1
|
Huang L, Chen C, Cai J, Chen Y, Zhu Y, Yang B, Zhou X, Liu Y, Tao H. Two C 23-Steroids and a New Isocoumarin Metabolite from Mangrove Sediment-Derived Fungus Penicillium sp. SCSIO 41429. Mar Drugs 2024; 22:393. [PMID: 39330274 PMCID: PMC11433223 DOI: 10.3390/md22090393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
Two new C23-steroids derivatives, cyclocitrinoic acid A (1) and cyclocitrinoic acid B (2), and a new isocoumarin metabolite, (3R,4S)-6,8-dihydroxy-3,4,5-trimethyl-7-carboxamidelisocoumarin (10), together with 12 known compounds (3-9, 11-15) were isolated from the mangrove-sediment fungus Penicillium sp. SCSIO 41429. The structures of the new compounds were comprehensively characterized by 1D and 2D NMR, HRESIMS and ECD calculation. All isolates were evaluated for pancreatic lipase (PL) inhibitory and antioxidant activities. The biological evaluation results revealed that compounds 2, 14 and 15 displayed weak or moderate inhibition against PL, with IC50 values of 32.77, 5.15 and 2.42 µM, respectively. In addition, compounds 7, 12 and 13 showed radical scavenging activities against DPPH, with IC50 values of 64.70, 48.13, and 75.54 µM, respectively. In addition, molecular docking results indicated that these compounds had potential for PL inhibitory and antioxidant activities, which provided screening candidates for antioxidants and a reduction in obesity.
Collapse
Affiliation(s)
- Lishan Huang
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; (L.H.); (Y.C.); (Y.Z.)
| | - Chunmei Chen
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (C.C.); (J.C.); (B.Y.); (X.Z.); (Y.L.)
| | - Jian Cai
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (C.C.); (J.C.); (B.Y.); (X.Z.); (Y.L.)
| | - Yixin Chen
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; (L.H.); (Y.C.); (Y.Z.)
| | - Yongyan Zhu
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; (L.H.); (Y.C.); (Y.Z.)
| | - Bin Yang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (C.C.); (J.C.); (B.Y.); (X.Z.); (Y.L.)
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (C.C.); (J.C.); (B.Y.); (X.Z.); (Y.L.)
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (C.C.); (J.C.); (B.Y.); (X.Z.); (Y.L.)
| | - Huaming Tao
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; (L.H.); (Y.C.); (Y.Z.)
| |
Collapse
|
2
|
Cao Q, Mei S, Mehmood A, Sun Y, Chen X. Inhibition of pancreatic lipase by coffee leaves-derived polyphenols: A mechanistic study. Food Chem 2024; 444:138514. [PMID: 38310782 DOI: 10.1016/j.foodchem.2024.138514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/06/2024]
Abstract
The suppression of pancreatic lipase has been employed to mitigate obesity. This study explored the mechanism of coffee leaf extracts to inhibit pancreatic lipase. The ethyl acetate fraction derived from coffee leaves (EAC) exhibited the highest inhibitory capacity with a half-maximal inhibitory concentration (IC50) of 0.469 mg/mL and an inhibitor constant (Ki) of 0.185 mg/mL. This fraction was enriched with 3,5-dicaffeoylquinic acid (3,5-diCQA, 146.50 mg/g), epicatechin (87.51 mg/g), and isoquercetin (48.29 mg/g). EAC inhibited lipase in a reversible and competitive manner, and quenched its intrinsic fluorescence through a static mechanism. Molecular docking revealed that bioactive compounds in EAC bind to key amino acid residues (HIS-263, PHE-77, and SER-152) located within the active cavity of lipase. Catechin derivatives play a key role in the lipase inhibitory activity within EAC. Overall, our findings highlight the promising potential of coffee leaf extract as a functional ingredient for alleviating obesity through inhibition of lipase.
Collapse
Affiliation(s)
- Qingwei Cao
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, PR China.
