1
|
Haque A, Alenezi KM, Alsukaibi AKD, Al-Otaibi AA, Wong WY. Water-Soluble Small Organic Fluorophores for Oncological Theragnostic Applications: Progress and Development. Top Curr Chem (Cham) 2024; 382:14. [PMID: 38671325 DOI: 10.1007/s41061-024-00458-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/14/2024] [Indexed: 04/28/2024]
Abstract
Cancer is one of the major noncommunicable diseases, responsible for millions of deaths every year worldwide. Though various cancer detection and treatment modalities are available today, many deaths occur owing to its late-stage detection and metastatic nature. Noninvasive detection using luminescence-based imaging tools is considered one of the promising techniques owing to its low cost, high sensitivity, and brightness. Moreover, these tools are unique and valuable as they can detect even the slightest changes in the cellular microenvironment. To achieve this, a fluorescent probe with strong tumor uptake and high spatial and temporal resolution, especially with high water solubility, is highly demanded. Recently, several water-soluble molecules with emission windows in the visible (400-700 nm), first near-infrared (NIR-I, 700-1000 nm), and second near-infrared (NIR-II, 1000-1700 nm) windows have been reported in literature. This review highlights recently reported water-soluble small organic fluorophores/dyes with applications in cancer diagnosis and therapeutics. We systematically highlight and describe the key concepts, structural classes of fluorophores, strategies for imparting water solubility, and applications in cancer therapy and diagnosis, i.e., theragnostics. We discuss examples of water-soluble fluorescent probes based on coumarin, xanthene, boron-dipyrromethene (BODIPY), and cyanine cores. Some other emerging classes of dyes based on carbocyclic and heterocyclic cores are also discussed. Besides, emerging molecular engineering methods to obtain such fluorophores are discussed. Finally, the opportunities and challenges in this research area are also delineated.
Collapse
Affiliation(s)
- Ashanul Haque
- Department of Chemistry, College of Science, University of Ha'il, 81451, Ha'il, Saudi Arabia.
- Medical and Diagnostic Research Centre, University of Ha'il, 55473, Ha'il, Saudi Arabia.
| | - Khalaf M Alenezi
- Department of Chemistry, College of Science, University of Ha'il, 81451, Ha'il, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Ha'il, 55473, Ha'il, Saudi Arabia
| | - Abdulmohsen Khalaf Dhahi Alsukaibi
- Department of Chemistry, College of Science, University of Ha'il, 81451, Ha'il, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Ha'il, 55473, Ha'il, Saudi Arabia
| | - Ahmed A Al-Otaibi
- Department of Chemistry, College of Science, University of Ha'il, 81451, Ha'il, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Ha'il, 55473, Ha'il, Saudi Arabia
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, People's Republic of China.
| |
Collapse
|
2
|
Sakr AR, Georgiev NI, Bojinov VB. Design and Synthesis of a Novel ICT Bichromophoric pH Sensing System Based on 1,8-Naphthalimide Fluorophores as a Two-Input Logic Gate and Its Antibacterial Evaluation. Molecules 2023; 28:molecules28083631. [PMID: 37110865 PMCID: PMC10145821 DOI: 10.3390/molecules28083631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
The synthesis, sensor activity, and logic behavior of a novel 4-iminoamido-1,8-naphthalimide bichromophoric system based on a "fluorophore-receptor" architecture with ICT chemosensing properties is reported. The synthesized compound showed good colorimetric and fluorescence signaling properties as a function of pH and proved itself as a promising probe for the rapid detection of pH in an aqueous solution and base vapors in a solid state. The novel dyad is able to work as a two-input logic gate with chemical inputs H+ (Input 1) and HO- (Input 2) executing INHIBIT logic gate. The synthesized bichromophoric system and the corresponding intermediates demonstrated good antibacterial activity toward Gram (+) and Gram (-) bacteria when compared with the Gentamycin standard.
