1
|
Rocha S, Silva J, Silva VLM, Silva AMS, Corvo ML, Freitas M, Fernandes E. Pyrazoles have a multifaceted anti-inflammatory effect targeting prostaglandin E 2, cyclooxygenases and leukocytes' oxidative burst. Int J Biochem Cell Biol 2024; 172:106599. [PMID: 38797495 DOI: 10.1016/j.biocel.2024.106599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/11/2024] [Accepted: 05/18/2024] [Indexed: 05/29/2024]
Abstract
Elevated levels of prostaglandin E2 have been implicated in the pathophysiology of various diseases. Anti-inflammatory drugs that act through the inhibition of cyclooxygenase enzymatic activity, thereby leading to the suppression of prostaglandin E2, are often associated with several side effects due to their non-specific inhibition of cyclooxygenase enzymes. Consequently, the targeted suppression of prostaglandin E2 production with innovative molecules and/or mechanisms emerges as a compelling therapeutic strategy for the treatment of inflammatory-related diseases. Therefore, in this study, a systematic analysis of 28 pyrazole derivatives was conducted to explore their potential mechanisms for reducing prostaglandin E2 levels. In this context, the evaluation of these derivatives extended to examining their capacity to reduce prostaglandin E2in vitro in human whole blood, inhibit cyclooxygenase-1 and cyclooxygenase-2 enzymes, modulate cyclooxygenase-2 expression, and suppress oxidative burst in human leukocytes. The results enabled the establishment of significant structure-activity relationships, elucidating key determinants for their activities. In particular, the 4-styryl group on the pyrazole moiety and the presence of chloro substitutions were identified as key determinants. Pyrazole 8 demonstrated the capacity to reduce prostaglandin E2 levels by downregulating cyclooxygenase-2 expression, and pyrazole-1,2,3-triazole 18 emerged as a dual-acting agent, inhibiting human leukocytes' oxidative burst and cyclooxygenase-2 activity. Furthermore, pyrazole 26 demonstrated effective reduction of prostaglandin E2 levels through selective cyclooxygenase-1 inhibition. These results underscore the multifaceted anti-inflammatory potential of pyrazoles, providing new insights into the substitutions and structural frameworks that are beneficial for the studied activity.
Collapse
Affiliation(s)
- Sónia Rocha
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto 4050-313, Portugal
| | - Jorge Silva
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto 4050-313, Portugal
| | - Vera L M Silva
- LAQV, REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | - Artur M S Silva
- LAQV, REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | - M Luísa Corvo
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon 1649-003, Portugal
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto 4050-313, Portugal.
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto 4050-313, Portugal.
| |
Collapse
|
2
|
Chahal S, Rani P, Kiran, Sindhu J, Joshi G, Ganesan A, Kalyaanamoorthy S, Mayank, Kumar P, Singh R, Negi A. Design and Development of COX-II Inhibitors: Current Scenario and Future Perspective. ACS OMEGA 2023; 8:17446-17498. [PMID: 37251190 PMCID: PMC10210234 DOI: 10.1021/acsomega.3c00692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/21/2023] [Indexed: 09/29/2023]
Abstract
Innate inflammation beyond a threshold is a significant problem involved in cardiovascular diseases, cancer, and many other chronic conditions. Cyclooxygenase (COX) enzymes are key inflammatory markers as they catalyze prostaglandins production and are crucial for inflammation processes. While COX-I is constitutively expressed and is generally involved in "housekeeping" roles, the expression of the COX-II isoform is induced by the stimulation of different inflammatory cytokines and also promotes the further generation of pro-inflammatory cytokines and chemokines, which affect the prognosis of various diseases. Hence, COX-II is considered an important therapeutic target for drug development against inflammation-related illnesses. Several selective COX-II inhibitors with safe gastric safety profiles features that do not cause gastrointestinal complications associated with classic anti-inflammatory drugs have been developed. Nevertheless, there is mounting evidence of cardiovascular side effects from COX-II inhibitors that resulted in the withdrawal of market-approved anti-COX-II drugs. This necessitates the development of COX-II inhibitors that not only exhibit inhibit potency but also are free of side effects. Probing the scaffold diversity of known inhibitors is vital to achieving this goal. A systematic review and discussion on the scaffold diversity of COX inhibitors are still limited. To address this gap, herein we present an overview of chemical structures and inhibitory activity of different scaffolds of known COX-II inhibitors. The insights from this article could be helpful in seeding the development of next-generation COX-II inhibitors.