| | - Suhuan Mei
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, PR China
| | - Arshad Mehmood
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, PR China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, PR China
| | - Yu Sun
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, PR China
| | - Xiumin Chen
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, PR China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, PR China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
3
|
Guo J, Liu S, Guo Y, Bai L, Ho CT, Bai N. Chemical characterization, multivariate analysis and comparison of biological activities of different parts of Fraxinus mandshurica. Biomed Chromatogr 2024; 38:e5861. [PMID: 38501361 DOI: 10.1002/bmc.5861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/22/2024] [Accepted: 02/22/2024] [Indexed: 03/20/2024]
Abstract
Fraxinus mandshurica (Oleaceae) is used as a traditional medicinal plant for the treatment of red eyes, menstrual disorders, excessive leucorrhea, chronic bronchitis and psoriasis. To perform chemical characterization of the secondary metabolites of F. mandshurica roots, bark, stems and leaves, 32 samples were collected from eight provinces in this study. A total of 64 chemical components were detected from four different parts of F. mandshurica by ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Meanwhile, a total of nine secoiridoids were obtained by natural product chemical extraction, isolation and identification methods. Quantitative analysis by high-performance liquid chromatography-diode array detection-mass spectrometry showed the highest total content of secoiridoids in the bark, which is also consistent with the traditional medicinal parts. The results of methodological validation showed that the correlation coefficient (R2) values were all >0.9993, indicating a good linear range of the standard curve, while the relative standard deviations of precision, reproducibility and stability were <3%, and the spiked recoveries ranged from 98.22 to 102.27%, indicating that the experimental method was reliable and stable. In addition, fingerprinting and a heatmap were established to demonstrate the content trends of F. mandshurica more visually from different origins. Multivariate analysis, including principal component analysis and partial least squares discriminant analysis, was performed to determine the chemical characteristics of different parts of F. mandshurica, and six characteristic secoiridoids that could be used to distinguish different origins were screened. Finally, the inhibition of tyrosinase, α-glucosidase, acetylcholinesterase and pancreatic lipase activities by the nine characteristic compounds and extracts from different parts were investigated, and the results showed that they all exhibited different degrees of enzyme activity inhibition and thus have potential applications in whitening and blemish removal, hypoglycemia, anti-Alzheimer's disease and anti-obesity as a new source of natural enzyme activity inhibitors. This study establishes an identification and evaluation method applicable to phytochemistry of different origins, which is a guideline for quality control, origin evaluation and clinical application of traditional medicinal plants. This is also an unprecedented study on the identification of the chemical composition of different parts of F. mandshurica, characteristic compounds and the inhibition of enzyme activity of extracts from different parts.
Collapse
Affiliation(s)
- Jianjin Guo
- College of Chemical Engineering, Northwest University, Xi'an, Shaanxi, China
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, China
| | - Shaojing Liu
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, China
| | - Yan Guo
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, China
| | - Lu Bai
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ, USA
| | - Naisheng Bai
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, China
| |
Collapse
|
4
|
Huang L, Chen C, Cai J, Chen Y, Zhu Y, Yang B, Zhou X, Liu Y, Tao H. Discovery of Enzyme Inhibitors from Mangrove Sediment Derived Fungus Trichoderma harzianum SCSIO 41051. Chem Biodivers 2024; 21:e202400070. [PMID: 38356321 DOI: 10.1002/cbdv.202400070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/16/2024]
Abstract
One new fatty acid derivative, (2E,4E)-6,7-dihydroxy-2-methylocta-2,4-dienoic acid (1), and 16 known compounds (2-17) were isolated from the mangrove sediment derived fungus Trichoderma harzianum SCSIO 41051. Their structures were established by spectroscopic methods, computational ECD, and Mo2(OAc)4-induced ECD experiment. All the compounds were evaluated for their acetylcholinesterase (AChE) and pancreatic lipase (PL) inhibition. Compounds 9 and 14 exhibited moderate AChE inhibitory activities with IC50 values of 2.49 and 2.92 μM, respectively, which compounds 8 and 9 displayed moderate inhibition on PL with IC50 value of 2.30 and 2.34 μM, respectively.
Collapse
Affiliation(s)
- Lishan Huang
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Chunmei Chen
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Jian Cai
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Yixin Chen
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yongyan Zhu
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Bin Yang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Huaming Tao
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
5
|
Guilbeau A, Majumder R. Systemic Review of Clot Retraction Modulators. Int J Mol Sci 2023; 24:10602. [PMID: 37445780 PMCID: PMC10341984 DOI: 10.3390/ijms241310602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Through a process termed clot retraction, platelets cause thrombi to shrink and become more stable. After platelets are activated via inside-out signaling, glycoprotein αIIbβIII binds to fibrinogen and initiates a cascade of intracellular signaling that ends in actin remodeling, which causes the platelet to change its shape. Clot retraction is also important for wound healing. Although the detailed molecular biology of clot retraction is only partially understood, various substances and physiological conditions modulate clot retraction. In this review, we describe some of the current literature pertaining to clot retraction modulators. In addition, we discuss compounds from Cudrania trucuspidata, Arctium lappa, and Panax ginseng that diminish clot retraction and have numerous other health benefits. Caffeic acid and diindolylmethane, both common in plants and vegetables, likewise reduce clot retraction, as do all-trans retinoic acid (a vitamin A derivative), two MAP4K inhibitors, and the chemotherapeutic drug Dasatinib. Conversely, the endogenous anticoagulant Protein S (PS) and the matricellular protein secreted modular calcium-binding protein 1 (SMOC1) both enhance clot retraction. Most studies aiming to identify mechanisms of clot retraction modulators have focused on the increased phosphorylation of vasodilator-stimulated phosphoprotein and inositol 1,4,5-triphosphate receptor I and the decreased phosphorylation of various phospholipases (e.g., phospholipase A2 (PLA2) and phosphatidylinositol-specific phospholipase Cγ2 (PLCγ2), c-Jun N-terminal kinase, and (PI3Ks). One study focused on the decreased phosphorylation of Sarcoma Family Kinases (SFK), and others have focused on increased cAMP levels and the downregulation of inflammatory markers such as thromboxanes, including thromboxane A2 (TXA2) and thromboxane B2 (TXB2); prostaglandin A2 (PGE2); reactive oxygen species (ROS); and cyclooxygenase (COX) enzyme activity. Additionally, pregnancy, fibrinolysis, and the autoimmune condition systemic lupus erythematosus all seem to affect, or at least have some relation with, clot retraction. All the clot retraction modulators need in-depth study to explain these effects.