Collapse
Affiliation(s)
- Alaa R Sakr
- Department of Organic Synthesis, University of Chemical Technology and Metallurgy, 8 Kliment Ohridsky Str., 1756 Sofia, Bulgaria
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Nikolai I Georgiev
- Department of Organic Synthesis, University of Chemical Technology and Metallurgy, 8 Kliment Ohridsky Str., 1756 Sofia, Bulgaria
| | - Vladimir B Bojinov
- Department of Organic Synthesis, University of Chemical Technology and Metallurgy, 8 Kliment Ohridsky Str., 1756 Sofia, Bulgaria
- Bulgarian Academy of Sciences, 1040 Sofia, Bulgaria
| |
Collapse
|
3
|
Fluorescent Probes as a Tool in Diagnostic and Drug Delivery Systems. Pharmaceuticals (Basel) 2023; 16:ph16030381. [PMID: 36986481 PMCID: PMC10056067 DOI: 10.3390/ph16030381] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Over the last few years, the development of fluorescent probes has received considerable attention. Fluorescence signaling allows noninvasive and harmless real-time imaging with great spectral resolution in living objects, which is extremely useful for modern biomedical applications. This review presents the basic photophysical principles and strategies for the rational design of fluorescent probes as visualization agents in medical diagnosis and drug delivery systems. Common photophysical phenomena, such as Intramolecular Charge Transfer (ICT), Twisted Intramolecular Charge Transfer (TICT), Photoinduced Electron Transfer (PET), Excited-State Intramolecular Proton Transfer (ESIPT), Fluorescent Resonance Energy Transfer (FRET), and Aggregation-Induced Emission (AIE), are described as platforms for fluorescence sensing and imaging in vivo and in vitro. The presented examples are focused on the visualization of pH, biologically important cations and anions, reactive oxygen species (ROS), viscosity, biomolecules, and enzymes that find application for diagnostic purposes. The general strategies regarding fluorescence probes as molecular logic devices and fluorescence–drug conjugates for theranostic and drug delivery systems are discussed. This work could be of help for researchers working in the field of fluorescence sensing compounds, molecular logic gates, and drug delivery.
Collapse
|
4
|
Wang ZR, Zhang TJ, Wang QY, Xu EY, Zhang X, Zhang ZH, Lu PF, Zhao HY, Wang L, Meng FH. (E)-2-styrylanthracene-9,10-dione derivatives as novel fluorescent probes: synthesis, photophysical properties and application in mitochondria imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 286:121988. [PMID: 36308828 DOI: 10.1016/j.saa.2022.121988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Our previous work firstly reported that (E)-2-styrylanthracene-9,10-dione is a novel fluorescent core (EK01) with the ability of specific mitochondria imaging. In this effort, we mainly focused our attention on the structure-photophysical property relationship and application in cells imaging of this new fluorescent chemotype. A series of the structural derivatives (TZ series) were designed and synthesized by introducing some substituents onto the 2-styryl moiety. The structure-photophysical property relationship analysis suggested that TZ03 is an excellent fluorescent molecular building block with the property of fluorescent "turn-on" effect after the modification of acylation, and TZ07 is an excellent fluorescent dye with a series of advantages such as high fluorescence intensity (Fmax = 4049.0 in CH2Cl2, 25.80 μM), moderate molar extinction coefficients (3.77 × 103-5.93 × 103 mol-1∙L∙cm-1), strong fluorescence quantum yield (Φmax = 0.739 in CH2Cl2), large Stokes shift (99.0 nm-161.8 nm) and well biological tolerance. As a classical D-π-A structure, the ICT characteristic of TZ07 was analyzed through spectroscopy verification and DFT calculations. Furthermore, optimized compound TZ07 was successfully applied in the living cells imaging with the excellent selectivity to mitochondria in a green fluorescent form. It was also suggested that the mechanism of TZ07 targeting mitochondria is independent of mitochondrial membrane potential, but probably related to the mitochondrial complex I. These findings may provide some insights into the development of novel mitochondria-targeted fluorescent probes.
Collapse
Affiliation(s)
- Zhao-Ran Wang
- School of Pharmacy, China Medical University, 77 Puhe Road, North New Area, Shenyang 110122, China
| | - Ting-Jian Zhang
- School of Pharmacy, China Medical University, 77 Puhe Road, North New Area, Shenyang 110122, China
| | - Qiu-Yin Wang
- School of Pharmacy, China Medical University, 77 Puhe Road, North New Area, Shenyang 110122, China
| | - En-Yu Xu
- School of Forensic Medicine, China Medical University, Shenyang 110122, China
| | - Xu Zhang
- School of Pharmacy, China Medical University, 77 Puhe Road, North New Area, Shenyang 110122, China
| | - Zhen-Hao Zhang
- School of Pharmacy, China Medical University, 77 Puhe Road, North New Area, Shenyang 110122, China
| | - Peng-Fei Lu
- School of Pharmacy, China Medical University, 77 Puhe Road, North New Area, Shenyang 110122, China
| | - Hai-Yang Zhao
- Teaching Center for Basic Medical Experiment, China Medical University, 77 Puhe Road, North New Area, Shenyang 110122, China
| | - Lin Wang
- School of Pharmacy, China Medical University, 77 Puhe Road, North New Area, Shenyang 110122, China.
