1
|
Navarro-Simarro P, Gómez-Gómez L, Ahrazem O, Rubio-Moraga Á. Food and human health applications of edible mushroom by-products. N Biotechnol 2024; 81:43-56. [PMID: 38521182 DOI: 10.1016/j.nbt.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Mushroom waste can account for up to 50% of the total mushroom mass. Spent mushroom substrate, misshapen mushrooms, and mushroom stems are examples of mushroom byproducts. In ancient cultures, fungi were prized for their medicinal properties. Aqueous extracts containing high levels of β-glucans as functional components capable of providing prebiotic polysaccharides and improved texture to foods have been widely used and new methods have been tested to improve extraction yields. Similarly, the addition of insoluble polysaccharides controls the glycemic index, counteracting the effects of increasingly high-calorie diets. Numerous studies support these benefits in vitro, but evidence in vivo is scarce. Nonetheless, many authors have created a variety of functional foods, ranging from yogurt to noodles. In this review, we focus on the pharmacological properties of edible mushroom by-products, and the possible risks derived from its consumption. By incorporating these by-products into human or animal feed formulations, mushroom producers will be able to fully optimize crop use and pave the way for the industry to move toward a zero-waste paradigm.
Collapse
Affiliation(s)
- Pablo Navarro-Simarro
- Instituto Botánico. Universidad de Castilla-La Mancha, Campus Universitario s/n, Albacete 02071, Spain
| | - Lourdes Gómez-Gómez
- Instituto Botánico. Universidad de Castilla-La Mancha, Campus Universitario s/n, Albacete 02071, Spain; Facultad de Farmacia. Departamento de Ciencia y Tecnología Agroforestal y Genética. Universidad de Castilla-La Mancha, Campus Universitario s/n, Albacete 02071, Spain
| | - Oussama Ahrazem
- Instituto Botánico. Universidad de Castilla-La Mancha, Campus Universitario s/n, Albacete 02071, Spain; Escuela Técnica Superior de Ingeniería Agronómica y de Montes y Biotecnología. Departamento de Ciencia y Tecnología Agroforestal y Genética. Universidad de Castilla-La Mancha, Spain.
| | - Ángela Rubio-Moraga
- Instituto Botánico. Universidad de Castilla-La Mancha, Campus Universitario s/n, Albacete 02071, Spain; Escuela Técnica Superior de Ingeniería Agronómica y de Montes y Biotecnología. Departamento de Ciencia y Tecnología Agroforestal y Genética. Universidad de Castilla-La Mancha, Spain.
| |
Collapse
|
2
|
Dembitsky VM. Naturally Occurring Norsteroids and Their Design and Pharmaceutical Application. Biomedicines 2024; 12:1021. [PMID: 38790983 PMCID: PMC11117879 DOI: 10.3390/biomedicines12051021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
The main focus of this review is to introduce readers to the fascinating class of lipid molecules known as norsteroids, exploring their distribution across various biotopes and their biological activities. The review provides an in-depth analysis of various modified steroids, including A, B, C, and D-norsteroids, each characterized by distinct structural alterations. These modifications, which range from the removal of specific methyl groups to changes in the steroid core, result in unique molecular architectures that significantly impact their biological activity and therapeutic potential. The discussion on A, B, C, and D-norsteroids sheds light on their unique configurations and how these structural modifications influence their pharmacological properties. The review also presents examples from natural sources that produce a diverse array of steroids with distinct structures, including the aforementioned A, B, C, and D-nor variants. These compounds are sourced from marine organisms like sponges, soft corals, and starfish, as well as terrestrial entities such as plants, fungi, and bacteria. The exploration of these steroids encompasses their biosynthesis, ecological significance, and potential medical applications, highlighting a crucial area of interest in pharmacology and natural product chemistry. The review emphasizes the importance of researching these steroids for drug development, particularly in addressing diseases where conventional medications are inadequate or for conditions lacking sufficient therapeutic options. Examples of norsteroid synthesis are provided to illustrate the practical applications of this research.
