1
|
Abdelrahman AH, Azab ME, Hegazy MA, Labena A, Ramadan SK. Design, Synthesis, Antiproliferative Screening, and In Silico Studies of Some Pyridinyl‐Pyrimidine Candidates. J Heterocycl Chem 2024. [DOI: 10.1002/jhet.4945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/15/2024] [Indexed: 01/12/2025]
Abstract
ABSTRACTUsing pyrimidinethione, a new series of pyridinyl‐pyrimidine candidates was prepared by reacting with diverse carbon‐centered electrophiles like hydrazonoyl chloride, N‐arylchloroacetamide, ethyl chloroacetate, and enaminone derivatives. Some heteroannulated compounds, such as triazolopyrimidine and thiazolopyrimidine derivatives were obtained. The mass fragmentation pathways were investigated by the electron impact mass spectrometry (EI‐MS), and the molecular ion peaks (M+.) were recorded at different intensities. The in vitro antiproliferative efficacy of the prepared compounds against MCF7 and HCT116 cancer cell lines showed the highest potency of pyrimidinethione 2, triazolopyrimidine 4, and thiazolopyrimidine 10. Also, in silico studies were performed to recognize these findings. A molecular docking simulation towards the EGFR enzyme showed the best docking score of thiazolopyrimidine 10 through H‐bonding and hydrophobic interactions in comparison to the interactions of co‐crystallized ligand and doxorubicin. With DFT calculations, compound 10 exhibited the lowest energy gap and the highest softness. Among ADME simulation, compounds 7, 8, 9, and 11 exhibited desirable lead‐likeness. It is hoped that this work may affect advancing new effective antiproliferative agents.
Collapse
Affiliation(s)
- Ali H. Abdelrahman
- Chemistry Department, Faculty of Science Ain Shams University Cairo Egypt
| | - Mohammad E. Azab
- Chemistry Department, Faculty of Science Ain Shams University Cairo Egypt
| | - Mohamed A. Hegazy
- Petrochemicals Department Egyptian Petroleum Research Institute (EPRI) Cairo Egypt
| | - Ahmed Labena
- Processes Design and Development Department Egyptian Petroleum Research Institute (EPRI) Cairo Egypt
| | - Sayed K. Ramadan
- Chemistry Department, Faculty of Science Ain Shams University Cairo Egypt
| |
Collapse
|
2
|
Patil S, Basanagouda MM, Jeyaseelan SC, Mulla BBA, Muddapur GV, Muddapur UM, Sidarai AH. Effect of Concentration of TiO 2 Nanoparticles on Thiadiazole Derivative and Their Molecular Docking Study. J Fluoresc 2024:10.1007/s10895-024-04051-7. [PMID: 39644371 DOI: 10.1007/s10895-024-04051-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/15/2024] [Indexed: 12/09/2024]
Abstract
In the present work, we report the synthesis of TiO2 nanoparticles by hydrothermal method using titanium isopropoxide. The synthesized TiO2 nanoparticles were investigated by Powder X-ray diffraction, FE-SEM with EDX, Photoluminescence, UV-Visible absorption and Fluorescence emission spectroscopy. Fluorescence intensity and absorption values of 4-[5-(2,5-Dimethyl-pyrrol-1-yl)-[1,3,4]thiadiazol-2-ylsulfanylmethyl]-6-methoxy-chromen-2-one (DTYMC) molecule decreases with adding the concentration of TiO2 nanoparticles. Stern-Volmer equation for steady state method is found to be linear and its co-relation coefficient is found to be r = 0.88, which indicates the presence of dynamic quenching. Binding orientations of the DTYMC ligand with targeted proteins are Thymidylate synthase (TS) - PDB ID: 1JU6, The type II topoisomerases (TOP2α) - PDB ID: 4FM9 and Human thymidine phosphorylase (hTP) - PDB ID: 2WK6. The obtained result suggests that, the DTYMC molecule exhibits inhibitory activity against the overexpression of TS receptor which causes non-small cell lung cancer (NSCLC). Antimicrobial study of TiO2 NPs has been determined.
Collapse
Affiliation(s)
- Shivaprasadagouda Patil
- Department of Physics, J.S.S. Arts, Science and Commerce College, Gokak, 591307, Karnataka, India.