Collapse
Affiliation(s)
- Alaina Guilbeau
- LSUHSC School of Medicine, Public University, New Orleans, LA 70112, USA;
| | - Rinku Majumder
- Department of Interdisciplinary Oncology, New Orleans, LA 70112, USA
| |
Collapse
|
6
|
Yu M, Wang SJ, Li H, Zhang GJ. Xanthones from the stems of Calophyllum membranaceum Gardn. et Champ. and their anti-inflammatory activity. PHYTOCHEMISTRY 2022; 200:113246. [PMID: 35605809 DOI: 10.1016/j.phytochem.2022.113246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Eighteen undescribed xanthones, including six pairs of xanthone enantiomers, three xanthones, and three xanthone glycosides, together with one pair of known xanthone enantiomers and 12 known xanthones, were isolated from the stems of Calophyllum membranaceum Gardn. et Champ. Their structures were elucidated by spectroscopic analysis, and the absolute configuration of the enantiomers was determined by using experimental and calculated electronic circular dichroism data. All compounds were screened for their anti-inflammatory effects on LPS-induced BV-2 microglial cells. Among them, six compounds showed remarkable activities with IC50 values of 7.8-36.0 μM.
Collapse
Affiliation(s)
- Min Yu
- College of Pharmacy, Guilin Medical University, Guilin, 541004, People's Republic of China
| | - Su-Juan Wang
- College of Pharmacy, Guilin Medical University, Guilin, 541004, People's Republic of China
| | - Hua Li
- College of Pharmacy, Guilin Medical University, Guilin, 541004, People's Republic of China
| | - Gui-Jie Zhang
- College of Pharmacy, Guilin Medical University, Guilin, 541004, People's Republic of China.
| |
Collapse
|
7
|
Ma Q, Guan Y, Sang Z, Dong J, Wei R. Isolation and characterization of auronlignan derivatives with hepatoprotective and hypolipidemic activities from the fruits of Hippophae rhamnoides L. Food Funct 2022; 13:7750-7761. [PMID: 35762868 DOI: 10.1039/d2fo01079h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The fruit of Hippophae rhamnoides L. is not only used as delicious food with nutritional values, but also served as traditional Chinese medicine with multiple bioactivities. In order to find structurally interesting and bioactive isolates from the fruits of H. rhamnoides L., a bioassay-guided investigation was applied to seek the hepatoprotective and hypolipidemic ingredients in this study. As a result, three new (10 → 10'')-biauronlignans (1-3), three new 10-(4''-hydroxy-benzyl)-auronlignans (4-6), three new 10-O-β-D-glucopyranosyl-auronlignans (7-9), and eleven known auronlignan derivatives (10-20) were isolated from the fruits of H. rhamnoides L. for the first time, and their structures were determined by extensive and comprehensive IR, UV, NMR, MS spectral analyses and compared with the reported references. Among them, compounds 1, 4, 7, 11, 15, and 19 showed moderate hepatoprotective activities against the damage in acetaminophen-induced HepG2 cells; compounds 2, 5, 8, and 12 exhibited moderate inhibition of pancreatic lipase activity, and decreased the moderately FFA-induced lipid accumulation in HepG2 liver cells. The plausible biogenetic pathway and preliminary structure-activity relationship of the selected compounds are scientifically summarized and discussed in this study.
Collapse
Affiliation(s)
- Qinge Ma
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education, Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Science and Technology College, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| | - Yang Guan
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education, Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Science and Technology College, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| | - Zhipei Sang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China. .,School of Pharmaceutical Sciences, Hanan University, Haikou 570228, China
| | - Jianghong Dong
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China
| | - Rongrui Wei
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education, Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Science and Technology College, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| |
Collapse
|
8
|
Zang Z, Yang W, Cui H, Cai R, Li C, Zou G, Wang B, She Z. Two Antimicrobial Heterodimeric Tetrahydroxanthones with a 7,7'-Linkage from Mangrove Endophytic Fungus Aspergillus flavus QQYZ. Molecules 2022; 27:molecules27092691. [PMID: 35566042 PMCID: PMC9103106 DOI: 10.3390/molecules27092691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/15/2022] [Accepted: 04/15/2022] [Indexed: 11/25/2022] Open
Abstract
Mangrove endophytic fungi represent significant and sustainable sources of novel metabolites with unique structures and excellent biological activities, attracting extensive chemical investigations. In this research, two novel heterodimeric tetrahydroxanthones, aflaxanthones A (1) and B (2), dimerized via an unprecedented 7,7′-linkage, a sp3-sp3 dimeric manner, were isolated from the mangrove endophytic fungus Aspergillus flavus QQYZ. Their structures were elucidated through high resolution electrospray ionization mass spectroscopy (HRESIMS) and nuclear magnetic resonance (NMR) spectroscopy, the absolute configurations of them were determined by a single-crystal X-ray diffraction combined with calculated electronic circular dichroism (ECD) spectra and a 1D potential energy scan. These compounds were evaluated for antifungal activities in vitro and exhibited broad-spectrum and potential antifungal activities against several pathogenic fungi with minimum inhibitory concentration (MIC) values in the range of 3.13–50 μM. They also performed moderate antibacterial activities against several bacteria with MIC values in the range of 12.5–25 μM. This research enriched the resources of lead compounds and templates for marine-derived antimicrobial drugs.