Collapse
Affiliation(s)
- Sandhya Chahal
- Department
of Chemistry, COBS&H, CCS Haryana Agricultural
University, Hisar 125004, India
| | - Payal Rani
- Department
of Chemistry, COBS&H, CCS Haryana Agricultural
University, Hisar 125004, India
| | - Kiran
- Department
of Chemistry, COBS&H, CCS Haryana Agricultural
University, Hisar 125004, India
| | - Jayant Sindhu
- Department
of Chemistry, COBS&H, CCS Haryana Agricultural
University, Hisar 125004, India
| | - Gaurav Joshi
- Department
of Pharmaceutical Sciences, Hemvati Nandan
Bahuguna Garhwal (A Central) University, Chauras Campus, Tehri Garhwal, Uttarakhand 249161, India
- Adjunct
Faculty at Department of Biotechnology, Graphic Era (Deemed to be) University, 566/6, Bell Road, Clement Town, Dehradun, Uttarakhand 248002, India
| | - Aravindhan Ganesan
- ArGan’sLab,
School of Pharmacy, University of Waterloo, Waterloo, Ontario N2G 1C5, Canada
| | | | - Mayank
- University
College of Pharmacy, Guru Kashi University, Talwandi Sabo, Punjab 151302, India
| | - Parvin Kumar
- Department
of Chemistry, Kurukshetra University, Kurukshetra 136119, India
| | - Rajvir Singh
- Department
of Chemistry, COBS&H, CCS Haryana Agricultural
University, Hisar 125004, India
| | - Arvind Negi
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo 02150, Finland
| |
Collapse
|
3
|
Dzedulionytė K, Veikšaitė M, Morávek V, Malinauskienė V, Račkauskienė G, Šačkus A, Žukauskaitė A, Arbačiauskienė E. Convenient Synthesis of N-Heterocycle-Fused Tetrahydro-1,4-diazepinones. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248666. [PMID: 36557800 PMCID: PMC9783606 DOI: 10.3390/molecules27248666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
A general approach towards the synthesis of tetrahydro-4H-pyrazolo[1,5-a][1,4]diazepin-4-one, tetrahydro[1,4]diazepino[1,2-a]indol-1-one and tetrahydro-1H-benzo[4,5]imidazo[1,2-a][1,4]diazepin-1-one derivatives was introduced. A regioselective strategy was developed for synthesizing ethyl 1-(oxiran-2-ylmethyl)-1H-pyrazole-5-carboxylates from easily accessible 3(5)-aryl- or methyl-1H-pyrazole-5(3)-carboxylates. Obtained intermediates were further treated with amines resulting in oxirane ring-opening and direct cyclisation-yielding target pyrazolo[1,5-a][1,4]diazepin-4-ones. A straightforward two-step synthetic approach was applied to expand the current study and successfully functionalize ethyl 1H-indole- and ethyl 1H-benzo[d]imidazole-2-carboxylates. The structures of fused heterocyclic compounds were confirmed by 1H, 13C, and 15N-NMR spectroscopy and HRMS investigation.
Collapse
Affiliation(s)
- Karolina Dzedulionytė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19A, LT-50254 Kaunas, Lithuania
| | - Melita Veikšaitė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19A, LT-50254 Kaunas, Lithuania
| | - Vít Morávek
- Department of Chemical Biology, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Vida Malinauskienė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19A, LT-50254 Kaunas, Lithuania
| | - Greta Račkauskienė
- Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, LT-51423 Kaunas, Lithuania
| | - Algirdas Šačkus
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19A, LT-50254 Kaunas, Lithuania
- Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, LT-51423 Kaunas, Lithuania
| | - Asta Žukauskaitė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19A, LT-50254 Kaunas, Lithuania
- Department of Chemical Biology, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
- Correspondence: (A.Ž.); (E.A.)
| | - Eglė Arbačiauskienė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19A, LT-50254 Kaunas, Lithuania
- Correspondence: (A.Ž.); (E.A.)
| |
Collapse
|
4
|
Kobelevskaya VА, Larina LI, Popov AV. A Regioselective Synthesis of 5-chloro-1-vinyl- and 3-alkenyl-5-chloro-1H-pyrazoles. Chem Heterocycl Compd (N Y) 2022. [DOI: 10.1007/s10593-022-03139-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Shawish I, Barakat A, Aldalbahi A, Malebari AM, Nafie MS, Bekhit AA, Albohy A, Khan A, Ul-Haq Z, Haukka M, de la Torre BG, Albericio F, El-Faham A. Synthesis and Antiproliferative Activity of a New Series of Mono- and Bis(dimethylpyrazolyl)- s-triazine Derivatives Targeting EGFR/PI3K/AKT/mTOR Signaling Cascades. ACS OMEGA 2022; 7:24858-24870. [PMID: 35874229 PMCID: PMC9301957 DOI: 10.1021/acsomega.2c03079] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Here, we synthesized a newseries of mono- and bis(dimethylpyrazolyl)-s-triazine derivatives. The synthetic methodology involved the reaction of different mono- and dihydrazinyl-s-triazine derivatives with acetylacetone in the presence of triethylamine to produce the corresponding target products in high yield and purity. The antiproliferative activity of the novel mono- and bis(dimethylpyrazolyl)-s-triazine derivatives was studied against three cancer cell lines, namely, MCF-7, HCT-116, and HepG2. N-(4-Bromophenyl)-4-(3,5-dimethyl-1H-pyrazol-1-yl)-6-morpholino-1,3,5-triazin-2-amine 4f, N-(4-chlorophenyl)-4,6-bis(3,5-dimethyl-1H-pyrazol-1-yl)-1,3,5-triazin-2-amine 5c, and 4,6-bis(3,5-dimethyl-1H-pyrazol-1-yl)-N-(4-methoxyphenyl)-1,3,5-triazin-2-amine 5d showed promising activity against these cancer cells: 4f [(IC50 = 4.53 ± 0.30 μM (MCF-7); 0.50 ± 0.080 μM (HCT-116); and 3.01 ± 0.49 μM (HepG2)]; 5d [(IC50 = 3.66 ± 0.96 μM (HCT-116); and 5.42 ± 0.82 μM (HepG2)]; and 5c [(IC50 = 2.29 ± 0.92 μM (MCF-7)]. Molecular docking studies revealed good binding affinity with the receptor targeting EGFR/PI3K/AKT/mTOR signaling cascades. Compound 4f exhibited potent EGFR inhibitory activity with an IC50 value of 61 nM compared to that of Tamoxifen (IC50 value of 69 nM), with EGFR inhibition of 83 and 84%, respectively, at a concentration of 10 μM. Interestingly, 4f showed remarkable PI3K/AKT/mTOR inhibitory activity with 0.18-, 0.27-, and 0.39-fold decrease in their concentration (reduction in controls from 6.64, 45.39, and 86.39 ng/mL to 1.24, 12.35, and 34.36 ng/mL, respectively). Hence, the synthetic 1,3,5-triazine derivative 4f exhibited promising antiproliferative activity in HCT-116 cells through apoptosis induction by targeting the EGFR and its downstream pathway.