| | - Mahanthesh M Basanagouda
- Department of Chemistry, K.L.E. Society's P.C. Jabin Science College, Hubballi, 580031, Karnataka, India
| | | | - Bi Bi Ayisha Mulla
- Department of Studies in Physics, Karnatak University, Dharwad, 580003, Karnataka, India
| | - Gangadhar V Muddapur
- Department of Physics, KLE technological University, Hubli, 580031, Karnataka, India
| | - Uday M Muddapur
- Department of Biotechnology, KLE Technological University, Hubli, 580031, Karnataka, India
| | - Ashok H Sidarai
- Department of Studies in Physics, Karnatak University, Dharwad, 580003, Karnataka, India
| |
Collapse
|
3
|
Demirbağ B, Büyükafşar K, Kaya H, Yıldırım M, Bucak Ö, Ünver H, Erdoğan S. Investigation of the anticancer effect of newly synthesized palladium conjugate Schiff base metal complexes on non-small cell lung cancer cell line and mouse embryonic fibroblast cell line. Biochem Biophys Res Commun 2024; 735:150658. [PMID: 39260335 DOI: 10.1016/j.bbrc.2024.150658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
Lung cancer remains one of the leading causes of death worldwide. Due to the side effects of chemotherapeutic agents on normal cells and the development of resistance by cancer cells, there is an urgent need for alternative new pharmacological agents. Palladium (Pd)-conjugated Schiff base (SB) compounds represent an alternative approach with promising potential applications in cancer treatment. This study aims to identify novel therapeutic agents on A549 cells through the synthesis and characterization of Schiff base conjugated-Palladium complexes (Pd-L1 and Pd-L2). Additionally, it seeks to elucidate the mechanism of action of these compounds on both the A549 and NIH/3T3 cell lines. In the present study, two new Pd-L1 and Pd-L2 were synthesized for the first time and characterized mainly by single crystal X-ray diffraction and 1H, 13C, 31P NMR techniques. The cytotoxic effect of the compounds was evaluated by MTT assay on A549 and NIH/3T3 cell lines for 24 and 48 h. Cisplatin was used as a positive control group. Based on the cytotoxicity results, the complexes were evaluated for their anticancer activities against A549 cell lines for 48 h through reactive oxygen species (ROS), cell cycle, apoptotic, and necrotic cell analyses. The most potent cytotoxic effects were determined for Pd-L1 (IC50: 23.33 μM), Pd-L2 (IC50: 3.19 μM), and cisplatin (IC50: 33.27 μM) on A549 cells (p < 0.05). The compounds exhibited a significant cytotoxic effect at lower concentrations on A549 cells compared to NIH/3T3 cells (p < 0.05). All compounds showed a significant increase in ROS levels in A549 cells compared to the control group (p < 0.05). While necrosis and apoptosis was observed in A549 cells treated with cisplatin, induction of apoptosis was effective in cell death for A549 cells treated with Pd-L1 and Pd-L2 (p < 0.05). Additionally, it was observed that the compounds inhibited cell proliferation in the G0/G1 and G2/M cell cycle phases (p < 0.05). All compounds induced cell cycle arrest and cell death in A549 cells by increasing ROS levels. The results obtained in the present study could advance the utilization of the compounds as anticancer agents.
Collapse
Affiliation(s)
- Burcu Demirbağ
- Mersin University, Faculty of Medicine, Department of Stem Cell and Regenerative Medical, Mersin, Turkey
| | - Kansu Büyükafşar
- Mersin University, Faculty of Medicine, Department of Stem Cell and Regenerative Medical, Mersin, Turkey; Mersin University, Faculty of Medicine, Department of Medical Pharmacology, Mersin, Turkey
| | - Hamide Kaya
- Mersin University, Faculty of Medicine, Department of Medical Microbiology, Mersin, Turkey
| | - Metin Yıldırım
- Harran University, Faculty of Pharmacy, Department of Biochemistry, Şanlıurfa, Turkey.
| | - Öznur Bucak
- Mersin University, Faculty of Medicine, Department of Medical Biology and Genetics, Mersin, Turkey
| | - Hakan Ünver
- Eskisehir Technical University, Faculty of Science, Department of Chemistry, Eskisehir, Turkey
| | - Semra Erdoğan
- Mersin University, Faculty of Medicine, Department of Biostatistics and Medical Informatics, Mersin, Turkey
| |
Collapse
|
4
|
Ramadan SK, Alzahrani AYA, El-Helw EAE. Some Thiazolopyrimidine Derivatives: Synthesis, DFT, Cytotoxicity, and Pharmacokinetics Modeling Study. Synlett 2024. [DOI: 10.1055/a-2456-9620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
AbstractA pyrimidinethione candidate carrying pyrazole and thiophene scaffolds was produced by a Biginelli cyclocondensation reaction of a pyrazolecarbaldehyde with pentan-2,4-dione and thiourea. To create some heteroannulated thiazolopyrimidines, the pyrimidinethione was subjected to cyclocondensation reactions with ethyl chloroacetate, 1,2-dibromoethane, chloroacetonitrile, and oxalyl chloride. A DFT simulation was performed for a frontier-orbital analysis to determine the molecular geometry. Among the products, 6-acetyl-7-methyl-5-[1-phenyl-3-(2-thienyl)-1H-pyrazol-4-yl]-5H-[1,3]thiazolo[3,2-a]pyrimidine-2,3-dione displayed the highest softness and the lowest energy gap in the DFT calculations. Moreover, it had the highest electrophilicity index, suggesting possible biological impacts. The compounds obtained were evaluated against cell lines of breast adenocarcinoma (MCF7) and hepatocellular carcinoma (HepG2) as antiproliferative agents. A simulation of the molecular docking of our compounds with the epidermal growth factor receptor demonstrated the rationality of our design and identified the binding mode. A model pharmacokinetics analysis showed that the products have the expected and desirable drug-like and bioavailability properties.