Collapse
Affiliation(s)
- Zhenming Zang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China; (Z.Z.); (W.Y.); (G.Z.)
| | - Wencong Yang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China; (Z.Z.); (W.Y.); (G.Z.)
| | - Hui Cui
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China;
| | - Runlin Cai
- College of Science, Shantou University, Shantou 515063, China;
| | - Chunyuan Li
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China;
| | - Ge Zou
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China; (Z.Z.); (W.Y.); (G.Z.)
| | - Bo Wang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China; (Z.Z.); (W.Y.); (G.Z.)
- Correspondence: (B.W.); (Z.S.); Tel.: +86-20-84113356 (Z.S.)
| | - Zhigang She
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China; (Z.Z.); (W.Y.); (G.Z.)
- Correspondence: (B.W.); (Z.S.); Tel.: +86-20-84113356 (Z.S.)
| |
Collapse
|
9
|
Ma LJ, Hou XD, Qin XY, He RJ, Yu HN, Hu Q, Guan XQ, Jia SN, Hou J, Lei T, Ge GB. Discovery of human pancreatic lipase inhibitors from root of Rhodiola Crenulata via integrating bioactivity-guided fractionation, chemical profiling and biochemical assay. J Pharm Anal 2022; 12:683-691. [PMID: 36105167 PMCID: PMC9463489 DOI: 10.1016/j.jpha.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 03/20/2022] [Accepted: 04/02/2022] [Indexed: 12/03/2022] Open
Abstract
Although herbal medicines (HMs) are widely used in the prevention and treatment of obesity and obesity-associated disorders, the key constituents exhibiting anti-obesity activity and their molecular mechanisms are poorly understood. Recently, we assessed the inhibitory potentials of several HMs against human pancreatic lipase (hPL, a key therapeutic target for human obesity), among which the root-extract of Rhodiola crenulata (ERC) showed the most potent anti-hPL activity. In this study, we adopted an integrated strategy, involving bioactivity-guided fractionation techniques, chemical profiling, and biochemical assays, to identify the key anti-hPL constituents in ERC. Nine ERC fractions (retention time = 12.5–35 min), obtained using reverse-phase liquid chromatography, showed strong anti-hPL activity, while the major constituents in these bioactive fractions were subsequently identified using liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS/MS). Among the identified ERC constituents, 1,2,3,4,6-penta-O-galloyl-β-d-glucopyranose (PGG) and catechin gallate (CG) showed the most potent anti-hPL activity, with pIC50 values of 7.59 ± 0.03 and 7.68 ± 0.23, respectively. Further investigations revealed that PGG and CG potently inhibited hPL in a non-competitive manner, with inhibition constant (Ki) values of 0.012 and 0.082 μM, respectively. Collectively, our integrative analyses enabled us to efficiently identify and characterize the key anti-obesity constituents in ERC, as well as to elucidate their anti-hPL mechanisms. These findings provide convincing evidence in support of the anti-obesity and lipid-lowering properties of ERC. The root-extract of Rhodiola crenulata (ERC) potently inhibits hPL. The hPL inhibitors in ERC were characterized using an integrated panel of assays. Six constituents in ERC were identified as hPL inhibitors. PGG and CG are potent non-competitive hPL inhibitors (Ki < 0.1 μM). The binding modes of PGG and CG were examined based on docking simulations.
Collapse
Affiliation(s)
- Li-Juan Ma
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Xu-Dong Hou
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Xiao-Ya Qin
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Rong-Jing He
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hao-Nan Yu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qing Hu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiao-Qing Guan
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shou-Ning Jia
- Qinghai Hospital of Traditional Chinese Medicine, Xining, 810099, China
| | - Jie Hou
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Tao Lei
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
- Corresponding author.
| | - Guang-Bo Ge
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Corresponding author.
| |
Collapse
|
10
|
Ko W, Kim KW, Liu Z, Dong L, Yoon CS, Lee H, Kim YC, Oh H, Lee DS, Kim SC. Macluraxanthone B inhibits LPS-induced inflammatory responses in RAW264.7 and BV2 cells by regulating the NF-κB and MAPK signaling pathways. Immunopharmacol Immunotoxicol 2021; 44:67-75. [PMID: 34821534 DOI: 10.1080/08923973.2021.2006215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE The prenylated xanthones compounds, macluraxanthone B (MCXB) was isolated from the MeOH extracts of Cudrania tricuspidata. In this study, we investigated the effect of MCXB on inflammatory response. MATERIALS AND METHODS Anti-inflammatory effects of MCXB were examined in lipopolysaccharide (LPS)-stimulated RAW264.7 and BV2 cells. We observed their anti-inflammatory effects by ELISA, western blot analysis, and immunofluorescence. RESULTS MCXB significantly inhibited the LPS-stimulated production of nitric oxide (NO), prostaglandin E2 (PGE2), interleukin-6 (IL-6), and tumor necrosis factor (TNF)-α in RAW264.7 and BV2 cells. MCXB also reduced the LPS-induced expression of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 proteins. Incubating cells with MCXB prevented subsequent activation of the nuclear factor kappa B (NF-κB) signaling pathway by inhibiting the nuclear localization and DNA-binding activity of the p65 subunit induced by LPS. MCXB inhibited the phosphorylation of c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and p38 mitogen-activated protein kinases (MAPKs) in RAW264.7 and BV2 cells. MCXB induced the expression of heme oxygenase (HO)-1 protein, and the inhibitory effect of MCXB on nitric oxide production was partially reversed by a selective HO-1 inhibitor. DISCUSSION AND CONCLUSIONS Our results suggested that the anti-inflammatory effect of MCXB is partly regulated by HO-1 induction. In conclusion, MCXB could be a useful candidate for the development of therapeutic and preventive agents to treat inflammatory diseases.