Collapse
Affiliation(s)
- Ihab Shawish
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Department
of Math and Sciences, College of Humanities and Sciences, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia
| | - Assem Barakat
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ali Aldalbahi
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Azizah M. Malebari
- Department
of Pharmaceutical Chemistry, College of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohamed S. Nafie
- Department
of Chemistry, Faculty of Science, Suez Canal
University, Ismailia 41522, Egypt
| | - Adnan A. Bekhit
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Pharmacy
Program, Allied Health Department, College of Health and Sport Sciences, University of Bahrain, Zallaq, Kingdom of Bahrain
| | - Amgad Albohy
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, The British University in Egypt (BUE), El-Sherouk City, Suez Desert Road, Cairo 11837, Egypt
- The Center
for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo 11837, Egypt
| | - Alamgir Khan
- H.E.J. Research
Institute of Chemistry, International Center for Chemical and Biological
Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Zaheer Ul-Haq
- H.E.J. Research
Institute of Chemistry, International Center for Chemical and Biological
Sciences, University of Karachi, Karachi 75270, Pakistan
- Dr. Panjwani
Center for Molecular Medicine and Drug Research, International Center
for Chemical and Biological Sciences, University
of Karachi, Karachi 75270, Pakistan
| | - Matti Haukka
- Department
of Chemistry, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Beatriz G. de la Torre
- KwaZulu-Natal
Research Innovation and Sequencing Platform (KRISP), School of Laboratory
Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
- Peptide
Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000, South
Africa
| | - Fernando Albericio
- Peptide
Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000, South
Africa
- Institute
for Advanced Chemistry of Catalonia (IQAC−CSIC), 08034 Barcelona, Spain
- CIBER-BBN,
Networking Centre on Bioengineering, Biomaterials and Nanomedicine,
and Department of Organic Chemistry, University
of Barcelona, 08028 Barcelona, Spain
| | - Ayman El-Faham
- Department
of Chemistry, Faculty of Science, Alexandria
University, P.O. Box 426,
Ibrahimia, Alexandria 21321, Egypt
| |
Collapse
|
6
|
Abdelall EK, Lamie PF, Aboelnaga LS, Hassan RM. Trimethoxyphenyl containing compounds: Synthesis, biological evaluation, nitric oxide release, modeling, histochemical and histopathological studies. Bioorg Chem 2022; 124:105806. [DOI: 10.1016/j.bioorg.2022.105806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/13/2022] [Accepted: 04/10/2022] [Indexed: 11/02/2022]
|
7
|
Ebenezer O, Shapi M, Tuszynski JA. A Review of the Recent Development in the Synthesis and Biological Evaluations of Pyrazole Derivatives. Biomedicines 2022; 10:biomedicines10051124. [PMID: 35625859 PMCID: PMC9139179 DOI: 10.3390/biomedicines10051124] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 12/12/2022] Open
Abstract
Pyrazoles are five-membered heterocyclic compounds that contain nitrogen. They are an important class of compounds for drug development; thus, they have attracted much attention. In the meantime, pyrazole derivatives have been synthesized as target structures and have demonstrated numerous biological activities such as antituberculosis, antimicrobial, antifungal, and anti-inflammatory. This review summarizes the results of published research on pyrazole derivatives synthesis and biological activities. The published research works on pyrazole derivatives synthesis and biological activities between January 2018 and December 2021 were retrieved from the Scopus database and reviewed accordingly.
Collapse
Affiliation(s)
- Oluwakemi Ebenezer
- Department of Chemistry, Faculty of Natural Science, Mangosuthu University of Technology, Durban 4026, South Africa; (O.E.); (M.S.)
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Michael Shapi
- Department of Chemistry, Faculty of Natural Science, Mangosuthu University of Technology, Durban 4026, South Africa; (O.E.); (M.S.)
| | - Jack A. Tuszynski
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada
- Department of Mechanical and Aerospace Engineering, (DIMEAS), Politecnico di Torino, 10129 Turin, Italy
- Correspondence:
| |
Collapse
|
8
|
Priya D, Gopinath P, Dhivya LS, Vijaybabu A, Haritha M, Palaniappan S, Kathiravan MK. Structural Insights into Pyrazoles as Agents against Anti‐inflammatory and Related Disorders. ChemistrySelect 2022. [DOI: 10.1002/slct.202104429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Deivasigamani Priya
- Department of Pharmaceutical Chemistry SRM College of Pharmacy SRMIST Kattankulathur India
| | | | | | - Anandan Vijaybabu
- Department of Pharmaceutical Chemistry SRM College of Pharmacy SRMIST Kattankulathur India
| | - Manoharan Haritha
- Department of Pharmaceutical Chemistry SRM College of Pharmacy SRMIST Kattankulathur India
| | | | - Muthu K. Kathiravan
- Department of Pharmaceutical Chemistry SRM College of Pharmacy SRMIST Kattankulathur India
- Dr APJ Abdul Kalam Research Lab Department of Pharmaceutical Chemistry SRM College of Pharmacy SRMIST Kattankulathur India
| |
Collapse
|
9
|
Kwak HS, An Y, Giesen DJ, Hughes TF, Brown CT, Leswing K, Abroshan H, Halls MD. Design of Organic Electronic Materials With a Goal-Directed Generative Model Powered by Deep Neural Networks and High-Throughput Molecular Simulations. Front Chem 2022; 9:800370. [PMID: 35111730 PMCID: PMC8802168 DOI: 10.3389/fchem.2021.800370] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
In recent years, generative machine learning approaches have attracted significant attention as an enabling approach for designing novel molecular materials with minimal design bias and thereby realizing more directed design for a specific materials property space. Further, data-driven approaches have emerged as a new tool to accelerate the development of novel organic electronic materials for organic light-emitting diode (OLED) applications. We demonstrate and validate a goal-directed generative machine learning framework based on a recurrent neural network (RNN) deep reinforcement learning approach for the design of hole transporting OLED materials. These large-scale molecular simulations also demonstrate a rapid, cost-effective method to identify new materials in OLEDs while also enabling expansion into many other verticals such as catalyst design, aerospace, life science, and petrochemicals.
