1
|
Jiang L, Ma X, Wang Y, Yang JP, Huang Y, Liu CH, Li YJ. New Monoterpenoid Glycosides from the Fruits of Hypericum patulum Thunb. Molecules 2024; 29:3075. [PMID: 38999027 PMCID: PMC11243496 DOI: 10.3390/molecules29133075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/08/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024] Open
Abstract
The whole Hypericum patulum Thunb. plant is utilized in traditional medicine for its properties of clearing heat, detoxifying, soothing meridians, relaxing the liver, and stopping bleeding. In folk medicine, it is frequently used to treat hepatitis, colds, tonsillitis, and bruises. Phytochemical investigation of a 30% ethanol extract of the fresh ripe fruits of H. patulum has resulted in the isolation of two new pinane-type monoterpenoid glycosides 1-2, named patulumside E-F, and three new chain-shaped monoterpenoid glycosides 3-5, named patulumside G-H, J. Their structures were determined using extensive spectroscopic techniques, such as HR-ESI-MS, 1D and 2D NMR spectroscopy, and electronic circular dichroism (ECD) calculation. The anti-inflammatory activities of these compounds were evaluated in the LPS-induced RAW264.7 cells. This research represents the inaugural comprehensive phytochemical study of H. patulum, paving the way for further exploration of monoterpenoid glycosides.
Collapse
Affiliation(s)
- Li Jiang
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education/Guizhou Provincial Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Guizhou Medical University, Guiyang 550004, China; (L.J.); (X.M.)
- School of Pharmacy, Guizhou Medical University, Guiyang 550004, China; (Y.W.); (J.-P.Y.); (Y.H.)
| | - Xue Ma
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education/Guizhou Provincial Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Guizhou Medical University, Guiyang 550004, China; (L.J.); (X.M.)
- School of Pharmacy, Guizhou Medical University, Guiyang 550004, China; (Y.W.); (J.-P.Y.); (Y.H.)
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550004, China
| | - Yang Wang
- School of Pharmacy, Guizhou Medical University, Guiyang 550004, China; (Y.W.); (J.-P.Y.); (Y.H.)
- Guizhou Provincial Key Laboratory of Pharmaceutics/State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, China
| | - Jian-Ping Yang
- School of Pharmacy, Guizhou Medical University, Guiyang 550004, China; (Y.W.); (J.-P.Y.); (Y.H.)
| | - Yong Huang
- School of Pharmacy, Guizhou Medical University, Guiyang 550004, China; (Y.W.); (J.-P.Y.); (Y.H.)
- Guizhou Provincial Key Laboratory of Pharmaceutics/State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, China
- National Engineering Research Center of Miao’s Medicines, Guizhou Medical University, Guiyang 550004, China
| | - Chun-Hua Liu
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education/Guizhou Provincial Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Guizhou Medical University, Guiyang 550004, China; (L.J.); (X.M.)
- School of Pharmacy, Guizhou Medical University, Guiyang 550004, China; (Y.W.); (J.-P.Y.); (Y.H.)
| | - Yong-Jun Li
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education/Guizhou Provincial Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Guizhou Medical University, Guiyang 550004, China; (L.J.); (X.M.)
- School of Pharmacy, Guizhou Medical University, Guiyang 550004, China; (Y.W.); (J.-P.Y.); (Y.H.)