Collapse
|
5
|
Kumar A, Backer N, Paliwal H, Singh AK, Debbaraman T, Singh V, Kumar P. Synthesis and anticancer evaluation of diaryl pyrido[2,3-d]pyrimidine /alkyl substituted pyrido[2,3-d]pyrimidine derivatives as thymidylate synthase inhibitors. BMC Chem 2024; 18:161. [PMID: 39198882 PMCID: PMC11361161 DOI: 10.1186/s13065-024-01228-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/13/2024] [Indexed: 09/01/2024] Open
Abstract
Worldwide, colorectal cancer (CRC) is the third most common type of cancer and the second most common cause of cancer-related deaths. Thymidylate synthase (TS) is a crucial component of DNA biosynthesis and has drawn interest as an essential target for cancer treatment. In the current work, we have designed and synthesized twenty-eight new diaryl-based pyrido[2,3-d]pyrimidine/alkyl-substituted pyrido[2,3-d]pyrimidine derivatives and evaluated their anticancer activity against the HCT 116, MCF-7, Hep G2, and PC-3 cell lines cell lines. Additionally, we have carried out TS inhibitory activity and in silico studies for compounds 1n and 2j. All the synthesized compounds exhibited good anticancer activity, but among them, compounds 1n and 2j showed excellent anticancer activity, having IC50 values of 1.98 ± 0.69, 2.18 ± 0.93, 4.04 ± 1.06, and 4.18 ± 1.87 µM; and 1.48 ± 0.86, 3.18 ± 0.79, 3.44 ± 1.51, and 5.18 ± 1.85 µM, against the HCT 116, MCF-7, Hep G2, and PC-3 cell lines respectively with control raltitrexed (IC50 1.07 ± 1.08, 1.98 ± 0.72, 1.34 ± 1.0, and 3.09 ± 0.96 µM, respectively) and hTS inhibitory activity with IC50 values of 20.47 ± 1.09 and 13.48 ± 0.96 nM with control raltitrexed (IC50 14.95 ± 1.01 nM). Further, the mechanism of inhibition was revealed by molecular docking, which showed the binding pattern of 1n and 2j to the catalytic site of TS with docking scores of -10.6 and - 9.5 kcal/mol, respectively, with reference raltitrexed (-9.4 kcal/mol). Additionally, the assessment of physicochemical, biochemical, structural, and toxicological characteristics were also in the acceptable range for these compounds. Based on the anticancer activity of compounds, SAR was also performed for lead optimization.
Collapse
Affiliation(s)
- Adarsh Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| | - Nabeel Backer
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| | - Harshali Paliwal
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| | - Ankit Kumar Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| | - Tanushree Debbaraman
- Rajiv Gandhi Centre for Diabetes & Endocrinology, J N Medical College & Hospital, Aligarh Muslim University, Aligarh, 202002, UP, India
| | - Vikramjeet Singh
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, 125001, HR, India
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India.
| |
Collapse
|
6
|
Sen A, Karati D. An insight into thymidylate synthase inhibitor as anticancer agents: an explicative review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5437-5448. [PMID: 38446215 DOI: 10.1007/s00210-024-03020-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/20/2024] [Indexed: 03/07/2024]
Abstract
Cancer, a widespread challenge to global health, remains a puzzle of intricate molecular dynamics. This review article delves into the mystery of cancer, with a keen focus on understanding the contributory role of thymidylate synthase (TS) in cancer. TS, a vital enzyme in DNA synthesis and repair, emerges as a significant player in the narrative of cancer development. The conversion of deoxyuridine monophosphate (dUMP) to deoxythymidine monophosphate (dTMP) is a major step in producing DNA. Numerous malignancies, including those of the breast, colon, lung, and ovary, have been linked to dysregulation of TS activity. Overexpression or mutations of TS lead to uncontrolled cell proliferation and tumorigenesis molecular interactions and signalling pathways involving TS come under scrutiny, revealing the nuanced connections that propel its involvement in cancer progression. Beyond overexpression and mutations, there emerges a subtle layer of regulation that involves microRNAs (miRNAs). These tiny particles attach to the TS messenger RNA, causing translational repression or its degradation, which in turn affects TS activity. Moving towards the therapeutic realm, thymidylate synthase inhibition acts as a promising anti-cancer strategy. Targeting TS with small-molecule inhibitors could provide a novel approach to treat various cancers. By reducing the number of available nucleotides, TS inhibition would slow down or halt cancer cell division, thus depriving the tumor of the building blocks required for its proliferation and growth. The aim is to assess the viability and effectiveness of targeting TS to halt or slow down cancer progression. There is growing evidence that, in comparison to traditional TS inhibitors, few novel antifolate TS inhibitors are effective against a wider variety of neoplasms, such as lung carcinomas. It has been discovered that TS inhibitors increase cancer tissues' sensitivity to chemotherapy and radiation, increasing their vulnerability to these treatments. This article aims to provide a comprehensive insight into TS, examining its cellular details, detailing the heterocyclic moieties and molecular foundations, and providing a promising future outlook.