Collapse
Affiliation(s)
- H. Shaun Kwak
- Schrödinger, Inc., Portland, OR, United States
- *Correspondence: H. Shaun Kwak, ; Yuling An,
| | - Yuling An
- Schrödinger, Inc., New York, NY, United States
- *Correspondence: H. Shaun Kwak, ; Yuling An,
| | | | | | | | | | | | | |
Collapse
|
10
|
Heravi MM, Malakooti R, Kafshdarzadeh K, Amiri Z, Zadsirjan V, Atashin H. Supported palladium oxide nanoparticles in Al-SBA-15 as an efficient and reusable catalyst for the synthesis of pyranopyrazole and benzylpyrazolyl coumarin derivatives via multicomponent reactions. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-021-04619-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Recent development on COX-2 inhibitors as promising anti-inflammatory agents: The past 10 years. Acta Pharm Sin B 2022; 12:2790-2807. [PMID: 35755295 PMCID: PMC9214066 DOI: 10.1016/j.apsb.2022.01.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/14/2021] [Accepted: 12/30/2021] [Indexed: 12/11/2022] Open
Abstract
Cyclooxygenases play a vital role in inflammation and are responsible for the production of prostaglandins. Two cyclooxygenases are described, the constitutive cyclooxygenase-1 and the inducible cyclooxygenase-2, for which the target inhibitors are the non-steroidal anti-inflammatory drugs (NSAIDs). Prostaglandins are a class of lipid compounds that mediate acute and chronic inflammation. NSAIDs are the most frequent choices for treatment of inflammation. Nevertheless, currently used anti-inflammatory drugs have become associated with a variety of adverse effects which lead to diminished output even market withdrawal. Recently, more studies have been carried out on searching novel selective COX-2 inhibitors with safety profiles. In this review, we highlight the various structural classes of organic and natural scaffolds with efficient COX-2 inhibitory activity reported during 2011–2021. It will be valuable for pharmaceutical scientists to read up on the current chemicals to pave the way for subsequent research.
Collapse
|
12
|
Costa RF, Turones LC, Cavalcante KVN, Rosa Júnior IA, Xavier CH, Rosseto LP, Napolitano HB, Castro PFDS, Neto MLF, Galvão GM, Menegatti R, Pedrino GR, Costa EA, Martins JLR, Fajemiroye JO. Heterocyclic Compounds: Pharmacology of Pyrazole Analogs From Rational Structural Considerations. Front Pharmacol 2021; 12:666725. [PMID: 34040529 PMCID: PMC8141747 DOI: 10.3389/fphar.2021.666725] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/23/2021] [Indexed: 01/09/2023] Open
Abstract
Low quality of life and life-threatening conditions often demand pharmacological screening of lead compounds. A spectrum of pharmacological activities has been attributed to pyrazole analogs. The substitution, replacement, or removal of functional groups on a pyrazole ring appears consistent with diverse molecular interactions, efficacy, and potency of these analogs. This mini-review explores cytotoxic, cytoprotective, antinociceptive, anti-inflammatory, and antidepressant activities of some pyrazole analogs to advance structure-related pharmacological profiles and rational design of new analogs. Numerous interactions of these derivatives at their targets could impact future research considerations and prospects while offering opportunities for optimizing therapeutic activity with fewer adverse effects.