- Guizhou Provincial Key Laboratory of Pharmaceutics/State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, China
- National Engineering Research Center of Miao’s Medicines, Guizhou Medical University, Guiyang 550004, China
| |
Collapse
|
2
|
Hu YL, Gar-Lee Yue G, Li XR, Xu G, Bik-San Lau C. Structurally diverse spirocyclic polycyclic polyprenylated acylphloroglucinols from Hypericum ascyron linn. and their anti-tumor activity. PHYTOCHEMISTRY 2023; 212:113727. [PMID: 37207991 DOI: 10.1016/j.phytochem.2023.113727] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/21/2023]
Abstract
Ten spirocyclic polycyclic polyprenylated acylphloroglucinols (PPAP), hunascynols A-J (1-10), and 12 known analogs were isolated from the aerial parts of Hypericum ascyron Linn. Compounds 1 and 2, which share a 1,2-seco-spirocyclic PPAP skeleton, could be derived from spirocyclic PPAP, with a common octahydrospiro[cyclohexan-1,5'-indene]-2,4,6-trione core, through a cascade of Retro-Claisen, keto-enol tautomerism, and esterification reactions. Aldolization of normal spirocyclic PPAP yielded 3, which has a caged framework with a 6/5/6/5/6 ring system. The structures of these compounds were determined using spectroscopy and X-ray diffraction. The inhibitory activities of all isolates were tested in three human cancer cell lines and a zebrafish model. Compounds 1 and 2 displayed moderate cytotoxicity against HCT116 cells (IC50 6.87 and 9.86 μM, respectively). The mechanisms of these compounds were evaluated using Western blot assays. Compounds 3 and 5 inhibited the growth of sub-intestinal vessels in zebrafish embryos. Further, the target genes were screened using real-time PCR.
Collapse
Affiliation(s)
- Ya-Li Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Grace Gar-Lee Yue
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, People's Republic of China
| | - Xing-Ren Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, People's Republic of China
| | - Gang Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, People's Republic of China.
| | - Clara Bik-San Lau
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, People's Republic of China.
| |
Collapse
|
3
|
Ma Y, Suo X, Li X, Zhu T, Li J, Ji T, Liu B. Polycyclic polyprenylated acylphloroglucinols from Hypericum beanii and their hepatoprotective activity. PHYTOCHEMISTRY 2022; 203:113413. [PMID: 36044959 DOI: 10.1016/j.phytochem.2022.113413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/20/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Twenty-seven polycyclic polyprenylated acylphloroglucinols (PPAPs) with diverse skeletons, including seven previously undescribed ones (hyperbeanins A-G), were isolated from the aerial parts of Hypericum beanii. Their structures were established by comprehensive analysis of NMR, HRESIMS, and experimental electronic circular dichroism (ECD) spectra. Hyperbeanin A was a monocyclic polyprenylated acylphloroglucinols (MPAPs) with an unusual spiro-fused cyclopropane ring. Four of the isolated compounds showed obvious hepatoprotective activity against paracetamol-induced HepG2 cell damage at 10 μM. The present results suggested that these compounds would be potential hepatoprotective agents. In addition, the plausible biogenetic pathways of hyperbeanins A-G were proposed, which gave an insight for future biomimetic synthesis of them.
Collapse
Affiliation(s)
- Yonghui Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China; The Key Laboratory of Plant Stress Biology in Arid Land, College of Life Sciences, Xinjiang Normal University, Ürümqi, Xinjiang, 830054, People's Republic of China
| | - Xinyue Suo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Xiaoxiu Li
- School of Pharmacy, Shenyang Medical College, Shenyang, Liaoning, 110034, People's Republic of China
| | - Tingting Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Jin Li
- The Key Laboratory of Plant Stress Biology in Arid Land, College of Life Sciences, Xinjiang Normal University, Ürümqi, Xinjiang, 830054, People's Republic of China.
| | - Tengfei Ji
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China; Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, People's Republic of China.
| | - Bo Liu
- School of Pharmacy, Shenyang Medical College, Shenyang, Liaoning, 110034, People's Republic of China.
