1
|
Ghosh P, Singh R, Chatterjee C, Kumar A, Singh SK. Computational screening of coumarin derivatives as inhibitors of the NACHT domain of NLRP3 inflammasome for the treatment of Alzheimer's disease. J Biomol Struct Dyn 2025; 43:2187-2203. [PMID: 38116751 DOI: 10.1080/07391102.2023.2294173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023]
Abstract
The nucleotide-binding oligomerization domain (NOD)-like receptor (NLR), leucine-rich-repeat (LRR), and pyrin domain containing 3 (NLRP3) is one of the key players in neuroinflammation, which is a major pathological hallmark of Alzheimer's Disease (AD). Activated NLRP3 causes release of pro-inflammatory molecules that aggravate neurodegeneration. Thus, pharmacologically inhibiting the NLRP3 inflammasome has the potential to alleviate the inflammatory injury to the neurons. Coumarin is a multifunctional nucleus with potent anti-inflammatory properties and can be utilized to develop novel drugs for the treatment and management of AD. In the present study, we have explored the NLRP3-inhibitory activities of a library of coumarin derivatives through a computational drug discovery approach. Drug-like, PAINS free, and potentially BBB permeable compounds were screened out and subjected to molecular docking and in silico ADMET studies, resulting in three virtual hits, i.e. MolPort-050-872-358, MolPort-050-884-068, and MolPort-051-135-630. The hits exhibited better NLRP3-binding affinity than MCC950, a selective inhibitor of NLRP3. Further, molecular dynamics (MD) simulations, post-MD simulation analyses, and binding free energy calculations of the hits established their potential as promising virtual leads with a common coumarin scaffold for the inhibition of NLRP3 inflammasome.
Collapse
Affiliation(s)
- Powsali Ghosh
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Ravi Singh
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Chayanika Chatterjee
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Ashok Kumar
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Sushil Kumar Singh
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| |
Collapse
|
2
|
Dabaghian F, Aalinezhad S, Kesheh AR, Azargashb N, Ansari R, Ardekani MRS, Emami SA, Khanavi M, Delnavazi MR. A review of the ethnomedicinal, phytochemical, and pharmacological properties of the Ferulago genus based on Structure-Activity Relationship (SAR) of coumarins. Daru 2024; 32:825-899. [PMID: 39158662 PMCID: PMC11555190 DOI: 10.1007/s40199-024-00530-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 06/30/2024] [Indexed: 08/20/2024] Open
Abstract
BACKGROUND The Ferluago W.D.J. Koch genus includes 48 accepted perennial herbs that are distributed in the Mediterranean region, Southeast Europe, Central and Middle East of Asia. These plants are widely used in folk and conventional medicine due to their biological benefits such as anti-microbial, anti-inflammatory, anti-cancer, and immunomodulatory properties. Conducting a comprehensive review based on the structure activity relationships (SARs) of the coumarins, which has not been previously documented, can lead to a better insight into the genus Ferulago and its beneficial therapeutic activities. METHODS This review covers literature from 1969 to 2023, were collected from various scientific electronic databases to review phytochemical, pharmacological, and ethnopharmacological data of Ferulago species, as well as latest information on the SAR of reported coumarins from this genus. RESULTS Phytochemical studies showed that the biological actions of this genus are mediated by the reported specialized metabolites, such as coumarins and flavonoids. Simple coumarins, prenylated coumarins, furanocoumarins, and pyranocoumarins are the largest subclasses of coumarins found in diverse Ferulago species, which have discussed the biological effects of them with a focus on the Structure-Activity Relationship (SAR). For example, prenylated coumarins have shown potential leishmanicidal and anti-neuropsychiatric effects when substituted with a prenyl group at the 7-hydroxy, as well as the C6 and C8 positions in their scaffold. Similarly, furanocoumarins exhibit varied biological activities such as anti-inflammatory, anti-proliferative, and anti-convulsant effects. Modifying substitutions at the C5 and C6 positions in furanocoumarins can enhance these activities. CONCLUSION This study conducted a comprehensive review of all available information on the phytochemical and pharmacological characteristics of Ferulago species. Given the high occurrence of coumarins in this genus, which exhibit potential anti-Alzheimer and anti-microbial properties, it presents promising new therapeutic avenues for addressing these common issues. Further investigation is needed to understand the molecular-level mechanisms of action and to explore their clinical applications.