Collapse
Affiliation(s)
| | - Larissa Córdova Turones
- Laboratory of Pharmacology of Natural and Synthetic Products, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Keilah Valéria Naves Cavalcante
- Center for Neuroscience and Cardiovascular Research, Department of Physiology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Ismael Aureliano Rosa Júnior
- Universitary Center of Anápolis, UniEvangélica, Anápolis, Brazil
- Institute of Science, Technology and Quality (ICTQ), Anápolis, Brazil
| | - Carlos Henrique Xavier
- Systems Neurobiology Laboratory, Department of Physiology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| | | | - Hamilton Barbosa Napolitano
- Universitary Center of Anápolis, UniEvangélica, Anápolis, Brazil
- Theoretical and Structural Chemistry Group, Universidade Estadual de Goiás, Anápolis, Brazil
| | | | - Marcos Luiz Ferreira Neto
- Laboratory of Electrophysiology and Cardiovascular Physiology, Departament of Physiology, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, Brazil
| | - Gustavo Mota Galvão
- Laboratory of Medicinal Pharmaceutical Chemistry, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Brazil
| | - Ricardo Menegatti
- Laboratory of Medicinal Pharmaceutical Chemistry, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Brazil
| | - Gustavo Rodrigues Pedrino
- Center for Neuroscience and Cardiovascular Research, Department of Physiology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Elson Alves Costa
- Laboratory of Pharmacology of Natural and Synthetic Products, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| | | | - James Oluwagbamigbe Fajemiroye
- Laboratory of Pharmacology of Natural and Synthetic Products, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| |
Collapse
|
13
|
Mujwar S. Computational bioprospecting of andrographolide derivatives as potent cyclooxygenase-2 inhibitors. BIOMEDICAL AND BIOTECHNOLOGY RESEARCH JOURNAL (BBRJ) 2021. [DOI: 10.4103/bbrj.bbrj_56_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
14
|
Tınmaz F, İlhan İÖ, Akkoç S. Preparation and Properties of Some New Pyrazole Derivatives. ORG PREP PROCED INT 2020. [DOI: 10.1080/00304948.2020.1846449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Feyza Tınmaz
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey
| | - İlhan Özer İlhan
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey
| | - Senem Akkoç
- Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
15
|
Abdulla Afsina CM, Aneeja T, Neetha M, Anilkumar G. Recent Advances in the Synthesis of Pyrazole Derivatives. Curr Org Synth 2020; 18:197-213. [PMID: 33167842 DOI: 10.2174/1570179417666201109151036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 11/22/2022]
Abstract
Pyrazole and its derivatives have gained wide attention in pharmaceutical, agrochemical and biological fields as well as in industry. They exhibit various biological activities such as anti-pyretic, anti-microbial, anti- inflammatory, anti-tumor, anti-viral, anti-histaminic, anti-convulsant, fungicidal, insecticidal, etc. In this review, we summarise the recent advances in the synthesis of pyrazole derivatives using various methodologies and covers literature from 2017-2020.
Collapse
Affiliation(s)
| | - Thaipparambil Aneeja
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P.O., Kottayam, Kerala, India
| | - Mohan Neetha
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P.O., Kottayam, Kerala, India
| | - Gopinathan Anilkumar
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P.O., Kottayam, Kerala, India
| |
Collapse
|
16
|
Turones LC, Martins AN, Moreira LKDS, Fajemiroye JO, Costa EA. Development of pyrazole derivatives in the management of inflammation. Fundam Clin Pharmacol 2020; 35:217-234. [PMID: 33171533 DOI: 10.1111/fcp.12629] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 11/03/2020] [Accepted: 11/06/2020] [Indexed: 01/15/2023]
Abstract
The therapeutic limitations and poor management of inflammatory conditions are anticipated to impact patients negatively over the coming decades. Following the synthesis of the first pyrazole-antipyrine in 1887, several other derivatives have been screened for anti-inflammatory, analgesic, and antipyretic activities. Arguably, the pyrazole ring, as a major pharmacophore and central scaffold partly, defines the pharmacological profile of several derivatives. In this review, we explore the structural-activity relationship that accounts for the pharmacological profile of pyrazole derivatives and highlights future research perspectives capable of optimizing current advancement in the search for safe and efficacy anti-inflammatory drugs. The flourishing research into the pyrazole derivatives as drug candidates has advanced our understanding of inflammation-related diseases and treatment.
Collapse
Affiliation(s)
- Larissa Córdova Turones
- Laboratory of Pharmacology of Natural and Synthetic Products, Institute of Biological Sciences, Federal University of Goiás, Campus Samambaia, Goiânia, Goiás, 74001970, Brazil
| | - Aline Nazareth Martins
- Laboratory of Pharmacology of Natural and Synthetic Products, Institute of Biological Sciences, Federal University of Goiás, Campus Samambaia, Goiânia, Goiás, 74001970, Brazil
| | - Lorrane Kelle da Silva Moreira
- Laboratory of Pharmacology of Natural and Synthetic Products, Institute of Biological Sciences, Federal University of Goiás, Campus Samambaia, Goiânia, Goiás, 74001970, Brazil
| | - James Oluwagbamigbe Fajemiroye
- Laboratory of Pharmacology of Natural and Synthetic Products, Institute of Biological Sciences, Federal University of Goiás, Campus Samambaia, Goiânia, Goiás, 74001970, Brazil
| | - Elson Alves Costa
- Laboratory of Pharmacology of Natural and Synthetic Products, Institute of Biological Sciences, Federal University of Goiás, Campus Samambaia, Goiânia, Goiás, 74001970, Brazil
| |
Collapse
|
17
|
Prasher P, Sharma M. "Azole" as privileged heterocycle for targeting the inducible cyclooxygenase enzyme. Drug Dev Res 2020; 82:167-197. [PMID: 33137216 DOI: 10.1002/ddr.21753] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 12/22/2022]
Abstract
An over-expression of COX-2 isoenzyme belonging to the Cyclooxygenase Enzyme Family triggers the overproduction of pro-inflammatory prostaglandins that instigate the development of chronic inflammation and related disorders. Hence, the rationally designed drugs for mitigating over-activity of COX-2 isoenzyme play a regulatory role toward the alleviation of the progression of these disorders. However, a selective COX-2 inhibition chemotherapy prompts several side effects that necessitate the identification of novel molecular scaffolds for deliberating state-of-the-art drug designing strategies. The heterocyclic "azole" scaffold, being polar and hydrophilic, possesses remarkable physicochemical advantages for designing physiologically active molecules capable of interacting with a wide range of biological components, including enzymes, peptides, and metabolites. The substituted derivatives of azole nuclei enable a comprehensive SAR analysis for the appraisal of bioactive profile of the deliberated molecules for obtaining the rationally designed compounds with prominent activities. The comprehensive SAR analysis readily prompted the identification of Y-shaped molecules and the eminence of bulkier group for COX-2 selective inhibition. This review presents an epigrammatic collation of the pharmacophore-profile of the chemotherapeutics based on azole motif for a selective targeting of the COX-2 isoenzyme.