| | - Fan-Hao Meng
- School of Pharmacy, China Medical University, 77 Puhe Road, North New Area, Shenyang 110122, China.
| |
Collapse
|
5
|
Bakov VV, Georgiev NI, Bojinov VB. A Novel Fluorescent Probe for Determination of pH and Viscosity Based on a Highly Water-Soluble 1,8-Naphthalimide Rotor. Molecules 2022; 27:molecules27217556. [PMID: 36364383 PMCID: PMC9657100 DOI: 10.3390/molecules27217556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/29/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
A novel highly water-soluble 1,8-naphthalimide with pH and viscosity-sensing fluorescence was synthesized and investigated. The synthesized compound was designed as a molecular device in which a molecular rotor and molecular “off-on” switcher were integrated. In order to obtain a TICT driven molecular motion at C-4 position of the 1,8-naphthalimide fluorophore, a 4-methylpiperazinyl fragment was introduced. The molecular motion was confirmed after photophysical investigation in solvents with different viscosity; furthermore, the fluorescence-sensing properties of the examined compound were investigated in 100% aqueous medium and it was found that it could be used as an efficient fluorescent probe for pH. Due to the non-emissive deexcitation nature of the TICT fluorophore, the novel system showed low yellow–green emission, which represented “power-on”/“rotor-on” state. The protonation of the methylpiperazine amine destabilized the TICT process, which was accompanied by fluorescence enhancement indicating a “power-on”/“rotor-off” state of the system. The results obtained clearly illustrated the great potential of the synthesized compound to serve as pH- and viscosity-sensing material in aqueous solution.
Collapse
Affiliation(s)
- Ventsislav V. Bakov
- Department of Organic Synthesis, University of Chemical Technology and Metallurgy, 8 Kliment Ohridsky Str., 1756 Sofia, Bulgaria
| | - Nikolai I. Georgiev
- Department of Organic Synthesis, University of Chemical Technology and Metallurgy, 8 Kliment Ohridsky Str., 1756 Sofia, Bulgaria
- Correspondence: (N.I.G.); (V.B.B.); Tel.: +359-2-8163207 (N.I.G.); +359-2-8163206 (V.B.B.)
| | - Vladimir B. Bojinov
- Department of Organic Synthesis, University of Chemical Technology and Metallurgy, 8 Kliment Ohridsky Str., 1756 Sofia, Bulgaria
- Bulgarian Academy of Sciences, 1040 Sofia, Bulgaria
- Correspondence: (N.I.G.); (V.B.B.); Tel.: +359-2-8163207 (N.I.G.); +359-2-8163206 (V.B.B.)
| |
Collapse
|
6
|
Scerri GJ, Caruana M, Agius N, Agius G, Farrugia TJ, Spiteri JC, Johnson AD, Magri DC. Fluorescent Molecular Logic Gates and Pourbaix Sensors in Polyacrylamide Hydrogels. Molecules 2022; 27:molecules27185939. [PMID: 36144677 PMCID: PMC9503394 DOI: 10.3390/molecules27185939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 12/03/2022] Open
Abstract
Polyacrylamide hydrogels formed by free radical polymerisation were formed by entrapping anthracene and 4-amino-1,8-naphthalimide fluorescent logic gates based on photoinduced electron transfer (PET) and/or internal charge transfer (ICT). The non-covalent immobilisation of the molecules in the hydrogels resulted in semi-solid YES, NOT, and AND logic gates. Two molecular AND gates, examples of Pourbaix sensors, were tested in acidic aqueous methanol with ammonium persulfate, a strong oxidant, and displayed greater fluorescence quantum yields than previously reported. The logic hydrogels were exposed to aqueous solutions with chemical inputs, and the fluorescence output response was viewed under 365 nm UV light. All of the molecular logic gates diffuse out of the hydrogels to some extent when placed in solution, particularly those with secondary basic amines. The study exemplifies an effort of taking molecular logic gates from homogeneous solutions into the realm of solid-solution environments. We demonstrate the use of Pourbaix sensors as pE-pH indicators for monitoring oxidative and acidic conditions, notably for excess ammonium persulfate, a reagent used in the polymerisation of SDS-polyacrylamide gels.