Collapse
Affiliation(s)
- Aratrika Sen
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, Kolkata, 700091, West Bengal, India
| | - Dipanjan Karati
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, Kolkata, 700091, West Bengal, India.
| |
Collapse
|
7
|
Rady GS, El Deeb MA, Sarg MTM, Taher AT, Helwa AA. Design, synthesis and biological evaluation of novel morpholinopyrimidine-5-carbonitrile derivatives as dual PI3K/mTOR inhibitors. RSC Med Chem 2024; 15:733-752. [PMID: 38389871 PMCID: PMC10880895 DOI: 10.1039/d3md00693j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 12/17/2023] [Indexed: 02/24/2024] Open
Abstract
In this study, novel morpholinopyrimidine-5-carbonitriles were designed and synthesized as dual PI3K/mTOR inhibitors and apoptosis inducers. The integration of a heterocycle at position 2, with or without spacers, of the new key intermediate 2-hydrazinyl-6-morpholinopyrimidine-5-carbonitrile (5) yielded compounds 6-10, 11a-c and 12a-h. The National Cancer Institute (USA) tested all compounds for antiproliferative activity. Schiff bases, 12a-h analogs, were the most active ones. The most promising compounds 12b and 12d exhibited excellent antitumor activity against the leukemia SR cell line, which is the most sensitive cell line, with IC50 0.10 ± 0.01 and 0.09 ± 0.01 μM, respectively, along with significant effects on PI3Kα/PI3Kβ/PI3Kδ with IC50 values of 0.17 ± 0.01, 0.13 ± 0.01 and 0.76 ± 0.04 μM, respectively, for 12b and 1.27 ± 0.07, 3.20 ± 0.16 and 1.98 ± 0.11, respectively, for 12d compared to LY294002. Compared to Afinitor, these compounds inhibited mTOR with IC50 values of 0.83 ± 0.05 and 2.85 ± 0.17 μM, respectively. Annexin-V and propidium iodide (PI) double labeling showed that compounds 12b and 12d promote cytotoxic leukemia SR apoptosis. Compounds 12b and 12d also caused a G2/M cell cycle arrest in the leukaemia SR cell line. The findings of this study indicate that the highest effect was observed for 12b, which was supported by western blot and docking analysis.
Collapse
Affiliation(s)
- Ghada S Rady
- Directorate of Health Affairs in Giza, Ministry of Health Egypt
| | - Moshira A El Deeb
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University Cairo Egypt
| | - Marwa T M Sarg
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University Cairo Egypt
| | - Azza T Taher
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University Cairo 11562 Egypt
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, October 6 University (O6U) 6th of October city Giza 12585 Egypt
| | - Amira A Helwa
- Department of Pharmaceutical Organic Chemistry, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST) Al-Motamayez District, P.O. Box: 77, 6th of October city Giza Egypt
| |
Collapse
|
8
|
Nagpal A, Tyagi N, Neelakandan PP. BODIPY-fused uracil: synthesis, photophysical properties, and applications. Photochem Photobiol Sci 2024; 23:365-376. [PMID: 38227134 DOI: 10.1007/s43630-023-00524-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 12/14/2023] [Indexed: 01/17/2024]
Abstract
Fluorescent nucleobase and nucleic acid analogs are important tools in chemical and molecular biology as fluorescent labelling of nucleobases has applications in cellular imaging and anti-tumor activity. Boron-dipyrromethene (BODIPY) dyes exhibiting high brightness and good photostability are extensively used as fluorescent labelling agents and as type II photosensitizers for photodynamic therapy. Thus, the combination of nucleobases and BODIPY to obtain new compounds with both anti-tumor activity and fluorescent imaging functions is the focus of our research. We synthesized two new nucleobase analogs 1 and 2 by fusing the BODIPY core directly with uracil which resulted in favorable photophysical properties and high emission quantum efficiencies particularly in organic solvents. Further, we explored the newly synthesized derivatives, which possessed good singlet oxygen generation efficiencies and bio-compatibility, as potential PDT agents and our results show that they exhibit in vitro anti-tumor activities.
Collapse
Affiliation(s)
- Ayushi Nagpal
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, 140306, Punjab, India
| | - Nidhi Tyagi
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, 140306, Punjab, India
| | - Prakash P Neelakandan
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, 140306, Punjab, India.
| |
Collapse
|
9
|
Teng J, Chen Y, Xiao S, Li T, Su G, Wang G, Zhao Y. Novel ginsenoside derivatives induce apoptosis in HepG-2 cells via the MDM2-p53 signaling pathway. Bioorg Med Chem Lett 2022; 78:129045. [DOI: 10.1016/j.bmcl.2022.129045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
|
10
|
An insight on medicinal attributes of pyrimidine scaffold: An updated review. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Li WW, Zheng MY, Shang YH, Xu JQ, Zhang ZT, Zheng HN, Li XP, Weng AT, Feng LY, Liu L. Synthesis, characterization, thermal behavior, and antitumor activities of an Ag(I) complex based on 4-(2-hydroxyphenyl)-2-methylpyrimidine. JOURNAL OF CHEMICAL RESEARCH 2022. [DOI: 10.1177/17475198221103541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A new Ag(I) coordination complex, Ag(C11H10N2O)2·NO3 (C11H10N2O = 4-(2-hydroxyphenyl)-2-methylpyrimidine) is successfully synthesized and characterized by infrared spectroscopy, elemental analysis, and single-crystal X-ray diffraction analysis. This complex features a three-dimensional framework consisting of hydrogen bonds, π–π stacking interactions, coordination interactions, and electrostatic interactions. Moreover, the thermal stability and non-isothermal thermal decomposition reaction kinetics of the complex are well investigated by the methods of Kissinger and Ozawa. Finally, the antitumor ability of the complex is evaluated against human lung cancer cells (NCI-H460), human hepatocellular cancer cells (HepG2), and human breast cancer cells (MCF7). The complex exhibits potent antitumor activities against HepG2 and MCF7 cancer cells.