Collapse
Affiliation(s)
- Wonmin Ko
- College of Pharmacy, Chosun University, Gwangju, Republic of Korea
| | - Kwan-Woo Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong, Republic of Korea
| | - Zhiming Liu
- College of Pharmacy, Chosun University, Gwangju, Republic of Korea
| | - Linsha Dong
- College of Pharmacy, Chosun University, Gwangju, Republic of Korea
| | - Chi-Su Yoon
- College of Pharmacy, Wonkwang University, Iksan, Republic of Korea
| | - Hwan Lee
- College of Pharmacy, Chosun University, Gwangju, Republic of Korea
| | - Youn-Chul Kim
- College of Pharmacy, Wonkwang University, Iksan, Republic of Korea
| | - Hyuncheol Oh
- College of Pharmacy, Wonkwang University, Iksan, Republic of Korea
| | - Dong-Sung Lee
- College of Pharmacy, Chosun University, Gwangju, Republic of Korea
| | - Sam Cheol Kim
- Department of Family Practice and Community Medicine, Chosun University College of Medicine, Gwangju, Republic of Korea
| |
Collapse
|
11
|
Kurniawan YS, Priyangga KTA, Jumina, Pranowo HD, Sholikhah EN, Zulkarnain AK, Fatimi HA, Julianus J. An Update on the Anticancer Activity of Xanthone Derivatives: A Review. Pharmaceuticals (Basel) 2021; 14:1144. [PMID: 34832926 PMCID: PMC8625896 DOI: 10.3390/ph14111144] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/27/2022] Open
Abstract
The annual number of cancer deaths continues increasing every day; thus, it is urgent to search for and find active, selective, and efficient anticancer drugs as soon as possible. Among the available anticancer drugs, almost all of them contain heterocyclic moiety in their chemical structure. Xanthone is a heterocyclic compound with a dibenzo-γ-pyrone framework and well-known to have "privileged structures" for anticancer activities against several cancer cell lines. The wide anticancer activity of xanthones is produced by caspase activation, RNA binding, DNA cross-linking, as well as P-gp, kinase, aromatase, and topoisomerase inhibition. This anticancer activity depends on the type, number, and position of the attached functional groups in the xanthone skeleton. This review discusses the recent advances in the anticancer activity of xanthone derivatives, both from natural products isolation and synthesis methods, as the anticancer agent through in vitro, in vivo, and clinical assays.
Collapse
Affiliation(s)
- Yehezkiel Steven Kurniawan
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; (Y.S.K.); (K.T.A.P.); (H.D.P.)
| | - Krisfian Tata Aneka Priyangga
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; (Y.S.K.); (K.T.A.P.); (H.D.P.)
| | - Jumina
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; (Y.S.K.); (K.T.A.P.); (H.D.P.)
| | - Harno Dwi Pranowo
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; (Y.S.K.); (K.T.A.P.); (H.D.P.)
| | - Eti Nurwening Sholikhah
- Department of Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia;
| | - Abdul Karim Zulkarnain
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; (A.K.Z.); (H.A.F.)
| | - Hana Anisa Fatimi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; (A.K.Z.); (H.A.F.)
| | - Jeffry Julianus
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Sanata Dharma, Yogyakarta 55282, Indonesia;
| |
Collapse
|
12
|
Ma QG, Tang Y, Sang ZP, Dong JH, Wei RR. Structurally diverse biflavonoids from the fruits of Citrus medica L. var. sarcodactylis Swingle and their hypolipidemic and immunosuppressive activities. Bioorg Chem 2021; 117:105450. [PMID: 34710667 DOI: 10.1016/j.bioorg.2021.105450] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 01/05/2023]
Abstract
The fruit of Citrus medica L. var. sarcodactylis Swingle is not only used as a traditional medicinal plant, but also served as a delicious food. Six new (3'→7″)-biflavonoids (1-6), and twelve known biflavonoid derivatives (7-18) were isolated and characterized from the fruits of C. medica L. var. sarcodactylis Swingle for the first time. Their structures were determined by extensive and comprehensive analyzing NMR, HR-ESI-MS, UV, and IR spectral data coupled with the data described in the literature. Compounds (1-18) were evaluated for their hypolipidemic activities with Orlistat as the positive control, and assayed for their immunosuppressive activities with Dexamethasone as the positive control, respectively. Among them, compounds (1-3) exhibited moderate inhibition of pancreatic lipase activity by inhibiting 68.56 ± 1.40%, 56.18 ± 1.57%, 53.51 ± 1.59% of pancreatic lipase activities at the concentration of 100 μM, respectively. Compounds (4-6) and 8 showed potent immunosuppressive activities with the IC50 values from 16.83 ± 1.32 to 50.90 ± 1.79 μM. The plausible biogenetic pathway and preliminary structure activity relationship of the selected compounds were scientifically summarized and discussed in this study.
