1
|
Fan J, Wei PL, Li Y, Zhang S, Ren Z, Li W, Yin WB. Developing filamentous fungal chassis for natural product production. BIORESOURCE TECHNOLOGY 2024; 415:131703. [PMID: 39477163 DOI: 10.1016/j.biortech.2024.131703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/09/2024] [Accepted: 10/23/2024] [Indexed: 11/07/2024]
Abstract
The growing demand for green and sustainable production of high-value chemicals has driven the interest in microbial chassis. Recent advances in synthetic biology and metabolic engineering have reinforced filamentous fungi as promising chassis cells to produce bioactive natural products. Compared to the most used model organisms, Escherichia coli and Saccharomyces cerevisiae, most filamentous fungi are natural producers of secondary metabolites and possess an inherent pre-mRNA splicing system and abundant biosynthetic precursors. In this review, we summarize recent advances in the application of filamentous fungi as chassis cells. Emphasis is placed on strategies for developing a filamentous fungal chassis, including the establishment of mature genetic manipulation and efficient genetic tools, the catalogue of regulatory elements, and the optimization of endogenous metabolism. Furthermore, we provide an outlook on the advanced techniques for further engineering and application of filamentous fungal chassis.
Collapse
Affiliation(s)
- Jie Fan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China.
| | - Peng-Lin Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; Medical School, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yuanyuan Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; Medical School, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shengquan Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Zedong Ren
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Wei Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Wen-Bing Yin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; Medical School, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
2
|
Guo Q, Shi L, Wang X, Li D, Yin Z, Zhang J, Ding G, Chen L. Structures and Biological Activities of Secondary Metabolites from the Trichoderma genus (Covering 2018-2022). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13612-13632. [PMID: 37684097 DOI: 10.1021/acs.jafc.3c04540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
Trichoderma, a genus with more than 400 species, has a long history of use as an industrial bioreactor, biofertilizer, and biocontrol agent. It is considered a significant source of secondary metabolites (SMs) that possess unique structural features and a wide range of bioactivities. In recent years, numerous secondary metabolites of Trichoderma, including terpenoids, polyketides, peptides, alkaloids, and steroids, have been identified. Most of these SMs displayed antimicrobial, cytotoxic, and antifungal effects. This review focuses on the structural diversity, biological activities, and structure-activity relationships (SARs) of the SMs isolated from Trichoderma covered from 2018 to 2022. This study provides insights into the exploration and utilization of bioactive compounds from Trichoderma species in the agriculture or pharmaceutical industry.
Collapse
Affiliation(s)
- Qingfeng Guo
- Henan Comprehensive Utilization of Edible and Medicinal Plant Resources Engineering Technology Research Center, Zhengzhou Key Laboratory of Synthetic Biology of Natural Products, Huanghe Science and Technology College, Zhengzhou 450063, People's Republic of China
| | - Lei Shi
- Henan Comprehensive Utilization of Edible and Medicinal Plant Resources Engineering Technology Research Center, Zhengzhou Key Laboratory of Synthetic Biology of Natural Products, Huanghe Science and Technology College, Zhengzhou 450063, People's Republic of China
| | - Xinyang Wang
- Henan Comprehensive Utilization of Edible and Medicinal Plant Resources Engineering Technology Research Center, Zhengzhou Key Laboratory of Synthetic Biology of Natural Products, Huanghe Science and Technology College, Zhengzhou 450063, People's Republic of China
- Henan University, Kaifeng 475004, People's Republic of China
| | - Dandan Li
- Henan Comprehensive Utilization of Edible and Medicinal Plant Resources Engineering Technology Research Center, Zhengzhou Key Laboratory of Synthetic Biology of Natural Products, Huanghe Science and Technology College, Zhengzhou 450063, People's Republic of China
- Henan University, Kaifeng 475004, People's Republic of China