Collapse
|
7
|
Georgiev NI, Krasteva PV, Bakov VV, Bojinov VB. A Highly Water-Soluble and Solid State Emissive 1,8-Naphthalimide as a Fluorescent PET Probe for Determination of pHs, Acid/Base Vapors, and Water Content in Organic Solvents. Molecules 2022; 27:molecules27134229. [PMID: 35807479 PMCID: PMC9268048 DOI: 10.3390/molecules27134229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 12/25/2022] Open
Abstract
A new highly water-soluble 1,8-naphthalimide fluorophore designed on the “fluorophore-spacer-receptor1-receptor2” model has been synthesized. Due to the unusually high solubility in water, the novel compound proved to be a selective PET-based probe for the determination of pHs in aqueous solutions and rapid detection of water content in organic solvents. Based on the pH dependence of the probe and its high water solubility, the INH logic gate was achieved using NaOH and water as chemical inputs, where NaOH is the disabler and the water is an enabler. In addition, the probe showed effective fluorescence “off-on” reversibility on glass support after exposure to acid and base vapors, which defines it as a promising platform for rapid detection of acid/base vapors in the solid-state, thus extending the molecular sensing concept from solution to the solid support.
Collapse
Affiliation(s)
- Nikolai I. Georgiev
- Correspondence: (N.I.G.); (V.B.B.); Tel.: +35-(92)-8163207 (N.I.G.); +35-(92)-8163206 (V.B.B.)
| | | | | | - Vladimir B. Bojinov
- Correspondence: (N.I.G.); (V.B.B.); Tel.: +35-(92)-8163207 (N.I.G.); +35-(92)-8163206 (V.B.B.)
| |
Collapse
|
8
|
Engle K, Kumar G. Cancer multidrug-resistance reversal by ABCB1 inhibition: A recent update. Eur J Med Chem 2022; 239:114542. [PMID: 35751979 DOI: 10.1016/j.ejmech.2022.114542] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 11/04/2022]
Abstract
Chemotherapy is one of the most common treatments for cancer that uses one or more anti-cancer drugs as a part of the standardized chemotherapy regimen. Cytotoxic chemicals delay and prevent cancer cells from multiplying, invading, and metastasizing. However, the significant drawbacks of cancer chemotherapy are the lack of selectivity of the cytotoxic drugs to tumour cells and normal cells and the development of resistance by cells for the particular drug or the combination of drugs. Multidrug resistance (MDR) is the low sensitivity of specific cells against drugs associated with cancer chemotherapy. The most common mechanisms of anticancer drug resistance are: (a) drug-dependent MDR (b) target-dependent MDR, and (c) drug target-independent MDR. In all the factors, the overexpression of multidrug efflux systems contributes significantly to the increased resistance in the cancer cells. Multidrug resistance due to efflux of anticancer drugs by membrane ABC transporters includes ABCB1, ABCC1, and ABCG2. ABCB1 inhibition can restore the sensitivity of the cancerous cells toward chemotherapeutic drugs. In this review, we discussed ABCB1 inhibitors under clinical studies with their mode of action, potency and selectivity. Also, we have highlighted the contribution of repurposing drugs, biologics and nano formulation strategies to combat multidrug resistance by modulating the ABCB1 activity.
Collapse
Affiliation(s)
- Kritika Engle
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India
| | - Gautam Kumar
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India.
| |
Collapse
|
9
|
Recent Developments on 1,8-Naphthalimide Moiety as Potential Target for Anticancer Agents. Bioorg Chem 2022; 121:105677. [DOI: 10.1016/j.bioorg.2022.105677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 01/31/2022] [Accepted: 02/08/2022] [Indexed: 01/07/2023]
|
10
|
Johnson AD, Buhagiar JA, Magri DC. 4-Amino-1,8-naphthalimide-ferrocene conjugates as potential multi-targeted anticancer and fluorescent cellular imaging agents. RSC Med Chem 2021; 12:2060-2064. [PMID: 35028564 DOI: 10.1039/d1md00246e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/21/2021] [Indexed: 11/21/2022] Open
Abstract
Herein we present eight ferrocenyl 4-amino-1,8-naphthalimides. Designed as fluorescent logic gates for acidity and oxidisability, the molecules have been repurposed as anti-proliferation and cellular imaging agents. The compounds were studied in vitro against MCF-7 and K562 cancer cell lines by the MTT method. Compounds with protonable secondary amines tended to exhibit greater cytotoxicity than those with tertiary amines. Compounds with no measurable GI50 values within a 24 hour time window, as well as at shorter exposure times, may be suitable as fluorescent cellular imaging probes.