Collapse
Affiliation(s)
- Valery M Dembitsky
- Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada
| |
Collapse
|
3
|
Deng M, Xiao Y, Wang S, Zhang M, Qiao Y, Huang S, Xie J, Zhou X. Penicimides A and B, two novel diels-alder [4 + 2] cycloaddition ergosteroids from Penicillium herquei. Bioorg Chem 2024; 143:107025. [PMID: 38103332 DOI: 10.1016/j.bioorg.2023.107025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/02/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023]
Abstract
Two novel naturally occurring [4 + 2] Diels-Alder cycloaddition ergosteroids (1 and 2), three undescribed oxidized ergosteroids (3-5), and eleven known analogs (6-16) were isolated from Penicillium herquei. Compounds 1 and 2 represent the first reported cycloadducts of a steroid with 1,4,6-trimethyl-1,6-dihydropyridine-2,5-dione or 4,6-dimethyl-1,6-dihydropyridine-2,5-dione to date. Compound 3 is the C-15 epimer of (22E,24R)-9α,11β-dihydroxyergosta-4,6,8(14),22-tetraen-3-one (14). The chemical structures of these compounds were elucidated through widespread spectroscopic analyses, mainly including HRESIMS and 1D and 2D NMR data, calculated 13C NMR-DP4+ analysis, and electronic circular dichroism (ECD) data analyses. Biological evaluations of Compounds 1-16 revealed that 3, 9-11, and 15 inhibited the production of NO in LPS-induced RAW264.7 cells with an IC50 value from 7.37 ± 0.69 to 38.9 ± 2.25 μM (the positive control dexamethasone IC50: 9.54 ± 0.71 μM). In addition, Compound 3 exhibited a potent inhibitory effect on the secretion of the proinflammatory cytokines TNF-α and IL-6, the transcription level of the proinflammatory macrophage markers TNF-α, and the expression of the iNOS protein.
Collapse
Affiliation(s)
- Mengyi Deng
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China; Southwest Jiaotong University, Affiliated Hospital, The Third People's Hospital of Chengdu, Chengdu 610000, Sichuan, PR China
| | - Yan Xiao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China
| | - Shu Wang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China
| | - Min Zhang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China
| | - Yuben Qiao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, Hubei, PR China
| | - Shuai Huang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China
| | - Jiang Xie
- Southwest Jiaotong University, Affiliated Hospital, The Third People's Hospital of Chengdu, Chengdu 610000, Sichuan, PR China
| | - Xianli Zhou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China; Southwest Jiaotong University, Affiliated Hospital, The Third People's Hospital of Chengdu, Chengdu 610000, Sichuan, PR China.
| |
Collapse
|
4
|
Zheng M, Xiao Y, Li Q, Lai Y, Dai B, Zhang M, Kang X, Tong Q, Wang J, Chen C, Zhu H, Zhang Y. Cytotoxic Ergosteroids from a Strain of the Fungus Talaromyces adpressus. JOURNAL OF NATURAL PRODUCTS 2023; 86:2081-2090. [PMID: 37676247 DOI: 10.1021/acs.jnatprod.3c00089] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Nine new ergosteroids (1-9) and seven known ones (10-16) were isolated from Talaromyces adpressus. Their structures and absolute configurations were determined by the interpretation of NMR spectroscopic data, HRESIMS, ECD calculations, and single-crystal X-ray diffraction analyses. Structurally, compound 1 was an ergosteroid with two epoxy and a 3α-OH group at ring A, while compounds 8 and 9 had a contracted ring A with a peroxy bridge between C-3 and C-9, which were reported for the first time. Compounds 2-6, 9, 11, and 15 displayed cytotoxic activities with IC50 values ranging from 0.4 to 32 μM, and compound 7 exhibited an immunosuppressive effect against LPS-induced B lymphocyte proliferation with an IC50 value of 8.6 μM. The structure-activity relationships of these compounds are briefly discussed.
