of the orally administered drug in vivo.
Collapse
|
5
|
Faheem, Karan Kumar B, Venkata Gowri Chandra Sekhar K, Chander S, Kunjiappan S, Murugesan S. 1,2,3,4-Tetrahydroisoquinoline (THIQ) as privileged scaffold for anticancer de novo drug design. Expert Opin Drug Discov 2021; 16:1119-1147. [PMID: 33908322 DOI: 10.1080/17460441.2021.1916464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: Cancer is a dreadful disorder that is emerging as one of the leading causes of mortality across the globe. The complex tumor environment, supplemented with drawbacks of the existing drugs, has made it a global health concern. The Tetrahydroisoquinoline (THIQ) ring holds an important position in medicinal chemistry due to its wide range of pharmacological properties. Several THIQ based natural products have been previously explored for their antitumor properties, making it a vital scaffold for anticancer drug design.Areas covered: This review article addresses the potential of THIQ as anticancer agents. Various medicinal chemistry strategies employed for the design and development of THIQ analogs as inhibitors or modulators of relevant anticancer targets have been discussed in detail. Moreover, the common strategies employed for the synthesis of the core scaffold are also highlighted.Expert opinion: Evidently, THIQs have tremendous potential in anticancer drug design. Some of these analogs exhibited potent activity against various cancer molecular targets. However, there are some drawbacks, such as selectivity that need addressing. The synthetic ease for constructing the core scaffold complimented with its reactivity makes it ideal for further structure-activity relationship studies. For these reasons, THIQ is a privileged scaffold for the design and development of novel anticancer agents.
Collapse
Affiliation(s)
- Faheem
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani, India
| | - Banoth Karan Kumar
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani, India
| | | | - Subhash Chander
- Amity Institute of Phytomedicine and Phytochemistry, Amity University Uttar Pradesh, Noida, India
| | - Selvaraj Kunjiappan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, India
| | - Sankaranarayanan Murugesan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani, India
| |
Collapse
|
6
|
Zhang H, Xu H, Ashby CR, Assaraf YG, Chen ZS, Liu HM. Chemical molecular-based approach to overcome multidrug resistance in cancer by targeting P-glycoprotein (P-gp). Med Res Rev 2020; 41:525-555. [PMID: 33047304 DOI: 10.1002/med.21739] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/01/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022]
Abstract
Multidrug resistance (MDR) remains one of the major impediments for efficacious cancer chemotherapy. Increased efflux of multiple chemotherapeutic drugs by transmembrane ATP-binding cassette (ABC) transporter superfamily is considered one of the primary causes for cancer MDR, in which the role of P-glycoprotein (P-gp/ABCB1) has been most well-established. The clinical co-administration of P-gp drug efflux inhibitors, in combination with anticancer drugs which are P-gp transport substrates, was considered to be a treatment modality to surmount MDR in anticancer therapy by blocking P-gp-mediated multidrug efflux. Extensive attempts have been carried out to screen for sets of nontoxic, selective, and efficacious P-gp efflux inhibitors. In this review, we highlight the recent achievements in drug design, characterization, structure-activity relationship (SAR) studies, and mechanisms of action of the newly synthetic, potent small molecules P-gp inhibitors in the past 5 years. The development of P-gp inhibitors will increase our knowledge of the mechanisms and functions of P-gp-mediated drug efflux which will benefit drug discovery and clinical cancer therapeutics where P-gp transporter overexpression has been implicated in MDR.
Collapse
Affiliation(s)
- Hang Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Haiwei Xu
- Key Laboratory of Advanced Drug Preparation Technologies, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, St. John's University, Queens, New York, USA
| | - Yehuda G Assaraf
- Department of Biology, The Fred Wyszkowski Cancer Research Laboratory, Technion-Israel Institute of Technology, Haifa, Israel
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, St. John's University, Queens, New York, USA
| | - Hong-Min Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
7
|
Hung CC, Chen CY, Wu YC, Huang CF, Huang YC, Chen YC, Chang CS. Synthesis and biological evaluation of thiophenylbenzofuran derivatives as potential P-glycoprotein inhibitors. Eur J Med Chem 2020; 201:112422. [DOI: 10.1016/j.ejmech.2020.112422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/03/2020] [Accepted: 05/03/2020] [Indexed: 12/21/2022]
|
8
|
Singh J, Suryan A, Kumar S, Sharma S. Phthalazinone Scaffold: Emerging Tool in the Development of Target Based Novel Anticancer Agents. Anticancer Agents Med Chem 2020; 20:2228-2245. [PMID: 32767957 DOI: 10.2174/1871520620666200807220146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 11/22/2022]
Abstract
Phthalazinones are important nitrogen-rich heterocyclic compounds which have been a topic of considerable medicinal interest because of their diversified pharmacological activities. This versatile scaffold forms a common structural feature for many bioactive compounds, which leads to the design and development of novel anticancer drugs with fruitful results. The current review article discusses the progressive development of novel phthalazinone analogues that are targets for various receptors such as PARP, EGFR, VEGFR-2, Aurora kinase, Proteasome, Hedgehog pathway, DNA topoisomerase and P-glycoprotein. It describes mechanistic insights into the anticancer properties of phthalazinone derivatives and also highlights various simple and economical techniques for the synthesis of phthalazinones.