| |
Collapse
|
4
|
Caldeira GI, Gouveia LP, Serrano R, Silva OD. Hypericum Genus as a Natural Source for Biologically Active Compounds. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11192509. [PMID: 36235373 PMCID: PMC9573133 DOI: 10.3390/plants11192509] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 06/08/2023]
Abstract
Hypericum L. genus plants are distributed worldwide, with numerous species identified throughout all continents, except Antarctica. These plant species are currently used in various systems of traditional medicine to treat mild depression, wounds and burns, diarrhea, pain, fevers, and their secondary metabolites previously shown, and the in vitro and/or in vivo cytotoxic, antimicrobial, anti-inflammatory, antioxidant, antihyperglycemic, and hepatoprotective activities, as well as the acetylcholinesterase and monoamine oxidase inhibitory activities. We conducted a systematic bibliographic search according to the Cochrane Collaboration guidelines to answer the question: "What is known about plants of Hypericum genus as a source of natural products with potential clinical biological activity?" We documented 414 different natural products with confirmed in vitro/in vivo biological activities, and 58 different Hypericum plant species as sources for these natural products. Phloroglucinols, acylphloroglucinols, xanthones, and benzophenones were the main chemical classes identified. The selective cytotoxicity against tumor cells, cell protection, anti-inflammatory, antimicrobial, antidepressant, anti-Alzheimer's, and adipogenesis-inhibition biological activities are described. Acylphloroglucinols were the most frequent compounds with anticancer and cell-protection mechanisms. To date, no work has been published with a full descriptive list directly relating secondary metabolites to their species of origin, plant parts used, extraction methodologies, mechanisms of action, and biological activities.
Collapse
|
5
|
Li YW, Lu WJ, Zhou X, Zhang C, Li XY, Tang PF, Kong LY, Xu WJ. Diverse polycyclic polyprenylated acylphloroglucinols with anti-neuroinflammatory activity from Hypericum beanii. Bioorg Chem 2022; 127:106005. [PMID: 35863133 DOI: 10.1016/j.bioorg.2022.106005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 06/11/2022] [Accepted: 07/02/2022] [Indexed: 11/02/2022]
Abstract
A phytochemical investigation on the roots of Hypericum beanii resulted in the isolation of six new polycyclic polyprenylated acylphloroglucinols (PPAPs), hyperberlones A-F, along with fourteen known analogues. The structural characterization of these compounds was carried out by analyzing the HRESIMS data, 1D and 2D NMR spectroscopic data, electronic circular dichroism (ECD) calculations, and gauge-independent atomic orbital (GIAO) NMR calculations. Hyperberlone A (1) was a caged PPAP with a rare tricyclo[4.3.1.03,8]decane carbon skeleton. It was deduced to be biosynthetically generated from hyperbeanol C (8) through key Paternò-Büchi reaction, radical cascade cyclizations, and retro-aldol reaction. Compounds 4, 6, 7, 9, 14, and 16 exhibited significant nitric oxide (NO) production inhibitory effects in lipopolysaccharide (LPS)-induced BV-2 microglial cells with IC50 values of 6.11-25.28 μM. Moreover, compound 4 significantly decreased the expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in LPS-induced BV-2 microglia, as well as the phosphorylation of JNK.
Collapse
Affiliation(s)
- Ya-Wei Li
- Jiangsu Key Laboratory of Bioactive Natural product Research and Skate Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Wei-Jia Lu
- Jiangsu Key Laboratory of Bioactive Natural product Research and Skate Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Xin Zhou
- Jiangsu Key Laboratory of Bioactive Natural product Research and Skate Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Chao Zhang
- Jiangsu Key Laboratory of Bioactive Natural product Research and Skate Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Xue-Yan Li
- Jiangsu Key Laboratory of Bioactive Natural product Research and Skate Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Peng-Fei Tang
- Jiangsu Key Laboratory of Bioactive Natural product Research and Skate Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural product Research and Skate Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| | - Wen-Jun Xu
- Jiangsu Key Laboratory of Bioactive Natural product Research and Skate Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| |
Collapse
|
6
|
Zhang YX, Ao Z, He YW, Lu JY, Chen XL, Kong LY, Luo JG. Hyperpatulones C-G, new spirocyclic polycyclic polyprenylated acylphloroglucinols from the leaves of Hypericum patulum. Fitoterapia 2021; 155:105063. [PMID: 34655700 DOI: 10.1016/j.fitote.2021.105063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 11/25/2022]
Abstract
Five new spirocyclic polycyclic polyprenylated acylphloroglucinols, Hyperpatulones C-G (1-5), were obtained from the leaves of Hypericum patulum. Their structures were characterized by the comprehensive analysis of their IR, NMR, CD spectra and HRESIMS data. All the new compounds were evaluated for the α-glycosidase inhibitory activities. Among them, compounds 3-5 showed α-glucosidase inhibitory activities, with IC50 values of 14.06-37.69 μM.