Collapse
Affiliation(s)
- Meijia Zheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Yang Xiao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Qin Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Yixin Lai
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Bingbing Dai
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Mi Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Xin Kang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Qingyi Tong
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Jianping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Chunmei Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Hucheng Zhu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| |
Collapse
|
5
|
Dembitsky VM. Bioactive Steroids Bearing Oxirane Ring. Biomedicines 2023; 11:2237. [PMID: 37626733 PMCID: PMC10452232 DOI: 10.3390/biomedicines11082237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 07/24/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
This review explores the biological activity and structural diversity of steroids and related isoprenoid lipids, with a particular focus on compounds containing an oxirane ring. These natural compounds are derived from fungi, fungal endophytes, as well as extracts of plants, algae, and marine invertebrates. To evaluate their biological activity, an extensive examination of refereed literature sources was conducted, including in vivo and in vitro studies and the utilization of the QSAR method. Notable properties observed among these compounds include strong anti-inflammatory, antineoplastic, antiproliferative, anti-hypercholesterolemic, antiparkinsonian, diuretic, anti-eczematic, anti-psoriatic, and various other activities. Throughout this review, 3D graphs illustrating the activity of individual steroids are presented, accompanied by images of selected terrestrial or marine organisms. Furthermore, this review provides explanations for specific types of biological activity associated with these compounds. The data presented in this review are of scientific interest to the academic community and carry practical implications in the fields of pharmacology and medicine. By analyzing the biological activity and structural diversity of steroids and related isoprenoid lipids, this review offers valuable insights that contribute to both theoretical understanding and applied research. This review draws upon data from various authors to compile information on the biological activity of natural steroids containing an oxirane ring.
Collapse
Affiliation(s)
- Valery M Dembitsky
- Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada
| |
Collapse
|
6
|
Alekseychuk M, Heretsch P. Biogenetic space-guided synthesis of rearranged terpenoids. Chem Commun (Camb) 2023. [PMID: 37162324 DOI: 10.1039/d3cc01009k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Natural product chemistry is constantly challenged by newly discovered, complex molecules. Elements of complexity arise from unprecedented frameworks, with a large amount of densely packed stereogenic centres and different functional groups along with a generally high oxidation state. As a prime example, rearranged triterpenoids possess all these elements. For their total synthesis, a limit of what is considered sensible in terms of steps and yield is frequently reached. As an alternative, semisynthetic approaches have gained a great amount of attention in recent years. In this featured article, we present our and others' contributions towards the development of efficient and economic syntheses of complex terpenoid natural products and elaborate on the underlying rationale of biogenetic space-guided synthetic analysis.
Collapse
Affiliation(s)
- Mykhaylo Alekseychuk
- Institute of Organic Chemistry, Leibniz Universität Hannover, Schneiderberg 1B, 30167 Hannover, Germany.
| | - Philipp Heretsch
- Institute of Organic Chemistry, Leibniz Universität Hannover, Schneiderberg 1B, 30167 Hannover, Germany.
| |
Collapse
|
7
|
Deng M, Pu Y, Wan Z, Xu J, Huang S, Xie J, Zhou X. Nine undescribed oxidized ergosterols from the endophytic fungus Penicillium herquei and their cytotoxic activity. PHYTOCHEMISTRY 2023; 212:113716. [PMID: 37156435 DOI: 10.1016/j.phytochem.2023.113716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
A chemical investigation of the EtOAc extract of the endophytic fungus Penicillium herquei led to the isolation of nine undescribed oxidized ergosterols, penicisterols A-I (1-9), along with ten known analogs (10-19). Their structures and absolute configurations were elucidated by a combination of spectroscopic data analysis, quantum-chemical electronic circular dichroism (ECD) calculations and comparisons, [Rh2(OCOCF3)4]-induced ECD experiments, DFT-calculated 13C chemical shifts and DP4+ probability analysis. Compound 1 was a rare example of ergosterol in which the bond between C-8 and C-9 is cleaved to form an enol ether. Moreover, compound 2 possessed a rare (2,5-dioxo-4-imidazolidinyl)-carbamic acid ester group substituted at C-3. All undescribed oxidized ergosterols (1-9) were evaluated for their cytotoxic activity against five cancer cell lines including 4T1 (mouse breast carcinoma), A549 (human pulmonary carcinoma), HCT-116 (human colorectal carcinoma), HeLa (human cervical carcinoma) and Hepg2 (human hepatoma carcinoma) cells. Compounds 2 and 3 displayed moderate cytotoxic activity against 4T1, A549 and HeLa cells, with IC50 values ranging from 17.22 to 31.35 μM.