Collapse
Affiliation(s)
- Jyoti Singh
- Chandigarh College of Pharmacy, Landran, Punjab, India
| | - Amruta Suryan
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | | | - Shweta Sharma
- Chandigarh College of Pharmacy, Landran, Punjab, India
| |
Collapse
|
9
|
Wu M, Jiang M, Dong T, Xu L, Lv J, Xue M, Huang M. Reversal Effect of Dihydromyricetin on Multiple Drug Resistance in SGC7901/5-FU Cells. Asian Pac J Cancer Prev 2020; 21:1269-1274. [PMID: 32458632 PMCID: PMC7541860 DOI: 10.31557/apjcp.2020.21.5.1269] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Indexed: 12/19/2022] Open
Abstract
Background: One of the most common treatment for gastric cancer is chemotherapy, however, multiple drug resistance (MDR) induce the therapeutic effect which result in the failure of anticancer therapy. Dihydromyricetin (DMY) was reported to have antitumor activities on various human cancer cells in vitro, our previous studies demonstrated that DMY combined with mitomycin has inhibitory effect on proliferation of gastric carcinoma cells. However, the underlying role of DMY reversing the MDR of gastric carcinoma is poor understood. The aim of this study was to evaluate the reversal effect of DMY on MDR and investigate the molecular mechanisms in vitro. Methods: Using MTT assay, we identified the toxicity of DMY on SGC7901 and SGC7901/5-FU cells. The effect of DMY on 5-FU induced apoptosis was evaluated by flow cytometry analysis. Using RT-PCR and Western blot, we determined the MDR1 mRNA and protein expression. Results: DMY induced growth inhibition in both SGC7901 and SGC7901/5-FU cells, the IC50 value was 13.64±1.15 µg/mL, 20.69±1.82 µg/mL respectively. DMY treatment sensitized SGC7901/5-FU cells to cytotoxicity of 5-FU. The combination of DMY with 5-FU increased the apoptosis rate (9.91%, 16.67%) comparing with 5-FU alone (5.25%). Comparing with the control group, the MDR1 mRNA and protein expression in SGC7901/5-FU cells after treatment of DMY decreased significantly (P< 0.05). Conclusion: In brief, our study demonstrated that DMY effectively reversed multi-drug resistance occurring in SGC7901/5-FU cells cultured in vitro, and the potential mechanism was involved in the downregulation of the MDR1 expression.