Collapse
Affiliation(s)
- Qin-Ge Ma
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education & Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, PR China
| | - Ye Tang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education & Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, PR China
| | - Zhi-Pei Sang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, PR China
| | - Jiang-Hong Dong
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, PR China
| | - Rong-Rui Wei
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education & Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, PR China.
| |
Collapse
|
13
|
Mickely W Engelbrecht L, Vicente Ribeiro R, Cristiane Yoshida N, Dos Santos Gonçalves V, Pavan E, Tabajara de Oliveira Martins D, Luiz Dos Santos É. Chemical Characterization, Antioxidant and Cytotoxic Activities of the Edible Fruits of Brosimun gaudichaudii Trécul, a Native Plant of the Cerrado Biome. Chem Biodivers 2021; 18:e2001068. [PMID: 33998146 DOI: 10.1002/cbdv.202001068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 05/11/2021] [Indexed: 11/10/2022]
Abstract
In Brazil, there is a large diversity of species of small edible fruits that are considered sources of nutrients and functional properties. They present a high innovation domain for the pharmaceutical, cosmetic and food industries due to their health-promoting properties. Edible fruits from Brosimum gaudichaudii (Moraceae) are widely consumed and used in folk medicine and in feed by the population of the Brazilian Cerrado. Nevertheless, detailed information on the chemical fingerprint, antiradical activity and safety aspects of these fruits is still unknown. Thus, the aim of this work was to investigate the bioactive compounds of hydroethanolic extracts of fruits from Brosimum gaudichaudii using high-performance liquid chromatography combined with mass spectrometry using electrospray ionization (HPLC ESI-MS). Eighteen different compounds, including flavonoids, coumarins, arylbenzofurans, terpenoids, stilbenes, xanthones and esters, were detected. Moreover, the study indicated that the hydroethanolic extract of fruits from B. gaudichaudii presented low scavenging activity against 2,2-diphenyl-1-picrylhydrazyl radicals (IC50 >800 μg mL-1 ) and was cytotoxic (IC50 <30 μg mL-1 ) in Chinese hamster ovary cells (CHO-K1) by an in vitro assay. This is the first report of the chemical profile, antioxidant activity and cytotoxic properties of the hydroethanolic extract of fruits from B. gaudichaudii.
Collapse
Affiliation(s)
- Luma Mickely W Engelbrecht
- Instituto Federal de Educação Ciência e Tecnologia de Mato Grosso, Lucas do Rio Verde, MT 78455-000, Brazil
| | - Reginaldo Vicente Ribeiro
- Instituto Federal de Educação Ciência e Tecnologia de Mato Grosso, Lucas do Rio Verde, MT 78455-000, Brazil
| | - Nídia Cristiane Yoshida
- Instituto de Química, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS 79074-460, Brazil
| | | | - Eduarda Pavan
- Área de Farmacologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Cuiabá, MT 78060-900, Brazil
| | - Domingos Tabajara de Oliveira Martins
- Área de Farmacologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Cuiabá, MT 78060-900, Brazil
| | - Érica Luiz Dos Santos
- Instituto Federal de Educação Ciência e Tecnologia de Mato Grosso, Lucas do Rio Verde, MT 78455-000, Brazil
| |
Collapse
|
14
|
Zhang X, Song Z, Li Y, Wang H, Zhang S, Reid AM, Lall N, Zhang J, Wang C, Lee D, Ohizumi Y, Xu J, Guo Y. Cytotoxic and Antiangiogenetic Xanthones Inhibiting Tumor Proliferation and Metastasis from Garcinia xipshuanbannaensis. JOURNAL OF NATURAL PRODUCTS 2021; 84:1515-1523. [PMID: 33905250 DOI: 10.1021/acs.jnatprod.0c01354] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Eight prenylated xanthones including four new analogues were extracted and purified from the leaves of Garcinia xipshuanbannaensis. Multiple techniques including UV, 1D and 2D NMR, and HRESIMS were used to determine the structures of the isolated xanthones. These xanthones were evaluated for their cytotoxicity toward human cancer cells, and compound 4 exhibited activity against HeLa cells. A cytotoxic mechanism examination revealed the active compound induced cell apoptosis by arresting the cell cycle, increasing the levels of ROS, and inhibiting the expression of p-STAT3 in HeLa cells. In in vivo zebrafish experiments, compound 4 was found to block tumor proliferation and migration and have antiangiogenetic activity, and thus seems worthy of further laboratory evaluation.