Collapse
Affiliation(s)
- Wu-Wu Li
- College of Chemistry & Chemical Engineering, Xianyang Normal University, Xianyang, P.R. China
| | - Min-Yan Zheng
- College of Chemistry & Chemical Engineering, Xianyang Normal University, Xianyang, P.R. China
| | - Yong-Hui Shang
- College of Chemistry & Chemical Engineering, Xianyang Normal University, Xianyang, P.R. China
| | - Jin-Qiong Xu
- College of Chemistry & Chemical Engineering, Xianyang Normal University, Xianyang, P.R. China
| | - Zun-Ting Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, P.R. China
| | - Hao-Nan Zheng
- College of Chemistry & Chemical Engineering, Xianyang Normal University, Xianyang, P.R. China
| | - Xiao-Peng Li
- College of Chemistry & Chemical Engineering, Xianyang Normal University, Xianyang, P.R. China
| | - A-Tong Weng
- College of Chemistry & Chemical Engineering, Xianyang Normal University, Xianyang, P.R. China
| | - Ling-Ying Feng
- College of Chemistry & Chemical Engineering, Xianyang Normal University, Xianyang, P.R. China
| | - Lu Liu
- College of Chemistry & Chemical Engineering, Xianyang Normal University, Xianyang, P.R. China
| |
Collapse
|
12
|
Matada GSP, Dhiwar PS, Abbas N, Singh E, Ghara A, Patil R, Raghavendra NM. Pharmacophore modeling, virtual screening, molecular docking and dynamics studies for the discovery of HER2-tyrosine kinase inhibitors: An in-silico approach. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Albratty M, Ahmad Alhazmi H. Novel pyridine and pyrimidine derivatives as promising anticancer agents: A review. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
14
|
Almalki ASA, Nazreen S, Elbehairi SEI, Asad M, Shati AA, Alfaifi MY, Alhadhrami A, Elhenawy AA, Alorabi AQ, Asiri AM, Alam MM. Design, synthesis, anticancer activity and molecular docking studies of new benzimidazole derivatives bearing 1,3,4-oxadiazole moieties as potential thymidylate synthase inhibitors. NEW J CHEM 2022. [DOI: 10.1039/d2nj01980a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Compounds 10 and 14 arrest the cell cycle at the G1 phase and induce apoptosis without any necrosis in MDA-MB-231 cells.
Collapse
Affiliation(s)
- Abdulraheem SA Almalki
- Department of Chemistry, Faculty of Science, Taif University, Taif, Kingdom of Saudi Arabia
| | - Syed Nazreen
- Department of Chemistry, Faculty of Science, Al-Baha University, Al-Baha, Kingdom of Saudi Arabia
| | - Serag Eldin I. Elbehairi
- Department of Biology, Faculty of Science, King Khalid University, Abha 9004, Saudi Arabia
- Cell Culture Laboratory, Egyptian Organization for Biological Products and Vaccines, VACSERA Holding Company, Giza 2311, Egypt
| | - Mohammad Asad
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Ali A. Shati
- Department of Biology, Faculty of Science, King Khalid University, Abha 9004, Saudi Arabia
| | - Mohammad Y. Alfaifi
- Department of Biology, Faculty of Science, King Khalid University, Abha 9004, Saudi Arabia
| | - Abdulrahman Alhadhrami
- Department of Chemistry, Faculty of Science, Taif University, Taif, Kingdom of Saudi Arabia
| | - Ahmed A. Elhenawy
- Department of Chemistry, Faculty of Science, Al-Baha University, Al-Baha, Kingdom of Saudi Arabia
- Chemistry Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| | - Ali Q. Alorabi
- Department of Chemistry, Faculty of Science, Al-Baha University, Al-Baha, Kingdom of Saudi Arabia
| | - Abdullah M. Asiri
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Mohammad Mahboob Alam
- Department of Chemistry, Faculty of Science, Al-Baha University, Al-Baha, Kingdom of Saudi Arabia
| |
Collapse
|
15
|
A new Schiff base containing 5-FU and its metal Complexes: Synthesis, Characterization, and biological activities. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.109060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
16
|
Lemos BC, Westphal R, Filho EV, Fiorot RG, Carneiro JWM, Gomes ACC, Guimarães CJ, de Oliveira FCE, Costa PMS, Pessoa C, Greco SJ. Synthetic enamine naphthoquinone derived from lawsone as cytotoxic agents assessed by in vitro and in silico evaluations. Bioorg Med Chem Lett 2021; 53:128419. [PMID: 34715305 DOI: 10.1016/j.bmcl.2021.128419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 10/20/2022]
Abstract
We synthesized ten enamine naphthoquinones with yields ranging from 43 to 76%. These compounds were screened for their in vitro antiproliferative activities by MTT assay against four types of human cancer cell lines: HCT116, PC3, HL60 and SNB19. The naphthoquinones bearing the picolylamine (7) and quinoline (12) moieties were the most actives (IC50 < 24 μM for all the cell lines), which were comparable or better to the values obtained for the control drugs. In silico evaluations allowed us to develop a qualitative Structure-Activity Relationship which suggest that electrostatic features, particularly the C2-C3 internuclear repulsion and the molecular dipole moment, relate to the biological response. Furthermore, Molecular Docking simulations indicate that the synthetic compounds have the potential to act as anticancer molecules by inhibiting topoisomerase-II and thymidylate synthase.