Collapse
Affiliation(s)
- Mengyi Deng
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China; Southwest Jiaotong University, Affiliated Hospital, The Third People's Hospital of Chengdu, Chengdu, 610000, Sichuan, PR China
| | - Yangli Pu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China
| | - Zhenling Wan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China
| | - Jinbo Xu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China
| | - Shuai Huang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China
| | - Jiang Xie
- Southwest Jiaotong University, Affiliated Hospital, The Third People's Hospital of Chengdu, Chengdu, 610000, Sichuan, PR China
| | - Xianli Zhou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China; Southwest Jiaotong University, Affiliated Hospital, The Third People's Hospital of Chengdu, Chengdu, 610000, Sichuan, PR China.
| |
Collapse
|
8
|
Kikuchi T, Anami D, Morikawa S, Nakagawa Y, Yamada T, Li W, Hirano T. Secoergostane- and ergostane-type steroids from Pleurotus cornucopiae var. citrinopileatus. PHYTOCHEMISTRY 2023; 206:113552. [PMID: 36481313 DOI: 10.1016/j.phytochem.2022.113552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
In this study, we described the isolation of an 8,14-secoergostane-type, a 9,11-secoergostane-type, and three ergostane-type steroids from the fruiting bodies of Pleurotus cornucopiae var. citrinopileatus. The structure of (22Z)-3β,5α,11-trihydroxy-9,11-secoergosta-7,22-diene-6,9-dione, previously reported, have been revised to (22E). Their structures were established using NMR, UV, IR, and mass spectroscopic analyses. Three of the isolated compounds were found to exhibit inhibitory activity on the production of nitric oxide in lipopolysaccharide-stimulated RAW264.7 macrophages with IC50 values of 21.3, 17.6, and 23.1 μM, respectively.
Collapse
Affiliation(s)
- Takashi Kikuchi
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan; Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba, 274-8510, Japan.
| | - Daichi Anami
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Shota Morikawa
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Yuki Nakagawa
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Takeshi Yamada
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan; Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Wei Li
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba, 274-8510, Japan
| | - Tomoya Hirano
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan; Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| |
Collapse
|
9
|
Zhabinskii VN, Drasar P, Khripach VA. Structure and Biological Activity of Ergostane-Type Steroids from Fungi. Molecules 2022; 27:2103. [PMID: 35408501 PMCID: PMC9000798 DOI: 10.3390/molecules27072103] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 12/24/2022] Open
Abstract
Mushrooms are known not only for their taste but also for beneficial effects on health attributed to plethora of constituents. All mushrooms belong to the kingdom of fungi, which also includes yeasts and molds. Each year, hundreds of new metabolites of the main fungal sterol, ergosterol, are isolated from fungal sources. As a rule, further testing is carried out for their biological effects, and many of the isolated compounds exhibit one or another activity. This study aims to review recent literature (mainly over the past 10 years, selected older works are discussed for consistency purposes) on the structures and bioactivities of fungal metabolites of ergosterol. The review is not exhaustive in its coverage of structures found in fungi. Rather, it focuses solely on discussing compounds that have shown some biological activity with potential pharmacological utility.
Collapse
Affiliation(s)
- Vladimir N. Zhabinskii
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Str., 5/2, 220141 Minsk, Belarus;
| | - Pavel Drasar
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Technicka 5, CZ-166 28 Prague, Czech Republic;
| | - Vladimir A. Khripach
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Str., 5/2, 220141 Minsk, Belarus;
| |
Collapse
|
10
|
Zhang M, Deng Y, Liu F, Zheng M, Liang Y, Sun W, Li Q, Li XN, Qi C, Liu J, Chen C, Zhu H, Zhang Y. Five undescribed steroids from Talaromyces stipitatus and their cytotoxic activities against hepatoma cell lines. PHYTOCHEMISTRY 2021; 189:112816. [PMID: 34087503 DOI: 10.1016/j.phytochem.2021.112816] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 05/09/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
Five undescribed sterol derivatives, (22E,24R)-7α-methoxy-5α,6α-epoxyergosta-8(14),22-diene-3β,15β-diol, (22E,24R)-5α,6α-epoxyergosta-8(14),22-diene-3β,7β,15α-triol, (22E,24R)-3β,5α-dihydroxy-14β,15β-epoxyergosta-7,22-diene-6-one, (22E,24R)-6α-methoxy-7α,15β-dihydroxyergosta-4,8(14),22-triene-3-one, and (25S)-ergosta-7,24(28)-diene-3β,4α,6α,26-tetraol were isolated from the extract of Talaromyces stipitatus, along with eight known congeners. This is the first example of a class of ergosterols isolated from T. stipitatus. Their structures with absolute configurations were elucidated based on NMR spectroscopic data, ECD calculations, and X-ray crystallographic analyses. All these compounds were tested for their effects on three hepatoma cell lines including Hep3B, HepG2, and Huh-7. Moreover, (22E,24R)-5α,6α-epoxyergosta-8(14),22-diene-3β,7β,15α-triol and (22E,24R)-9α,15α-dihydroxyergosta-4,6,8(14),22-tetraen-3-one were further evaluated for their impacts on cell cycle progression and apoptosis due to their pronounced cytotoxicity, to uncover their underlying mechanisms. Our results suggested that their antiproliferative activities were mainly mediated by inducing cell apoptosis.