Collapse
Affiliation(s)
- Xuke Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Ziteng Song
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Ying Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Huimei Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Shaojie Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Anna-Mari Reid
- Department of Plant and Soil Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa
| | - Namrita Lall
- Department of Plant and Soil Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa
| | - Jie Zhang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, People's Republic of China
| | - Chunyan Wang
- Tianjin Second People's Hospital, Tianjin 300192, People's Republic of China
| | - Dongho Lee
- College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Yasushi Ohizumi
- Kansei Fukushi Research Institute, Tohoku Fukushi University, 6-149-1 Kunimigaoka, Aoba-ku, Sendai 989-3201, Japan
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| |
Collapse
|
15
|
Xu YZ, Sha F, Wu XY. Design of a Functional Chromene-Type Kobayashi Precursor: Gram-Scale Total Synthesis of Natural Xanthones by Highly Regioselective Aryne Annulation. Chemistry 2020; 27:1066-1071. [PMID: 33000486 DOI: 10.1002/chem.202003805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/27/2020] [Indexed: 11/10/2022]
Abstract
The 2,2-dimethyl-2H-chromene motif is widely found in many bioactive molecules, and is a privileged structure in the pharmaceutical arena. We have developed a concise and regioselective approach to chromenes and chromanes through an aryne-based synthetic strategy. A practical, gram-scale synthetic route to a chromene-type aryne precursor was explored. Subsequently, cyclization under mild conditions afforded tetracyclic xanthone skeletons with excellent regioselectivity. Our approach provides a concise strategy for the gram-scale synthesis of chromene-type xanthones such as 6-deoxyisojacareubin, cylindroxanthone D, staudtiixanthone D, brasilixanthone A and cudracuspixanthone O.
Collapse
Affiliation(s)
- Yuan-Ze Xu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, P. R. China
| | - Feng Sha
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, P. R. China
| | - Xin-Yan Wu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, P. R. China
| |
Collapse
|
16
|
Guo S, Zhao H, Ma Z, Zhang S, Li M, Zheng Z, Ren X, Ho CT, Bai N. Anti-Obesity and Gut Microbiota Modulation Effect of Secoiridoid-Enriched Extract from Fraxinus mandshurica Seeds on High-Fat Diet-Fed Mice. Molecules 2020; 25:E4001. [PMID: 32887336 PMCID: PMC7504722 DOI: 10.3390/molecules25174001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 12/11/2022] Open
Abstract
Previously we conducted a phytochemical study on the seeds of Fraxinus excelsior and isolated nine secoiridoid compounds with adipocyte differentiation inhibitory activity and peroxisome proliferator activated receptor alpha (PPARα) activation effects. However, the bioactive constituents and functions of Fraxinus mandshurica seeds have not been studied. In the present study, we investigated the secoiridoid compounds in F. mandshurica seed extract (FM) using column chromatography, 1H-NMR, 13C-NMR and HPLC-DAD methods. The pancreatic lipase inhibitory activities of isolated compounds were evaluated in vitro. Additionally, the anti-obesity and gut microbiota modulation effect of FM on high-fat diet-induced obesity in C57BL/6 mice were also studied in vivo. The results showed that 19 secoiridoids were isolated from FM and identified. The total content of secoiridoids in FM reached 181.35 mg/g and the highest content was nuzhenide (88.21 mg/g). All these secoiridoid compounds exhibited good pancreatic lipase inhibitory activity with inhibition rate ranged from 33.77% to 70.25% at the concentration of 100 μM. After obese mice were administrated with FM at 400 mg/kg.bw for 8 weeks, body weight was decreased by 15.81%. Moreover, FM could attenuate the lipid accumulation in serum and liver, relieve the damage in liver and kidney, and extenuate oxidative stress injury and inflammation caused by obesity in mice. FM could also modulate the structural alteration of gut microbiota in obese mice, increasing the proportion of anti-obesity gut microbiota (Bacteroidetes, Bacteroidia, S24-7 and Allobaculum), and reducing the proportion of obesogenic gut microbiota (Firmicutes and Dorea). This study suggests that F. mandshurica seeds or their secoiridoids may have potential for use as a dietary supplement for obesity management.
Collapse
Affiliation(s)
- Sen Guo
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi’an 710069, China; (S.G.); (H.Z.); (M.L.); (Z.Z.); (X.R.)
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Northwest University, 229 Taibai North Road, Xi’an 710069, China;
| | - Haoan Zhao
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi’an 710069, China; (S.G.); (H.Z.); (M.L.); (Z.Z.); (X.R.)
- College of Chemical Engineering, Northwest University, 229 Taibai North Road, Xi’an 710069, China;
| | - Zhongxiao Ma
- College of Chemical Engineering, Northwest University, 229 Taibai North Road, Xi’an 710069, China;
| | - Shanshan Zhang
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Northwest University, 229 Taibai North Road, Xi’an 710069, China;
| | - Mingrou Li
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi’an 710069, China; (S.G.); (H.Z.); (M.L.); (Z.Z.); (X.R.)
| | - Zhaojing Zheng
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi’an 710069, China; (S.G.); (H.Z.); (M.L.); (Z.Z.); (X.R.)
| | - Xiameng Ren
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi’an 710069, China; (S.G.); (H.Z.); (M.L.); (Z.Z.); (X.R.)