Collapse
Affiliation(s)
- Bárbara C Lemos
- Chemistry Department, Federal University of Espírito Santo, Vitória, Espírito Santo CEP.:29075-910, Brazil
| | - Regina Westphal
- Chemistry Department, Federal University of Espírito Santo, Vitória, Espírito Santo CEP.:29075-910, Brazil
| | - Eclair Venturini Filho
- Chemistry Department, Federal University of Espírito Santo, Vitória, Espírito Santo CEP.:29075-910, Brazil
| | - Rodolfo G Fiorot
- Chemistry Institute, Federal Fluminense University, Outeiro de São João Batista, 24020-141 Niteroi, RJ, Brazil
| | - José Walkimar M Carneiro
- Chemistry Institute, Federal Fluminense University, Outeiro de São João Batista, 24020-141 Niteroi, RJ, Brazil
| | - Anne Caroline C Gomes
- Faculty of Pharmacy, Federal Institute of Rio de Janeiro, Campus Realengo, Rio de Janeiro CEP.: 21715-000, Brazil
| | - Celina J Guimarães
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará., Fortaleza, Ceará CEP.: 60430-275, Brazil; Pharmacy Sector, Foundation of Oncology Control of the state of Amazonas, Manaus, Amazonas CEP.: 69040-010, Brazil
| | - Fátima C E de Oliveira
- Pharmacy Sector, Foundation of Oncology Control of the state of Amazonas, Manaus, Amazonas CEP.: 69040-010, Brazil
| | - Pedro Mikael S Costa
- Pharmacy Sector, Foundation of Oncology Control of the state of Amazonas, Manaus, Amazonas CEP.: 69040-010, Brazil
| | - Claudia Pessoa
- Pharmacy Sector, Foundation of Oncology Control of the state of Amazonas, Manaus, Amazonas CEP.: 69040-010, Brazil
| | - Sandro J Greco
- Chemistry Department, Federal University of Espírito Santo, Vitória, Espírito Santo CEP.:29075-910, Brazil.
| |
Collapse
|
17
|
Sanad SM, Mekky AE. New pyrido[3′,2′:4,5]thieno[3,2-d]pyrimidin-4(3H)-one hybrids linked to arene units: synthesis of potential MRSA, VRE, and COX-2 inhibitors. CAN J CHEM 2021. [DOI: 10.1139/cjc-2021-0121] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the current study, we reported the tandem synthesis of two series of arene-linked pyrimidinone hybrids with related fused thieno[2,3-b]pyridine moiety. The target hybrids were prepared, in moderate to excellent yields, by the reaction of a ternary mixture of the appropriate of 3-aminothieno[2,3-b]pyridine-2-carboxylate, DMF-DMA, and a series of aryl amines in dioxane at 110 °C for 8 h. The antibacterial activity of the new hybrids was estimated against six susceptible ATCC strains. Hybrids 5g and 7g, linked to a sulfonamide unit, showed the best efficacy against S. aureus and E. faecalis strains with minimum inhibitory concentration (MIC) values of 1.7–1.8 μM, which exceed ciprofloxacin. Furthermore, some of new hybrids were examined as potential inhibitors of four different MRSA and VRE strains. Hybrids 5g and 7g demonstrated more potent efficacy than linezolid against MRSA strains with MIC values of 3.6/3.4 and 1.8/1.7 μM against ATCC:33591 and ATCC:43300 strains, respectively. The prior hybrids displayed a comparable efficacy with linezolid against VRE strains with MIC values of 7.3/6.9 and 3.6/3.4 μM against ATCC:51299 and ATCC:51575 strains, respectively. Additionally, some of the new hybrids were examined as potential COX-2 inhibitors using the reference celecoxib (IC50 of 0.117 µM). Hybrid 7g revealed more potent inhibitory efficacy than celecoxib with IC50 of 0.112 µM, whereas hybrid 5g showed almost inhibitory activity equivalent to celecoxib with IC50 of 0.121 µM. Molecular docking was performed to predict the possible binding interactions between hybrids 5g and 7g with the target COX-2 enzyme.