Collapse
Affiliation(s)
- Yu-Xin Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Zhen Ao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Yi-Wen He
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Jin-Yu Lu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Xin-Lin Chen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Ling-Yi Kong
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China.
| | - Jian-Guang Luo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China.
| |
Collapse
|
7
|
Duan JY, Chen W, Zhao YQ, He LL, Li EC, Bai ZH, Wang YJ, Zhang CP. Flavonoids from Hypericum patulum enhance glucose consumption and attenuate lipid accumulation in HepG2 cells. J Food Biochem 2021; 45:e13898. [PMID: 34378802 DOI: 10.1111/jfbc.13898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/05/2021] [Accepted: 08/01/2021] [Indexed: 12/16/2022]
Abstract
Hypericum patulum has been used as a folk medicine for its varied therapeutic effects including antifungal, wound-healing, spasmolytic, stimulant, hypotensive activities. The water decoction is drank as tea could treat cold, infantile malnutrition. The present study aims to isolate the constituents of the plant and investigate their effects on the glucose consumption in insulin-resistant HepG2 cells, furthermore, lipid metabolism in oleic acid (OA)-treated HepG2 cells was also studied. The phytochemical investigation of the plant led to the isolation of eleven compounds, and their structures were identified by spectroscopic analysis as n-dotriacontanol (1), shikimic acid (2), 1-O-caffeoylquinic acid methyl ester (3), 5-O-caffeoylquinic acid methyl ester (4), 5-O-coumaroylquinic acid methyl ester (5), 5-O-caffeoylquinic acid butyl ester (6), quercetin-3-O-α-L-rhamnoside (7), quercetin (8), quercetin-3-O-(4״-methoxy)-α-L-rahmnopyranosyl (9), hyperoside (10), and rutin (11). The results revealed that compounds 7, 9, and 10 could enhance glucose consumption significantly in hyperglycemia induced HepG2 cells and insulin-resistant HepG2 cells. In addition, the western blotting analysis result exhibited that compounds 7, 9, and 10 in high concentration (5 μM, H) group could dramatically upregulate the expression of PPARγ protein, and even the effect of them had no significant difference compared with that of rosiglitazone. Furthermore, compounds 9 and 10 in middle concentration (2.5 μM, M) group and H group could dramatically promote triglyceride metabolism and decrease TG content in OA-treated HepG2 cells, and even in H group, reactive oxygen species (ROS) level were significantly decreased compared with model group. PRACTICAL APPLICATIONS: Hypericum patulum is a well-known plant of the genera Hypericum for its varied preventive and therapeutic potential activities. To study the chemical constituents and their effects on glucose and lipid metabolism in vitro, we detected glucose consumption in insulin-resistant HepG2 cells, triglyceride content and reactive oxygen species level in OA-treated HepG2 cells. In addition, PPARγ protein was also detected by western blotting analysis in the study. Compounds 1, 2, 3, 5, 6, 9, 10, and 11 were isolated from the plant for the first time. Quercetin-3-O-(4"-methoxy)-α-L-rahmnopyranosyl (9) and hyperoside (10) had potential therapeutic benefit against glucose and lipid metabolic disease. Therefore, this study might have certain guiding significance for further research and development of H. patulum.