Collapse
Affiliation(s)
- Alex D Johnson
- Department of Chemistry, Faculty of Science, University of Malta Msida MSD 2080 Malta
| | - Joseph A Buhagiar
- Department of Biology, Faculty of Science, University of Malta Msida MSD 2080 Malta
| | - David C Magri
- Department of Chemistry, Faculty of Science, University of Malta Msida MSD 2080 Malta
| |
Collapse
|
11
|
Xu ZJ, Zhou YJ, Wang JH, Mao LF, Li W, Xu GQ. The Synthesis and Antitumor Activity of 1,8-Naphthalimide Derivatives Linked 1,2,3-Triazole. Front Bioeng Biotechnol 2021; 9:662432. [PMID: 33928073 PMCID: PMC8076741 DOI: 10.3389/fbioe.2021.662432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
In this study, acenaphthylene was used as the raw material, and a series of novel 1,8-naphthalimide-1,2,3-triazole derivatives was obtained through oxidation, acylation, alkylation, and click reactions, and subsequently, their anti-tumor activities were tested. After screening, we found that Compound 5e showed good activity against H1975 lung cancer cells, with the half maximal inhibitory concentration (IC50) reaching 16.56 μM.
Collapse
Affiliation(s)
- Zhong-Jie Xu
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Ying-Jie Zhou
- Henan Engineering Research Center of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Jia-Hao Wang
- Henan Engineering Research Center of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Long-Fei Mao
- Henan Engineering Research Center of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Wei Li
- Henan Engineering Research Center of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Gui-Qing Xu
- Henan Engineering Research Center of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| |
Collapse
|
12
|
Magri DC. Logical sensing with fluorescent molecular logic gates based on photoinduced electron transfer. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213598] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
Jin J, Hou J, Long W, Zhang X, Lu YJ, Li D, Zhang K, Wong WL. Synthesis of fluorescent G-quadruplex DNA binding ligands for the comparison of terminal group effects in molecular interaction: Phenol versus methoxybenzene. Bioorg Chem 2020; 99:103821. [PMID: 32279036 DOI: 10.1016/j.bioorg.2020.103821] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/29/2020] [Accepted: 04/03/2020] [Indexed: 01/25/2023]
Abstract
A number of new fluorescent nucleic acid binding ligands were synthesized by utilizing the non-specific thiazole orange dye as the basic scaffold for molecular design. Under simple synthetic conditions, the molecular scaffold of thiazole orange bridged with a terminal side-group (phenol or methoxybenzene) becomes more flexible because the newly added ethylene bridge is relatively less rigid than the methylene of thiazole orange. It was found that these molecules showed better selectivity towards G-quadruplex DNA structure in molecular interactions with different type of nucleic acids. The difference in terms of induced DNA-ligand interaction signal, selectivity, and binding affinity of the ligands with the representative nucleic acids including single-stranded DNA, double-stranded DNA, telomere and promoter G4-DNA and ribosomal RNA were investigated. The position of the terminal methoxyl groups was found showing strong influence both on binding affinity and fluorescent discrimination among 19 nucleic acids tested. The ligand with a methoxyl group substituted at the meta-position of the styryl moiety exhibited the best fluorescent recognition performance towards telo21 G4-DNA. A good linear relationship between the induced fluorescent binding signal and the concentration of telo21 was obtained. The comparison of ligand-DNA interaction properties including equilibrium binding constants, molecular docking, G4-conformation change and stabilization ability for G4-structures was also conducted. Two cancer cell lines (human prostate cancer cell (PC3) and human hepatoma cell (hepG2)) were selected to explore the inhibitory effect of the ligands on the cancer cell growth. The IC50 values obtained in the MTT assay for the two cancer cells were found in the range of 3.4-10.8 μM.
Collapse
Affiliation(s)
- Jingwei Jin
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China; Institute of Natural Medicine and Green Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Jinqiang Hou
- Department of Chemistry, Lakehead University and Thunder Bay Regional Health Research Institute, 980 Oliver Road, Thunder Bay, ON P7B 6V4, Canada
| | - Wei Long
- Institute of Natural Medicine and Green Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Xinyue Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China
| | - Yu-Jing Lu
- Institute of Natural Medicine and Green Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Dongli Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China
| | - Wing-Leung Wong
- The State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China.
| |
Collapse
|