Collapse
Affiliation(s)
- Sherif M.H. Sanad
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Ahmed E.M. Mekky
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
18
|
Sanad SM, Mekky AE. Synthesis and antibacterial evaluation of new pyrido[3',2':4,5]thieno[3,2-d ]pyrimidin-4(3H)-one hybrids linked to different heteroarene units. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.11.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
19
|
Xu C, Shao T, Shao S, Jin G. High activity, high selectivity and high biocompatibility BODIPY-pyrimidine derivatives for fluorescence target recognition and evaluation of inhibitory activity. Bioorg Chem 2021; 114:105121. [PMID: 34214754 DOI: 10.1016/j.bioorg.2021.105121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/13/2021] [Accepted: 06/20/2021] [Indexed: 12/14/2022]
Abstract
BODIPY-Pyrimidine (BP) is a highly selective, highly active, and highly biocompatible fluorescent drug, which is characterized by its own activity combined with a fluorophore. The combination of pyrimidines with good biological activity and fluorophores to obtain new compounds with both anti-tumor activity and fluorescent targeting probe functions is the focus of this research. In terms of biological activity, in vitro cytotoxicity of the compounds on four human cancer cells (HepG2, HeLa, A-459, and HCT-116) and the human normal cell line L-02 was studied. BP-4 has good antiproliferative activity, and its IC50 values are 19.12 ± 2.29, 13.47 ± 3.80, 18.59 ± 7.42, 14.57 ± 2.44 and 92.48 ± 6.03 μM, respectively. Good biocompatibility with tumor cells can be observed in cell imaging. The anti-tumor mechanism of the compound was further studied by flow cytometry. After BP-2, BP-3 and BP-4 treated HeLa cells, the percentage of apoptotic cells was 19.07%, 22.09% and 27.3%, respectively. The cell cycle study found that, compared with the positive control 5-FU (48.05%), the compounds BP-2, BP-3 and BP-4 all increased the proportion of HeLa cells in the G1 phase, reaching 57.65%, 55.46% and 53.58%, respectively. In vivo bioimaging results show that all three compounds can be targeted and accurately expressed in tumor tissues. In addition, molecular docking analyzes the possible interaction between the compound and the active site of thymidylate synthase.
Collapse
Affiliation(s)
- Chi Xu
- Digestive Disease Center, Shanghai East Hospital, Tongji University, Shanghai 200120, China
| | - Tingyu Shao
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Shihe Shao
- Digestive Disease Center, Shanghai East Hospital, Tongji University, Shanghai 200120, China.
| | - Guofan Jin
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
20
|
Mohamed Teleb MA, Mekky AEM, Sanad SMH. 3‐Aminothieno
[2,3‐
b
]pyridine‐2‐carboxylate: Effective precursor for microwave‐assisted three components synthesis of new pyrido[3′,2′:4,5]thieno[3,2‐
d
]pyrimidin‐4(
3
H
)‐one hybrids. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4313] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | - Ahmed E. M. Mekky
- Chemistry Department, Faculty of Science Cairo University Giza Egypt
| | | |
Collapse
|
21
|
Abbas N, Matada GSP, Dhiwar PS, Patel S, Devasahayam G. Fused and Substituted Pyrimidine Derivatives as Profound Anti-Cancer Agents. Anticancer Agents Med Chem 2021; 21:861-893. [PMID: 32698738 DOI: 10.2174/1871520620666200721104431] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/06/2020] [Accepted: 05/17/2020] [Indexed: 11/22/2022]
Abstract
The rationale behind drug design is the strategic utilization of heterocyclic fragments with specific physicochemical properties to form molecular targeted agents. Among the heterocyclic molecules, pyrimidine has proved to be a privileged pharmacophore for various biological cancer targets. The anti-cancer potential of small molecules with fused and substituted pyrimidines can be enhanced through bioisosteric replacements and altering their ADME parameters. Although several small molecules are used in cancer chemotherapy, oncology therapeutics has various limitations, especially in their routes of administration and their concurrent side effects. Such pernicious effects may be overcome, via selective biological targeting. In this review, the biological targets, to inhibit cancer, have been discussed. The structural activity relationship of fused and substituted pyrimidines was studied. Eco-friendly synthetic approaches for pyrimidine derivatives have also been discussed. This review will give an insight to scientists and researchers of medicinal chemistry discipline to design small molecules having a pyrimidine scaffold with high anti-cancer potential.
Collapse
Affiliation(s)
- Nahid Abbas
- Department of Medicinal Chemistry, Acharya & BM Reddy College of Pharmacy, Bangalore 560107, India
| | | | - Prasad S Dhiwar
- Department of Medicinal Chemistry, Acharya & BM Reddy College of Pharmacy, Bangalore 560107, India
| | - Shilpa Patel
- Department of Medicinal Chemistry, Acharya & BM Reddy College of Pharmacy, Bangalore 560107, India
| | - Giles Devasahayam
- Department of Medicinal Chemistry, Acharya & BM Reddy College of Pharmacy, Bangalore 560107, India
| |
Collapse
|
22
|
Zarenezhad E, Farjam M, Iraji A. Synthesis and biological activity of pyrimidines-containing hybrids: Focusing on pharmacological application. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129833] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Alzhrani ZMM, Alam MM, Neamatallah T, Nazreen S. Design, synthesis and in vitro antiproliferative activity of new thiazolidinedione-1,3,4-oxadiazole hybrids as thymidylate synthase inhibitors. J Enzyme Inhib Med Chem 2020; 35:1116-1123. [PMID: 32354237 PMCID: PMC7241536 DOI: 10.1080/14756366.2020.1759581] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/11/2020] [Accepted: 04/18/2020] [Indexed: 11/10/2022] Open
Abstract
Thymidylate synthase (TS) has been an attention-grabbing area of research for the treatment of cancers due to their role in DNA biosynthesis. In the present study, we have synthesised a library of thiazolidinedione-1,3,4-oxadiazole hybrids as TS inhibitors. All the synthesised hybrids followed Lipinski and Veber rules which indicated good drug likeness properties upon oral administration. Among the synthesised hybrids, compound 9 and 10 displayed 4.5 and 4.4 folds activity of 5-Fluorouracil, respectively against MCF-7 cell line whereas 3.1 and 2.5 folds cytotoxicity against HCT-116 cell line. Furthermore, compound 9 and 10 also inhibited TS enzyme with IC50 = 1.67 and 2.21 µM, respectively. Finally, the docking studies of 9 and 10 were found to be consistent with in vitro TS results. From these studies, compound 9 and 10 has the potential to be developed as TS inhibitors.