Collapse
Affiliation(s)
- Mi Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Yanfang Deng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Fei Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Meijia Zheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Yu Liang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Weiguang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Qin Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Xiao-Nian Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, People's Republic of China
| | - Changxing Qi
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Junjun Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Chunmei Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Hucheng Zhu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
11
|
Zhang J, Chen B, Liang J, Han J, Zhou L, Zhao R, Liu H, Dai H. Lanostane Triterpenoids with PTP1B Inhibitory and Glucose-Uptake Stimulatory Activities from Mushroom Fomitopsis pinicola Collected in North America. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:10036-10049. [PMID: 32840371 DOI: 10.1021/acs.jafc.0c04460] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A chemical investigation on the fruiting bodies of Fomitopsis pinicola led to the isolation and identification of 28 lanostane triterpenoids including 11 new compounds (1-11) and 17 known analogues (12-28). Their structures were elucidated by extensive one-dimensional NMR, two-dimensional NMR, and MS spectra. All isolates were tested for their anti-inflammatory activity, protein tyrosine phosphatase 1B (PTP1B) inhibitory activity in vitro, and effect on glucose uptake in insulin-resistant HepG2 cells. Compounds 1, 4, 22, 23, and 27 inhibited the nitric oxide released from the LPS-induced RAW 264.7 cell assay with IC50 values in the range of 21.4-27.2 μM. Compounds 18, 22, 23, and 28 showed strong PTP1B inhibitory activity with IC50 values in the range of 20.5-29.9 μM, comparable to that of the positive control of oleanolic acid (15.0 μM). Compounds 18 and 22 were confirmed to be good competitive inhibitors of PTP1B by kinetic analysis. In addition, compounds 18, 22, and 28 were found to stimulate glucose uptake in the insulin-resistant HepG2 cells in the dose from 6.25 to 100 μM. These findings indicated the potential of F. pinicola in the development of functional food or medicine for the prevention and treatment of diabetes.
Collapse
Affiliation(s)
- Jinjin Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P. R. China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Baosong Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P. R. China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jack Liang
- Eastern Health Center, 6801 Mission Street, Suite 208, Daly City 35206, California, United States
| | - Junjie Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Liwei Zhou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Ruilin Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Hongwei Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P. R. China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Huanqin Dai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P. R. China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
12
|
|
13
|
Abstract
The synthesis of strophasterols C, E, and F has been accomplished from a 14,15-secoergostane derivative via a 1,3-dipolar cycloaddition of a nitrile oxide intermediate to simultaneously install an isolated cyclopentane ring and a C23 oxygen functionality in a diastereoselective manner and a regio- and diastereoselective selenohydroxylation of an olefinic intermediate under thermodynamic conditions. This synthesis also enabled the stereochemical confirmation of strophasterol C.
Collapse
Affiliation(s)
- Shuntaro Sato
- Laboratory of Applied Bioorganic Chemistry, Graduate School of Agricultural Science , Tohoku University , 468-1 Aramaki Aza-Aoba , Aoba-ku, Sendai 980-8572 , Japan
| | - Shigefumi Kuwahara
- Laboratory of Applied Bioorganic Chemistry, Graduate School of Agricultural Science , Tohoku University , 468-1 Aramaki Aza-Aoba , Aoba-ku, Sendai 980-8572 , Japan
| |
Collapse
|
14
|
Kikuchi T, Mori M, In Y, Zhang J, Yamada T, Hirano T. Pleurocorols A and B: rearranged steroids from the fruiting bodies of Pleurotus cornucopiae. Org Chem Front 2020. [DOI: 10.1039/d0qo00605j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pleurocorols A and B, unprecedented steroids with an 11(9 → 8)abeo-ergostane and a 5(6 → 7), 11(9 → 7)diabeo-ergostane skeleton, respectively, were isolated from Pleurotus cornucopiae.