Collapse
Affiliation(s)
- Mingcai Wu
- Department of Biochemistry, Wannan Medical College, Wuhu, Anhui, P.R.China.,Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu, Anhui, P.R.China
| | - Ming Jiang
- Wuhu second Sanatorium for Retired Cadres, Anhui military area, Wuhu, Anhui, P.R. China
| | - Ting Dong
- Encephalopathy Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, P.R. China
| | - Lei Xu
- Department of Biochemistry, Wannan Medical College, Wuhu, Anhui, P.R.China.,Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu, Anhui, P.R.China
| | - Jun Lv
- Department of Biochemistry, Wannan Medical College, Wuhu, Anhui, P.R.China.,Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu, Anhui, P.R.China
| | - Mengya Xue
- Department of Biochemistry, Wannan Medical College, Wuhu, Anhui, P.R.China
| | - Mengzhu Huang
- Department of Biochemistry, Wannan Medical College, Wuhu, Anhui, P.R.China
| |
Collapse
|
10
|
Dong J, Qin Z, Zhang WD, Cheng G, Yehuda AG, Ashby CR, Chen ZS, Cheng XD, Qin JJ. Medicinal chemistry strategies to discover P-glycoprotein inhibitors: An update. Drug Resist Updat 2020; 49:100681. [PMID: 32014648 DOI: 10.1016/j.drup.2020.100681] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/13/2020] [Accepted: 01/16/2020] [Indexed: 12/16/2022]
Abstract
The presence of multidrug resistance (MDR) in malignant tumors is one of the primary causes of treatment failure in cancer chemotherapy. The overexpression of the ATP binding cassette (ABC) transporter, P-glycoprotein (P-gp), which significantly increases the efflux of certain anticancer drugs from tumor cells, produces MDR. Therefore, inhibition of P-gp may represent a viable therapeutic strategy to overcome cancer MDR. Over the past 4 decades, many compounds with P-gp inhibitory efficacy (referred to as first- and second-generation P-gp inhibitors) have been identified or synthesized. However, these compounds were not successful in clinical trials due to a lack of efficacy and/or untoward toxicity. Subsequently, third- and fourth-generation P-gp inhibitors were developed but dedicated clinical trials did not indicate a significant therapeutic effect. In recent years, an extraordinary array of highly potent, selective, and low-toxicity P-gp inhibitors have been reported. Herein, we provide a comprehensive review of the synthetic and natural products that have specific inhibitory activity on P-gp drug efflux as well as promising chemosensitizing efficacy in MDR cancer cells. The present review focuses primarily on the structural features, design strategies, and structure-activity relationships (SAR) of these compounds.
Collapse
Affiliation(s)
- Jinyun Dong
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, 310022, China; College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zuodong Qin
- Research Center of Biochemical Engineering Technology, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China
| | - Wei-Dong Zhang
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Gang Cheng
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Assaraf G Yehuda
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Charles R Ashby
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| | - Xiang-Dong Cheng
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, 310022, China.
| | - Jiang-Jiang Qin
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, 310022, China; College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
11
|
Cirillo G, Vittorio O, Kunhardt D, Valli E, Voli F, Farfalla A, Curcio M, Spizzirri UG, Hampel S. Combining Carbon Nanotubes and Chitosan for the Vectorization of Methotrexate to Lung Cancer Cells. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2889. [PMID: 31500165 PMCID: PMC6766185 DOI: 10.3390/ma12182889] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 12/11/2022]
Abstract
A hybrid system composed of multi-walled carbon nanotubes coated with chitosan was proposed as a pH-responsive carrier for the vectorization of methotrexate to lung cancer. The effective coating of the carbon nanostructure by chitosan, quantified (20% by weight) by thermogravimetric analysis, was assessed by combined scanning and transmission electron microscopy, and X-ray photoelectron spectroscopy (N1s signal), respectively. Furthermore, Raman spectroscopy was used to characterize the interaction between polysaccharide and carbon counterparts. Methotrexate was physically loaded onto the nanohybrid and the release profiles showed a pH-responsive behavior with higher and faster release in acidic (pH 5.0) vs. neutral (pH 7.4) environments. Empty nanoparticles were found to be highly biocompatible in either healthy (MRC-5) or cancerous (H1299) cells, with the nanocarrier being effective in reducing the drug toxicity on MRC-5 while enhancing the anticancer activity on H1299.
Collapse
Affiliation(s)
- Giuseppe Cirillo
- Leibniz Institute of Solid State and Material Research Dresden, 01069 Dresden, Germany.
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy.
| | - Orazio Vittorio
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, NSW 2031, Australia.
- ARC Centre of Excellence for Convergent BioNano Science and Technology, Australian Centre for NanoMedicine, UNSW Sydney, NSW 2052, Australia.
- School of Women's and Children's Health, Faculty of Medicine, UNSW Sydney, NSW 2052, Australia.
| | - David Kunhardt
- Leibniz Institute of Solid State and Material Research Dresden, 01069 Dresden, Germany.
| | - Emanuele Valli
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, NSW 2031, Australia.
- School of Women's and Children's Health, Faculty of Medicine, UNSW Sydney, NSW 2052, Australia.
| | - Florida Voli
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, NSW 2031, Australia.
| | - Annafranca Farfalla
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy.
| | - Manuela Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy.
| | - Umile Gianfranco Spizzirri
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy.
| | - Silke Hampel
- Leibniz Institute of Solid State and Material Research Dresden, 01069 Dresden, Germany.
| |
Collapse
|