Collapse
Affiliation(s)
| | - Mohammad Mahboob Alam
- Department of Chemistry, Faculty of Science, Albaha University, Albaha, Saudi Arabia
| | - Thikryat Neamatallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Syed Nazreen
- Department of Chemistry, Faculty of Science, Albaha University, Albaha, Saudi Arabia
| |
Collapse
|
24
|
Synthesis of New 1, 3, 4-Oxadiazole-Incorporated 1, 2, 3-Triazole Moieties as Potential Anticancer Agents Targeting Thymidylate Synthase and Their Docking Studies. Pharmaceuticals (Basel) 2020; 13:ph13110390. [PMID: 33202652 PMCID: PMC7696185 DOI: 10.3390/ph13110390] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 12/20/2022] Open
Abstract
Thymidylate synthase (TS) has emerged as a hot spot in cancer treatment, as it is directly involved in DNA synthesis. In the present article, nine hybrids containing 1,2,3-triazole and 1,3,4-oxadiazole moieties (6–14) were synthesized and evaluated for anticancer and in vitro thymidylate synthase activities. According to in silico pharmacokinetic studies, the synthesized hybrids exhibited good drug likeness properties and bioavailability. The cytotoxicity results indicated that compounds 12 and 13 exhibited remarkable inhibition on the tested Michigan Cancer Foundation (MCF-7) and Human colorectal Carcinoma (HCT-116) cell lines. Compound 12 showed four-fold inhibition to a standard drug, 5-fluoruracil, and comparable inhibition to tamoxifen, whereas compound 13 exerted five-fold activity of tamoxifen and 24-fold activity of 5-fluorouracil for MCF-7 cells. Compounds 12 and 13 inhibited thymidylate synthase enzyme, with an half maximal inhibitory concentration, IC50 of 2.52 µM and 4.38 µM, while a standard drug, pemetrexed, showed IC50 = 6.75 µM. The molecular docking data of compounds 12 and 13 were found to be in support of biological activities data. In conclusion, hybrids (12 and 13) may inhibit thymidylate synthase enzyme, which could play a significant role as a chemotherapeutic agent.
Collapse
|
25
|
Modification of imidazothiazole derivatives gives promising activity in B-Raf kinase enzyme inhibition; synthesis, in vitro studies and molecular docking. Bioorg Med Chem Lett 2020; 30:127478. [DOI: 10.1016/j.bmcl.2020.127478] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 12/26/2022]
|
26
|
Wen X, Zhou Y, Zeng J, Liu X. Recent Development of 1,2,4-triazole-containing Compounds as Anticancer Agents. Curr Top Med Chem 2020; 20:1441-1460. [DOI: 10.2174/1568026620666200128143230] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/15/2019] [Accepted: 12/25/2019] [Indexed: 12/16/2022]
Abstract
1,2,4-Triazole derivatives possess promising in vitro and in vivo anticancer activity, and many
anticancer agents such as fluconazole, tebuconazole, triadimefon, and ribavirin bear a 1,2,4-triazole
moiety, revealing their potential in the development of novel anticancer agents. This review emphasizes
the recent advances in 1,2,4-triazole-containing compounds with anticancer potential, and the structureactivity
relationships as well as mechanisms of action are also discussed.
Collapse
Affiliation(s)
- Xiaoyue Wen
- The Institute of Infection and Inflammation, China Three Gorges University, Yichang, Hubei 443000, China
| | - Yongqin Zhou
- The Institute of Infection and Inflammation, China Three Gorges University, Yichang, Hubei 443000, China
| | - Junhao Zeng
- The Institute of Infection and Inflammation, China Three Gorges University, Yichang, Hubei 443000, China
| | - Xinyue Liu
- The Institute of Infection and Inflammation, China Three Gorges University, Yichang, Hubei 443000, China
| |
Collapse
|
27
|
Ammar UM, Abdel-Maksoud MS, Ali EM, Mersal KI, Ho Yoo K, Oh CH. Structural optimization of imidazothiazole derivatives affords a new promising series as B-Raf V600E inhibitors; synthesis, in vitro assay and in silico screening. Bioorg Chem 2020; 100:103967. [DOI: 10.1016/j.bioorg.2020.103967] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/13/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023]
|
28
|
Thakur A, Singh A, Kaur N, Ojha R, Nepali K. Steering the antitumor drug discovery campaign towards structurally diverse indolines. Bioorg Chem 2020; 94:103436. [DOI: 10.1016/j.bioorg.2019.103436] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/05/2019] [Accepted: 11/11/2019] [Indexed: 12/13/2022]
|