Collapse
Affiliation(s)
| | - Maki Mori
- Osaka University of Pharmaceutical Sciences
- Takatsuki
- Japan
| | - Yasuko In
- Osaka University of Pharmaceutical Sciences
- Takatsuki
- Japan
| | - Jie Zhang
- School of Traditional Chinese Pharmacy
- China Pharmaceutical University
- Nanjing 211198
- P. R. China
| | - Takeshi Yamada
- Osaka University of Pharmaceutical Sciences
- Takatsuki
- Japan
| | - Tomoya Hirano
- Osaka University of Pharmaceutical Sciences
- Takatsuki
- Japan
| |
Collapse
|
15
|
Peng XR, Su HG, Liu JH, Huang YJ, Yang XZ, Li ZR, Zhou L, Qiu MH. C30 and C31 Triterpenoids and Triterpene Sugar Esters with Cytotoxic Activities from Edible Mushroom Fomitopsis pinicola (Sw. Ex Fr.) Krast. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10330-10341. [PMID: 31469960 DOI: 10.1021/acs.jafc.9b04530] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fomitopsis pinicola (Sw. Ex Fr.) Krast has been commonly used as a health food source and antitumor agent. To uncover bioactive key composition of F. pinicola, in our study, we investigated the chemical constituents of a methanol extract of F. pinicola and thirty-five lanostane-type tritetpenoids; 13 new compounds (1-13) and twenty-two known analogues (14-35) were isolated. Among them, compounds 1-9 were C30 lanostane triterpenoids and triterpene sugar esters, while compounds 10-13 were C31 triterpenoids and triterpene sugar esters. Their structures and absolute configurations were elucidated by extensive 1D, 2D NMR, MS, and IR spectra. Furthermore, cytotoxic activities of all isolates against five human tumor cell lines (HL-60, A549, SMMC-7721, MCF-7, and SW480) were evaluated. The results showed that compounds 12, 14, 17, 18, 22, and 23 displayed cytotoxic effects against five human tumor cell lines with IC50 values ranging from 3.92-28.51 μM. Meanwhile, compounds 9 and 35 exhibited selected inhibitory activities against HL-60, SMMC-7721, and MCF-7 with IC50 values in the range of 13.57-36.01 μM. Furthermore, the flow cytometry analysis revealed that compounds 17, 22, and 35 induced apoptosis in HL-60 cell lines. Their structure-activity relationships were preliminarily reported. These findings indicate the vital role of triterpenoids and their glycosides in explaining antitumor effects of F. pinicola and provide important evidence for further development and utilization of this fungus.
Collapse
Affiliation(s)
- Xing-Rong Peng
- State Key Laboratory of Phytochemistry and Plant Resources in West China , Kunming Institute of Botany, Chinese Academy of Science , Kunming 650201 , People's Republic of China
| | - Hai-Guo Su
- State Key Laboratory of Phytochemistry and Plant Resources in West China , Kunming Institute of Botany, Chinese Academy of Science , Kunming 650201 , People's Republic of China
- University of the Chinese Academy of Science , Beijing 100049 , People's Republic of China
| | - Jun-Hong Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China , Kunming Institute of Botany, Chinese Academy of Science , Kunming 650201 , People's Republic of China
- University of the Chinese Academy of Science , Beijing 100049 , People's Republic of China
| | - Yan-Jie Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China , Kunming Institute of Botany, Chinese Academy of Science , Kunming 650201 , People's Republic of China
- University of the Chinese Academy of Science , Beijing 100049 , People's Republic of China
| | - Xin-Zhi Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China , Kunming Institute of Botany, Chinese Academy of Science , Kunming 650201 , People's Republic of China
- University of the Chinese Academy of Science , Beijing 100049 , People's Republic of China
| | - Zhong-Rong Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China , Kunming Institute of Botany, Chinese Academy of Science , Kunming 650201 , People's Republic of China
| | - Lin Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China , Kunming Institute of Botany, Chinese Academy of Science , Kunming 650201 , People's Republic of China
| | - Ming-Hua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China , Kunming Institute of Botany, Chinese Academy of Science , Kunming 650201 , People's Republic of China
| |
Collapse
|