Collapse
Affiliation(s)
- Jing-Yu Duan
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Wei Chen
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yang-Qi Zhao
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Liang-Liang He
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - En-Chao Li
- Jining First People's Hospital, Jining, China
| | - Zhong-Hui Bai
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yong-Jian Wang
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Chun-Ping Zhang
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
8
|
Zong Y, Xu Z, Zhu R, Su A, Liu X, Zhu M, Han J, Zhang J, Xu Y, Lou H. Enantioselective Total Syntheses of Manginoids A and C and Guignardones A and C. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yan Zong
- Department of Natural Products Chemistry Key Lab of Chemical Biology School of Pharmaceutical Sciences Shandong University Jinan 250012 China
| | - Ze‐Jun Xu
- Department of Natural Products Chemistry Key Lab of Chemical Biology School of Pharmaceutical Sciences Shandong University Jinan 250012 China
| | - Rong‐Xiu Zhu
- Department of Natural Products Chemistry Key Lab of Chemical Biology School of Pharmaceutical Sciences Shandong University Jinan 250012 China
- School of Chemistry and Chemical Engineering Shandong University Jinan 250100 China
| | - Ai‐Hong Su
- Department of Natural Products Chemistry Key Lab of Chemical Biology School of Pharmaceutical Sciences Shandong University Jinan 250012 China
| | - Xu‐Yuan Liu
- Department of Natural Products Chemistry Key Lab of Chemical Biology School of Pharmaceutical Sciences Shandong University Jinan 250012 China
| | - Ming‐Zhu Zhu
- Department of Natural Products Chemistry Key Lab of Chemical Biology School of Pharmaceutical Sciences Shandong University Jinan 250012 China
| | - Jing‐Jing Han
- Department of Natural Products Chemistry Key Lab of Chemical Biology School of Pharmaceutical Sciences Shandong University Jinan 250012 China
| | - Jiao‐Zhen Zhang
- Department of Natural Products Chemistry Key Lab of Chemical Biology School of Pharmaceutical Sciences Shandong University Jinan 250012 China
| | - Yu‐Liang Xu
- Department of Natural Products Chemistry Key Lab of Chemical Biology School of Pharmaceutical Sciences Shandong University Jinan 250012 China
| | - Hong‐Xiang Lou
- Department of Natural Products Chemistry Key Lab of Chemical Biology School of Pharmaceutical Sciences Shandong University Jinan 250012 China
| |
Collapse
|
9
|
Zong Y, Xu ZJ, Zhu RX, Su AH, Liu XY, Zhu MZ, Han JJ, Zhang JZ, Xu YL, Lou HX. Enantioselective Total Syntheses of Manginoids A and C and Guignardones A and C. Angew Chem Int Ed Engl 2021; 60:15286-15290. [PMID: 33876516 DOI: 10.1002/anie.202104182] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/19/2021] [Indexed: 12/23/2022]
Abstract
An enantioselective synthetic approach for preparing manginoids and guignardones, two types of biogenetically related meroterpenoids, is reported. This bioinspired and divergent synthesis employs an oxidative 1,3-dicarbonyl radical-initiated cyclization and cyclodehydration of the common precursor to forge the central ring of the manginoids and guignardones, respectively, at a late stage. Key synthetic steps include silica-gel-promoted semipinacol rearrangement to form the 6-oxabicyclo[3.2.1]octane skeleton and the Suzuki-Miyaura reaction of vinyl bromide to achieve fragment coupling. This synthesis protocol enables the asymmetric syntheses of four fungal meroterpenoids from commercially available materials.