Collapse
Affiliation(s)
- Parteek Prasher
- UGC Sponsored Centre for Advanced Studies, Department of Chemistry, Guru Nanak Dev University, Amritsar, India.,Department of Chemistry, University of Petroleum & Energy Studies, Energy Acres, Dehradun, India
| | - Mousmee Sharma
- UGC Sponsored Centre for Advanced Studies, Department of Chemistry, Guru Nanak Dev University, Amritsar, India.,Department of Chemistry, Uttaranchal University, Arcadia Grant, Dehradun, India
| |
Collapse
|
18
|
Abdellatif KRA, Abdelall EKA, Labib MB, Fadaly WAA, Zidan TH. Synthesis of novel halogenated triarylpyrazoles as selective COX-2 inhibitors: Anti-inflammatory activity, histopatholgical profile and in-silico studies. Bioorg Chem 2020; 105:104418. [PMID: 33166844 DOI: 10.1016/j.bioorg.2020.104418] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/26/2020] [Accepted: 10/20/2020] [Indexed: 12/23/2022]
Abstract
A novel series of halogenated triarylpyrazoles 12a-l was designed and synthesized. All target compounds showed good in vitro COX-2 inhibitory activity (IC50 = 0.043-0.17 µM) over COX-1 (IC50 = 7.8 - 15.4 µM) relative to celecoxib (COX-1/IC50 = 9.87, COX-2/IC50 = 0.055), with acceptable selectivity index values (SI = 50.6-253.1). Also, they displayed moderate to potent in vivo anti-inflammatory activity (% edema inhibition = 16.9-87.9) comparable to celecoxib (% edema inhibition = 46.6-72.1) as standard drug. Three fluorinated pyrazoles 12a, 12g and 12j, exhibited superior anti-inflammatory activity at all time intervals (% edema inhibition = 42.1-87.9) with better gastric profile (UI = 1.25-2.5) than the traditional NSAID; indomethacin (UI = 14) and were close to the selective COX-2 inhibitor; celecoxib (UI = 1.75). In-silico docking and ADME studies of 12a, 12g and 12j supported the obtained biological data and pointed out their potential use for the development of bio-available, safe and potent anti-inflammatory drugs.
Collapse
Affiliation(s)
- Khaled R A Abdellatif
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; Department of Pharmaceutical Sciences, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia
| | - Eman K A Abdelall
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Madlen B Labib
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| | - Wael A A Fadaly
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Taha H Zidan
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|
19
|
Sağlık BN, Osmaniye D, Levent S, Çevik UA, Çavuşoğlu BK, Özkay Y, Kaplancıklı ZA. Design, synthesis and biological assessment of new selective COX-2 inhibitors including methyl sulfonyl moiety. Eur J Med Chem 2020; 209:112918. [PMID: 33071054 DOI: 10.1016/j.ejmech.2020.112918] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/18/2020] [Accepted: 10/05/2020] [Indexed: 01/09/2023]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) cause peptic lesions in the gastrointestinal mucosa by inhibiting the cyclooxygenase-1 (COX-1) enzyme. Selective COX-2 inhibition causes decreased side effects over current NSAIDs. Therefore, the studies about selective inhibition of COX-2 enzyme are very important for new drug development. The design, synthesis and biological activity evaluation of novel derivatives bearing thiazolylhydrazine-methyl sulfonyl moiety as selective COX-2 inhibitors were aimed in this paper. The structures of synthesized compounds were assigned using different spectroscopic techniques such as 1H NMR, 13C NMR and HRMS. In addition, the estimation of ADME parameters for all compounds was carried out using in silico process. The evaluation of in vitro COX-1/COX-2 enzyme inhibition was applied according to the fluorometric method. According to the enzyme inhibition results, synthesized compounds showed the selectivity against COX-2 enzyme inhibition as expected. Compounds 3a, 3e, 3f, 3g, 3i and 3j demonstrated significant COX-2 inhibition potencies. Among them, compound 3a was found to be the most effective derivative with an IC50 value of 0.140 ± 0.006 μM. Moreover, it was seen that compound 3a displayed a more potent inhibition profile at least 12-fold than nimesulide (IC50 = 1.684 ± 0.079 μM), while it showed inhibitory activity at a similar rate of celecoxib (IC50 = 0.132 ± 0.005 μM). Molecular modelling studies aided in the understanding of the interaction modes between this compound and COX-2 enzyme. It was found that compound 3a had a significant binding property. In addition, the selectivity of obtained derivatives on COX-2 enzyme could be explained and discussed by molecular docking studies.
Collapse
Affiliation(s)
- Begüm Nurpelin Sağlık
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey; Doping and Narcotic Compounds Analysis Laboratory, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey
| | - Derya Osmaniye
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey; Doping and Narcotic Compounds Analysis Laboratory, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey
| | - Serkan Levent
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey; Doping and Narcotic Compounds Analysis Laboratory, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey
| | - Ulviye Acar Çevik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey; Doping and Narcotic Compounds Analysis Laboratory, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey
| | - Betül Kaya Çavuşoğlu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Zonguldak Bülent Ecevit University, 67600, Zonguldak, Turkey
| | - Yusuf Özkay
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey; Doping and Narcotic Compounds Analysis Laboratory, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey
| | - Zafer Asım Kaplancıklı
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey.