| | - Zhenhua Yin
- Henan Comprehensive Utilization of Edible and Medicinal Plant Resources Engineering Technology Research Center, Zhengzhou Key Laboratory of Synthetic Biology of Natural Products, Huanghe Science and Technology College, Zhengzhou 450063, People's Republic of China
| | - Juanjuan Zhang
- Henan Comprehensive Utilization of Edible and Medicinal Plant Resources Engineering Technology Research Center, Zhengzhou Key Laboratory of Synthetic Biology of Natural Products, Huanghe Science and Technology College, Zhengzhou 450063, People's Republic of China
| | - Gang Ding
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science and Union Medical College, Beijing 100193, People's Republic of China
| | - Lin Chen
- Henan Comprehensive Utilization of Edible and Medicinal Plant Resources Engineering Technology Research Center, Zhengzhou Key Laboratory of Synthetic Biology of Natural Products, Huanghe Science and Technology College, Zhengzhou 450063, People's Republic of China
| |
Collapse
|
3
|
Combination Strategy of Genetic Dereplication and Manipulation of Epigenetic Regulators Reveals a Novel Compound from Plant Endophytic Fungus. Int J Mol Sci 2022; 23:ijms23073686. [PMID: 35409046 PMCID: PMC8998291 DOI: 10.3390/ijms23073686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/10/2022] Open
Abstract
The strategies of genetic dereplication and manipulation of epigenetic regulators to activate the cryptic gene clusters are effective to discover natural products with novel structure in filamentous fungi. In this study, a combination of genetic dereplication (deletion of pesthetic acid biosynthetic gene, PfptaA) and manipulation of epigenetic regulators (deletion of histone methyltransferase gene PfcclA and histone deacetylase gene PfhdaA) was developed in plant endophytic fungus Pestalotiopsis fici. The deletion of PfptaA with PfcclA and/or PfhdaA led to isolation of 1 novel compound, pestaloficiol X (1), as well as another 11 known compounds with obvious yield changes. The proposed biosynthesis pathway of pestaloficiol X was speculated using comparative analysis of homologous biosynthetic gene clusters. Moreover, phenotypic effects on the conidial development and response to oxidative stressors in the mutants were explored. Our results revealed that the new strain with deletion of PfcclA or PfhdaA in ΔPfptaA background host can neutralise the hyperformation of conidia in the PfptaA mutant, and that the ΔPfptaA ΔPfhdaA mutant was generally not sensitive to oxidative stressors as much as the ΔPfptaA ΔcclA mutant in comparison with the single mutant ΔPfptaA or the parental strains. This combinatorial approach can be applied to discover new natural products in filamentous fungi.
Collapse
|
4
|
Xu X, Huang R, Yin WB. An Optimized and Efficient CRISPR/Cas9 System for the Endophytic Fungus Pestalotiopsis fici. J Fungi (Basel) 2021; 7:809. [PMID: 34682231 PMCID: PMC8539907 DOI: 10.3390/jof7100809] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 11/17/2022] Open
Abstract
Endophytic fungi are emerging as attractive producers of natural products with diverse bioactivities and novel structures. However, difficulties in the genetic manipulation of endophytic fungi limit the search of novel secondary metabolites. In this study, we improved the polyethylene glycol (PEG)-mediated protoplast transformation method by introducing the CRISPR/Cas9 system into endophytic fungus Pestalotiopsis fici. Using this approach, we performed genome editing such as site-specific gene insertion, dual-locus mutations, and long DNA fragment deletions in P. fici efficiently. The average efficiency for site-specific gene insertion and two-site gene editing was up to 48.0% and 44.4%, respectively. In addition, the genetic manipulation time with long DNA fragment (5-10 kb) deletion was greatly shortened to one week in comparison with traditional methods such as Agrobacterium tumefaciens-mediated transformation (ATMT). Taken together, the development of the CRISPR/Cas9 system in the endophytic fungus will accelerate the discovery of novel natural products and further biological study.
Collapse
Affiliation(s)
- Xinran Xu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (X.X.); (R.H.)
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Runye Huang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (X.X.); (R.H.)
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen-Bing Yin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (X.X.); (R.H.)