Collapse
Affiliation(s)
- Yan Zong
- Department of Natural Products Chemistry, Key Lab of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Ze-Jun Xu
- Department of Natural Products Chemistry, Key Lab of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Rong-Xiu Zhu
- Department of Natural Products Chemistry, Key Lab of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China.,School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Ai-Hong Su
- Department of Natural Products Chemistry, Key Lab of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Xu-Yuan Liu
- Department of Natural Products Chemistry, Key Lab of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Ming-Zhu Zhu
- Department of Natural Products Chemistry, Key Lab of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Jing-Jing Han
- Department of Natural Products Chemistry, Key Lab of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Jiao-Zhen Zhang
- Department of Natural Products Chemistry, Key Lab of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Yu-Liang Xu
- Department of Natural Products Chemistry, Key Lab of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Hong-Xiang Lou
- Department of Natural Products Chemistry, Key Lab of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| |
Collapse
|
10
|
Duan Y, Xie S, Bu P, Guo Y, Shi Z, Guo Y, Cao Y, Sun W, Qi C, Zhang Y. Hypaluton A, an Immunosuppressive 3,4-nor-Polycyclic Polyprenylated Acylphloroglucinol from Hypericum patulum. J Org Chem 2021; 86:6478-6485. [DOI: 10.1021/acs.joc.1c00319] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yulin Duan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shuangshuang Xie
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Pengfei Bu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yi Guo
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhengyi Shi
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yun Guo
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yunfang Cao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Weiguang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Changxing Qi
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
11
|
Zeng YR, Li YN, Zhang ZZ, Hu ZX, Gu W, Huang LJ, Li YM, Yuan CM, Hao XJ. Hypermoins A-D: Rearranged Nor-Polyprenylated Acylphloroglucinols from the Flowers of Hypericum monogynum. J Org Chem 2021; 86:7021-7027. [PMID: 33881865 DOI: 10.1021/acs.joc.0c02880] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hypermonins A-D (1-4), four rearranged nor-polycyclic polyprenylated acylphloroglucinols (PPAPs) with unprecedented skeletons, together with two new biosynthesis related PPAPs (5 and 6) were isolated and identified from the flowers of Hypericum monogynum. Hypermoins A-D represented the first examples of highly modified norPPAPs characterized by a rare 7/6/6/5-tetracyclic system. From the biogenic synthesis pathway analysis, all isolates shared the same biosynthetic intermediate, and the addition of two methyls or one methyl to this intermediate through methyltranferase could generate different types of PPAPs (1-7). Their planner structures as well as absolute configuration were confirmed via spectroscopic analysis, ECD calculation, and X-ray crystallography. All isolates potentially reversed multidrug resistance (MDR) activity in both two cancer cells, HepG2/ADR and MCF-7/ADR. Specifically, hypermoin E (5) and hyperielliptone HA (7) were found to be the best MDR modulators with the reversal fold ranging from 41 to 236, which is higher than the positive control verapamil.
Collapse
Affiliation(s)
- Yan-Rong Zeng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Ya-Nan Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Zi-Zhen Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Zhan-Xing Hu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Wei Gu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Lie-Jun Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Yan-Mei Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Chun-Mao Yuan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Xiao-Jiang Hao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China.,State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, China
| |
Collapse
|
12
|
Zhou X, Xu W, Li Y, Zhang M, Tang P, Lu W, Li Q, Zhang H, Luo J, Kong L. Anti-Inflammatory, Antioxidant, and Anti-Nonalcoholic Steatohepatitis Acylphloroglucinol Meroterpenoids from Hypericum bellum Flowers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:646-654. [PMID: 33426876 DOI: 10.1021/acs.jafc.0c05417] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this work, 26 methylated acylphloroglucinol meroterpenoids with diverse skeletons, including 18 new ones (bellumones A-R, 1-18), were identified from the flowers of Hypericum bellum. Their structures including absolute configurations were elucidated by detailed spectroscopic data, calculated electronic circular dichroism (ECD), and X-ray diffraction (XRD). Through methylation at C-5, prenylation with different chain lengths of the acylphloroglucinol-derived core, along with different types of secondary cyclization, type A bicyclic polyprenylated acylphloroglucinols (BPAPs) (1-5 and 19-24) and dearomatized isoprenylated acylphloroglucinols (DIAPs) (6-18 and 25-26) were obtained. The significant results of anti-inflammatory, antioxidant, and anti-nonalcoholic steatohepatitis (anti-NASH) activities suggest its usefulness in daily health care.