| |
Collapse
|
20
|
Sharma S, Kumar D, Singh G, Monga V, Kumar B. Recent advancements in the development of heterocyclic anti-inflammatory agents. Eur J Med Chem 2020; 200:112438. [DOI: 10.1016/j.ejmech.2020.112438] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 02/06/2023]
|
21
|
El-Hazek RMM, El-Sabbagh WA, El-Hazek RM, El-Gazzar MG. Anti-inflammatory and analgesic effect of LD-RT and some novel thiadiazole derivatives through COX-2 inhibition. Arch Pharm (Weinheim) 2020; 353:e2000094. [PMID: 32618021 DOI: 10.1002/ardp.202000094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/13/2020] [Accepted: 06/05/2020] [Indexed: 11/09/2022]
Abstract
Generally, highly selective COX-2 inhibitors cause cardiovascular side effects. Celecoxib is the highly marketed coxib, so there is still a need for the synthesis of COX-2 inhibitors with less adverse effects. Moreover, low-dose radiotherapy (LD-RT) is clinically used for the treatment of inflammatory diseases. The present study aimed to investigate the analgesic and anti-inflammatory activity of a novel series of 1,3,4-thiadiazole derivatives alone or combined with LD-RT with a single dose of 0.5 Gy. Initially, in vitro COX-1/COX-2 inhibition assays were performed, identifying the sulfonamide-containing compounds 5-10 as the most potent candidates, with IC50 values in the range of 0.32-0.37 µM and the highest selectivity indices. These compounds and celecoxib were subjected to in vivo examination after their safety was assessed through the acute toxicity test. Treatment with compounds 5-10 inhibited carrageenan-induced edema by nearly 47-56%, which was nearly equivalent to celecoxib. Compounds 7 and 8 and celecoxib showed an analgesic activity of 64.15%, 49.05%, and 84.90%, respectively, whereas compounds 5, 6, 9, and 10 did not show any analgesic activity unless combined with LD-RT. Ulcerogenic activity, histological paw examination, and docking studies were performed. Compounds 5-10 were nearly similar to celecoxib, showing normal histological features with no ulcerogenic activity.
Collapse
Affiliation(s)
- Reham M M El-Hazek
- Department of Drug Radiation Research, National Centre for Radiation Research & Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Walaa A El-Sabbagh
- Department of Drug Radiation Research, National Centre for Radiation Research & Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Rania M El-Hazek
- Department of Drug Radiation Research, National Centre for Radiation Research & Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Marwa G El-Gazzar
- Department of Drug Radiation Research, National Centre for Radiation Research & Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| |
Collapse
|
22
|
Synthesis, pharmacological evaluation and structure-activity relationship of recently discovered enzyme antagonist azoles. Heliyon 2020; 6:e03656. [PMID: 32274429 PMCID: PMC7132078 DOI: 10.1016/j.heliyon.2020.e03656] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/06/2020] [Accepted: 03/20/2020] [Indexed: 12/18/2022] Open
Abstract
Global people are suffering from the legion of diseases. Cytotoxic property of the chemical compound would not solely influence effective drug properties and reduce unnecessary side effects. Proteins/enzymes responsible for microbe proliferation or survival are specifically targeted and inhibited successfully making the cells to undergo apoptosis. Furthermore, isoforms of essential enzymes have distinct physiological functions; thereby inhibition of essential enzyme isoforms is an apt way to the clinical approach of disease neutralization. Drugs are designed so as to play significant roles such as signaling pathways in the oncogenic process including cell proliferation, invasion, and angiogenesis. The present review comprises collective information of the recent synthesis of various organic drug compounds in brief, which could inhibit particular enzyme. The review also covers the correlation of the structure of a drug molecule designed and its inhibitory activity. Also, the most significant enzyme inhibitors are highlighted and structural moieties/core units responsible for remarkable inhibitory values are emphasized.
Collapse
|
23
|
Mohsin NUA, Irfan M. Selective cyclooxygenase-2 inhibitors: A review of recent chemical scaffolds with promising anti-inflammatory and COX-2 inhibitory activities. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02528-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Modi M, Jain M. Green approach for the synthesis of 3‐methyl‐1‐phenyl‐4‐((2‐phenyl‐1H‐indol 3‐yl)methylene)‐1H‐pyrazole‐5(4H)‐ones and their DNA Cleavage, antioxidant, and antimicrobial activities. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Madhuri Modi
- Center of advance studies, Department of chemistryUniversity of Rajasthan Jaipur India
| | - Meenakshi Jain
- Center of advance studies, Department of chemistryUniversity of Rajasthan Jaipur India
| |
Collapse
|
25
|
Shen QK, Gong GH, Li G, Jin M, Cao LH, Quan ZS. Discovery and evaluation of novel synthetic 5-alkyl-4-oxo-4,5-dihydro-[1,2,4]triazolo[4,3-a]quinoxaline-1-carbox-amide derivatives as anti-inflammatory agents. J Enzyme Inhib Med Chem 2019; 35:85-95. [PMID: 31707866 PMCID: PMC6853232 DOI: 10.1080/14756366.2019.1680658] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
To develop novel anti-inflammatory agents, a series of 5-alkyl-4-oxo-4,5-dihydro-[1, 2, 4]triazolo[4,3-a]quinoxaline-1-carboxamide derivatives were designed, synthesised, and evaluated for anti-inflammatory effects using RAW264.7 cells. Structures of the synthesised compounds were determined using 1H NMR, 13 C NMR, and HRMS. All the compounds were screened for anti-inflammatory activity based on their inhibitory effects against LPS-induced NO release. Among them, 5-(3,4,5-trimethoxybenzyl)-4-oxo-4,5-dihydro-[1, 2, 4]triazolo[4,3-a]quinoxaline-1-carboxamide (6p) showed the highest anti-inflammatory activity and inhibited NO release more potently than the lead compound D1. Further studies revealed that compound 6p reduced the levels of NO, TNF-α, and IL-6, and that its anti-inflammatory activity involves the inhibition of COX-2 and iNOS and downregulation of the mitogen-activated protein kinases (MAPK) signal pathway. Notably, compound 6p displayed more prominent anti-inflammatory activity than D1 and the positive control ibuprofen in the in vivo acute inflammatory model. Overall, these findings indicate that compound 6p is a therapeutic candidate for the treatment of inflammation.