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Zhang J, Yin WB. Characterisation of two unique sesquiterpenoids from Trichoderma hypoxylon. Mycology 2021; 13:32-38. [PMID: 35186411 PMCID: PMC8856097 DOI: 10.1080/21501203.2021.1964630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/29/2021] [Indexed: 11/16/2022] Open
Abstract
Two new sesquiterpenoids, 1-2, together with three known compounds, were isolated from Trichoderma hypoxylon. Among the known compounds, compound 4 was isolated as naturally occurring compound for the first time. The structures of these new compounds were characterized by HR-ESI-MS and spectroscopic methods including 1D and 2D NMR. The absolute configurations of 1-2 were assigned by electronic circular dichroism (ECD) calculations.
Collapse
Affiliation(s)
- Jinyu Zhang
- State Key Laboratory Of Mycology, Institute Of Microbiology, Chinese Academy Of Sciences, Beijing, Republic of China
- University Of Chinese Academy Of Sciences, Beijing, Republic of China
| | - Wen-Bing Yin
- State Key Laboratory Of Mycology, Institute Of Microbiology, Chinese Academy Of Sciences, Beijing, Republic of China
- University Of Chinese Academy Of Sciences, Beijing, Republic of China
| |
Collapse
|
6
|
Wei Q, Bai J, Yan D, Bao X, Li W, Liu B, Zhang D, Qi X, Yu D, Hu Y. Genome mining combined metabolic shunting and OSMAC strategy of an endophytic fungus leads to the production of diverse natural products. Acta Pharm Sin B 2021; 11:572-587. [PMID: 33643832 PMCID: PMC7893140 DOI: 10.1016/j.apsb.2020.07.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/27/2020] [Accepted: 07/21/2020] [Indexed: 11/25/2022] Open
Abstract
Endophytic fungi are promising producers of bioactive small molecules. Bioinformatic analysis of the genome of an endophytic fungus Penicillium dangeardii revealed 43 biosynthetic gene clusters, exhibited its strong ability to produce numbers of secondary metabolites. However, this strain mainly produce rubratoxins alone with high yield in varied culture conditions, suggested most gene clusters are silent. Efforts for mining the cryptic gene clusters in P. dangeardii, including epigenetic regulation and one-strain-many-compounds (OSMAC) approach were failed probably due to the high yield of rubratoxins. A metabolic shunting strategy by deleting the key gene for rubratoxins biosynthesis combining with optimization of culture condition successfully activated multiple silent genes encoding for other polyketide synthases (PKSs), and led to the trace compounds detectable. As a result, a total of 23 new compounds including azaphilone monomers, dimers, trimers with unprecedented polycyclic bridged heterocycle and spiral structures, as well as siderophores were identified. Some compounds showed significant cytotoxicities, anti-inflammatory or antioxidant activities. The attractive dual PKSs gene clusters for azaphilones biosynthesis were mined by bioinformatic analysis and overexpression of a pathway specific transcription factor. Our work therefor provides an efficient approach to mine the chemical diversity of endophytic fungi.
Collapse
|
7
|
Liu H, Pu YH, Ren JW, Li EW, Guo LX, Yin WB. Genetic dereplication driven discovery of a tricinoloniol acid biosynthetic pathway in Trichoderma hypoxylon. Org Biomol Chem 2020; 18:5344-5348. [PMID: 32638809 DOI: 10.1039/d0ob01202e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A genetic dereplication approach in combination with differential gene expression led to the discovery of three new sesquiterpenes, tricinoloniol acids (TRAs) A-C (1-3) and the known fusidilactone A (4) from T. hypoxylon. Comparative transcriptomic analysis and targeted deletion identified the biosynthetic route for TRAs. Our results demonstrate an alternative application of the genetic dereplication method for exploring the biosynthesis of cryptic secondary metabolites (SMs), which utilizes the coordinated expression of trichothecene (tri) and tra cluster genes.
Collapse
Affiliation(s)
- Huan Liu
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, PR China. and State Key Laboratory of Mycology and CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Yu-Han Pu
- Environmental and Resources Institute, Chongqing Technology and Business University, Chongqing 400067, PR China
| | - Jin-Wei Ren
- State Key Laboratory of Mycology and CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Er-Wei Li
- State Key Laboratory of Mycology and CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Li-Xia Guo
- Environmental and Resources Institute, Chongqing Technology and Business University, Chongqing 400067, PR China
| | - Wen-Bing Yin
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, PR China. and State Key Laboratory of Mycology and CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| |
Collapse
|