Collapse
Affiliation(s)
- Xin Zhou
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Wenjun Xu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yiran Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Meihui Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Pengfei Tang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Weijia Lu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Qiji Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Hao Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jun Luo
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
13
|
Zhang R, Ji Y, Zhang X, Kennelly EJ, Long C. Ethnopharmacology of Hypericum species in China: A comprehensive review on ethnobotany, phytochemistry and pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2020; 254:112686. [PMID: 32101776 DOI: 10.1016/j.jep.2020.112686] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hypericum species have been used traditionally as astringent, antipyretic, diuretic, antiphlogistic, analgesic, and antidepressant in Europe, America, Africa, and Asia. One of the most extensively investigated medicinal herbs, H. perforatum L. (St. John's wort), is widely used in many countries to treat mild to moderate mental depression. Hypericum species are abundant throughout China, including 30 used as ethnomedicines. There are limited publications describing the ethnobotanical uses and biological activities associated with Hypericum species in China. Some reported activities include the treatment of wounds and bruises, irregular menstruation, dysentery, hepatitis, mastitis, jaundice, hemoptysis, and epistaxis. AIM OF THE REVIEW This review aims to critically examine how Hypericum species are used ethnomedicinally in China, to see if the ethnobotanical data may be useful to help prioritize Hypericum species and certain phytochemical constituents that may be new drug leads, and consider the focus and lack of the phytopharmacological study on Hypericum species in China. MATERIALS AND METHODS Classic medicinal books and ethnomedicinal publications were reviewed for the genus Hypericum (called jin si tao in Chinese). In addition, relevant information about ethnobotany, phytochemistry, and pharmacology were from online databases including SciFinder, Science Direct, PubMed, Google Scholar, and China National Knowledge Infrastructure (CNKI). "Hypericum", "", "ethnobotany", "traditional use", "ethnomedicine", "phytochemistry", "pharmacology" and "bioactivity" were used as keywords when searching the databases. Thus, available articles from 1959 to 2019 were collected and analyzed. RESULTS Among 64 Hypericum species recorded in China, 30 have been used as ethnomedicines by 15 linguistic groups such as Dai, Dong, Han, Miao, and Mongolian people. Hypericum species in China possess traditional uses which are also mirrored in Europe, America, Africa, and other countries in Asia. However, there are some unique ethnomedicinal uses in China. For example, several Hypericum species are used as a local remedy in southwest China, and H. attenuatum Fisch. ex Choisy is used to treat cardiac disorders in northeast China. Antitumor, anti-inflammatory, antimicrobial, neuroprotective, antidepressant, hepatoprotective, cardioprotective, and antiviral activities have been reported in numerous biological studies. The main phytochemical constituents in Hypericum consist of phloroglucinols, naphthodianthrones, xanthones, flavonoids, and terpenoids. CONCLUSIONS There is a rich traditional knowledge regarding the ethnomedicinal uses of Hypericum species in China. Through phytochemical and pharmacological studies, several medicinal Hypericum from China have yielded many bioactive phytochemicals, possessing antitumor, anti-inflammatory, antimicrobial, and neuroprotective properties. Hypericum species from China are potential sources of drugs to fight cancer and other chronic diseases. Remarkably, nearly half of Hypericum species in China have rarely been studied, and their ethnomedicinal potential have not been scientifically evaluated. Thus, in vitro mechanistic studies, in vivo pharmacology, and clinical efficacy are all needed, prioritizing those studies that relate most closely with their traditional uses. In addition, a comprehensive plant-resource evaluation, quality control, and toxicology studies are needed.
Collapse
Affiliation(s)
- Ruifei Zhang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China.
| | - Yuanyuan Ji
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China.
| | - Xinbo Zhang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China.
| | - Edward J Kennelly
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China; Department of Biological Sciences, Lehman College, City University of New York, Bronx, NY, 10468, USA; The Graduate Center, City University of New York, 365 Fifth Ave., New York, 10016, USA.
| | - Chunlin Long
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China.
| |
Collapse
|
14
|
Ao Z, Liu YY, Lin YL, Chen XL, Chen K, Kong LY, Luo JG. Hyperpatulones A and B, two new peroxide polyprenylated acylphloroglucinols from the leaves of Hypericum patulum. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2019.151385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
15
|
Xiao CY, Mu Q, Gibbons S. The Phytochemistry and Pharmacology of Hypericum. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 112 2020; 112:85-182. [DOI: 10.1007/978-3-030-52966-6_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|