Collapse
Affiliation(s)
- Qing-Kun Shen
- Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China
| | - Guo-Hua Gong
- Inner Mongolia Autonomous Region Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, China.,Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao, China
| | - Gao- Li
- Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China
| | - Mei- Jin
- Department of Central Laboratory, Yanbian University Hospital, Yanji, China
| | - Li-Hua Cao
- College of Medical, Yanbian University, Yanji, China
| | - Zhe-Shan Quan
- Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China
| |
Collapse
|
26
|
Cutinho PF, Shankar RC, Anand A, Roy J, Mehta CH, Nayak UY, Murahari M. Hit identification and drug repositioning of potential non-nucleoside reverse transcriptase inhibitors by structure-based approach using computational tools (part II). J Biomol Struct Dyn 2019; 38:3772-3789. [PMID: 31526232 DOI: 10.1080/07391102.2019.1663263] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AIDS is a global infection involving several complications and its increasing prevalence every year has prioritized our study. Therapy associated with HIV has led to emergence of multidrug resistance and toxicity. Thus, the development of a potent, affordable and safe anti-HIV drug is a global concern. Among the different targets developed, inhibition of non-nucleoside reverse transcriptase (NNRT) is found to be effective and promising. Etravirine, efavirenz, nevirapine, rilpivirine and delavirdine are the marketed NNRTIs available. This study is focused on computational prediction of hit molecules as well as repurposing of various FDA-approved drugs as potential NNRTIs. A synthetic database from ZINCpharmer, publicly available natural databases of coumarins, chromones and chalcones, and two databases of FDA-approved drugs for repurposing were screened to check for the possibility of these compounds to possess anti-HIV activity. Study utilizes a structure-based approach with the generated pharmacophore of target protein (PDB ID: 3MEC), screening of selected datasets is carried out using the Phase tool of Schrodinger. The top filtered compounds with good fitness score were proceeded to molecular docking studies to study their binding affinity to the target. Energy-based calculations using Prime MM-GBSA of Schrodinger was performed to determine free binding energy of the complexes. Prediction of pharmacokinetic parameters of top compounds is further carried out and reported. All the results obtained from different databases are compiled, interpreted and five molecules were subjected to molecular dynamic studies to further confirm the prediction and identified hit molecules for in vitro screening as potential NNRTIs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Pretisha Flora Cutinho
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, India
| | - Ravi C Shankar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, India
| | - Avinash Anand
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, India
| | - Jaydeep Roy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, India
| | - Chetan H Mehta
- Dept. of Pharmaceutics, Manipal College of Pharmaceutcal Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Usha Y Nayak
- Dept. of Pharmaceutics, Manipal College of Pharmaceutcal Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Manikanta Murahari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, India.,Pharmacological Modelling & Simulation Centre, M.S. Ramaiah University of Applied Sciences, Bangalore, India
| |
Collapse
|
27
|
Harras MF, Sabour R, Alkamali OM. Discovery of new non-acidic lonazolac analogues with COX-2 selectivity as potent anti-inflammatory agents. MEDCHEMCOMM 2019; 10:1775-1788. [PMID: 31803395 DOI: 10.1039/c9md00228f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/17/2019] [Indexed: 11/21/2022]
Abstract
Herein, the design and synthesis of some novel 1,3,4-trisubstituted pyrazole derivatives was carried out through the structural modification of lonazolac. All the synthesized compounds were investigated for in vitro COX-1 & COX-2 inhibition and in vivo anti-inflammatory activity by a carrageenan rat paw edema model. Among them, the chalcones 2a and 2b were the most COX-2 selective derivatives (S.I. = 8.22 and 9.31, respectively) and revealed very good in vivo anti-inflammatory potency. Similarly, the compounds 4a, 6b, 7a and 8a exhibited good COX-2 selectivity and in vivo anti-inflammatory activity. The active compounds were selected to further investigate their ulcerogenic activity, and they were found to be less ulcerogenic (ulcer indices = 2.4-8.4) as compared to indomethacin (ulcer index = 17.6) and nearly as ulcerogenic as celecoxib (ulcer index = 8.1). Moreover, histological studies were performed to evaluate the safety of these compounds on the stomach, liver and kidney. Furthermore, a docking study was performed to determine possible binding of the most active compounds 2a and 2b, which showed high docking scores (-9.461 and -7.962 kcal mol-1, respectively) that were comparable to that of celecoxib (-8.692 kcal mol-1).
Collapse
Affiliation(s)
- Marwa F Harras
- Department of Pharmaceutical Chemistry , Faculty of Pharmacy (Girls) , Al-Azhar University , Cairo , Egypt
| | - Rehab Sabour
- Department of Pharmaceutical Chemistry , Faculty of Pharmacy (Girls) , Al-Azhar University , Cairo , Egypt
| | - Omkulthom Mohamed Alkamali
- Department of Pharmaceutical Sciences , College of Pharmacy , Princess Nourah bint Abdulrahman University , Riyadh , Kingdom of Saudi Arabia
| |
Collapse
|