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA
| | - Naisheng Bai
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi’an 710069, China; (S.G.); (H.Z.); (M.L.); (Z.Z.); (X.R.)
| |
Collapse
|
17
|
Kim JY, Park SD, Nam W, Nam B, Bae CH, Kim HJ, Kim J, Lee JL, Sim JH. Gastroprotective Effects of Cudrania tricuspidata Leaf Extracts by Suppressing Gastric cAMP and Increasing Gastric Mucins. Prev Nutr Food Sci 2020; 25:158-165. [PMID: 32676467 PMCID: PMC7333002 DOI: 10.3746/pnf.2020.25.2.158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 04/21/2020] [Indexed: 12/18/2022] Open
Abstract
Cudrania tricuspidata has been used as an East Asian folk remedy to treat various symptoms. Recently, scientific evidence of the efficacy of C. tricuspidata has emerged. The objective of this study was to elucidate protective role of C. tricuspidata in the gastric mucosa using pylorus-ligated Sprague-Dawley rats and primary parietal cells. C. tricuspidata ethanol extracts attenuated gastric mucosal damage, secretion, and juice acidity in pylorus-ligated rats; however, it did not affect expression of gastric acid-related genes [muscarinic acetylcholine receptor M3 receptor (M3R), histamine H2-receptors (H2R), and cholecystokinin-2/gastrin receptors (CCK2R)] or serum gastrin concentrations. Furthermore, extracts greatly reduced levels of gastric cyclic adenosine monophosphate (cAMP) and significantly increased mRNA levels of gastric-type mucins (MUC5AC and MUC6). To identify the mode of action of C. tricuspidata extract in regulating gastric acid secretion, intracellular cAMP and mRNA for H2R, M3R, and CCK2R were measured in primary parietal cells. mRNA levels of H2R, M3R, and CCK2R did not significantly differ following treatment with C. tricuspidata extract, whereas cAMP induced by the H2R-specific agonist was significantly decreased. C. tricuspidata may therefore reduce gastric acid secretion by inhibiting H2R activity rather than regulating mRNA expression. These finding suggest that ethanol extracts of C. tricuspidata inhibit H2R-related gastric acid secretion and increase gastric mucus to help prevent gastric mucosal damage. Therefore, C. tricuspidata extract has potential to be used in foods and medicines to prevent diseases related to gastric mucosal damage, such as gastritis and functional dyspepsia.
Collapse
Affiliation(s)
- Joo Yun Kim
- R&BD Center, Korea Yakult Co., Ltd., Gyeonggi 17086, Korea
| | - Soo-Dong Park
- R&BD Center, Korea Yakult Co., Ltd., Gyeonggi 17086, Korea
| | - Woo Nam
- R&BD Center, Korea Yakult Co., Ltd., Gyeonggi 17086, Korea
| | - Bora Nam
- R&BD Center, Korea Yakult Co., Ltd., Gyeonggi 17086, Korea
| | - Chu Hyun Bae
- R&BD Center, Korea Yakult Co., Ltd., Gyeonggi 17086, Korea
| | - Hyeon Ji Kim
- R&BD Center, Korea Yakult Co., Ltd., Gyeonggi 17086, Korea
| | - Jisoo Kim
- R&BD Center, Korea Yakult Co., Ltd., Gyeonggi 17086, Korea
| | - Jung-Lyoul Lee
- R&BD Center, Korea Yakult Co., Ltd., Gyeonggi 17086, Korea
| | - Jae-Hun Sim
- R&BD Center, Korea Yakult Co., Ltd., Gyeonggi 17086, Korea
| |
Collapse
|
18
|
Klein-Júnior LC, Campos A, Niero R, Corrêa R, Vander Heyden Y, Filho VC. Xanthones and Cancer: from Natural Sources to Mechanisms of Action. Chem Biodivers 2020; 17:e1900499. [PMID: 31794156 DOI: 10.1002/cbdv.201900499] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/03/2019] [Indexed: 12/19/2022]
Abstract
Xanthones are a class of heterocyclic natural products that have been widely studied for their pharmacological potential. In fact, they have been serving as scaffolds for the design of derivatives focusing on drug development. One of the main study targets of xanthones is their anticancer activity. Several compounds belonging to this class have already demonstrated cytotoxic and antitumor effects, making it a promising group for further exploration. This review therefore focuses on recently published studies, emphasizing their natural and synthetic sources and describing the main mechanisms of action responsible for the anticancer effect of promising xanthones.
Collapse
Affiliation(s)
- Luiz C Klein-Júnior
- Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí - UNIVALI, 88302-901, Itajaí, Brazil
| | - Adriana Campos
- Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí - UNIVALI, 88302-901, Itajaí, Brazil
| | - Rivaldo Niero
- Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí - UNIVALI, 88302-901, Itajaí, Brazil
| | - Rogério Corrêa
- Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí - UNIVALI, 88302-901, Itajaí, Brazil
| | - Yvan Vander Heyden
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Center for Pharmaceutical Research (CePhaR), Vrije Universiteit Brussel - VUB, B-1090, Brussels, Belgium
| | - Valdir Cechinel Filho
- Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí - UNIVALI, 88302-901, Itajaí, Brazil
| |
Collapse
|