Collapse
Affiliation(s)
- Farid Dabaghian
- Department of Pharmacognosy, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shokoufeh Aalinezhad
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alaleh Riazati Kesheh
- Department of Pharmacognosy, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Niloufar Azargashb
- Department of Pharmacognosy, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Ansari
- Department of Clinical Pharmacy, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Seyed Ahmad Emami
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahnaz Khanavi
- Department of Pharmacognosy, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada
| | - Mohammad Reza Delnavazi
- Department of Pharmacognosy, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Hussain MK, Khatoon S, Khan MF, Akhtar MS, Ahamad S, Saquib M. Coumarins as versatile therapeutic phytomolecules: A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155972. [PMID: 39265442 DOI: 10.1016/j.phymed.2024.155972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/23/2024] [Accepted: 07/11/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Coumarins, abundantly distributed in a plethora of biologically active compounds, serve as a fundamental motif in numerous natural products, drugs, and therapeutic leads. Despite their small size, they exhibit a diverse range of biological activities, intriguing researchers with their immense pharmacological potential. PURPOSE This study consolidates the evidence regarding the essential role of coumarins in modern drug discovery, exploring their broad-spectrum pharmaceutical effects, structural versatility, and mechanisms of action across various domains. METHODS For literature search, we utilized PubMed, Google scholar, and SciFinder databases. Keyword and keyword combinations such as "coumarins", "natural coumarins", "specific natural coumarins for particular diseases", and "therapeutic effects" were employed to retrieve relevant studies. The search encompassed articles published between 2005 and 2023. Selection criteria included studies reporting on the pharmacological activities of natural coumarins against various diseases. RESULTS The results highlight the therapeutic potential of natural coumarins against various diseases, demonstrating anti-cancer, anti-oxidant, and anti-inflammatory activities. They also act as monoamine oxidase inhibitors and phosphodiesterase inhibitors, and as anti-thrombotic, anti-diabetic, and hepatoprotective agents. They also show efficacy against diabetic nephropathy, neurodegenerative diseases, microbial infections and many other diseases. CONCLUSION This review underscores the significant role of natural coumarins in medicinal chemistry and drug discovery. Their diverse biological activities and structural versatility make them promising therapeutic agents. This study serves as a catalyst for further research in the field, aiming to address emerging challenges and opportunities in drug development.
Collapse
Affiliation(s)
- Mohd Kamil Hussain
- Department of Chemistry, Govt. Raza P.G. College, Rampur 244901, M.J.P Rohil Khand University, Bareilly, India.
| | | | - Mohammad Faheem Khan
- Department of Biotechnology, Era's Lucknow Medical College, Era University, Lucknow 226003, India
| | - Mohd Sayeed Akhtar
- Department of Botany, Gandhi Faiz-e-Aam College, Shahjahanpur 242001, India
| | - Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Mohammad Saquib
- Department of Chemistry, University of Allahabad, Prayagraj (Allahabad) 211002, India; Department of Chemistry, G. R. P. B. Degree College, P. R. S. University, Prayagraj (Allahabad) 211010, India.
| |
Collapse
|
4
|
Mishra PS, Kumar A, Kaur K, Jaitak V. Recent Developments in Coumarin Derivatives as Neuroprotective Agents. Curr Med Chem 2024; 31:5702-5738. [PMID: 37455459 DOI: 10.2174/0929867331666230714160047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/16/2023] [Accepted: 05/23/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Neurodegenerative diseases are among the diseases that cause the foremost burden on the health system of the world. The diseases are multifaceted and difficult to treat because of their complex pathophysiology, which includes protein aggregation, neurotransmitter breakdown, metal dysregulation, oxidative stress, neuroinflammation, excitotoxicity, etc. None of the currently available therapies has been found to be significant in producing desired responses without any major side effects; besides, they only give symptomatic relief otherwise indicated off-episode relief. Targeting various pathways, namely choline esterase, monoamine oxidase B, cannabinoid system, metal chelation, β-secretase, oxidative stress, etc., may lead to neurodegeneration. By substituting various functional moieties over the coumarin nucleus, researchers are trying to produce safer and more effective neuroprotective agents. OBJECTIVES This study aimed to review the current literature to produce compounds with lower side effects using coumarin as a pharmacophore. METHODS In this review, we have attempted to compile various synthetic strategies that have been used to produce coumarin and various substitutional strategies used to produce neuroprotective agents from the coumarin pharmacophore. Moreover, structure-activity relationships of substituting coumarin scaffold at various positions, which could be instrumental in designing new compounds, were also discussed. RESULTS The literature review suggested that coumarins and their derivatives can act as neuroprotective agents following various mechanisms. CONCLUSION Various studies have demonstrated the neuroprotective activity of coumarin due to an oxaheterocyclic loop, which allows binding with a broad array of proteins, thus motivating researchers to explore its potential as a lead against various neurodegenerative diseases.
Collapse
Affiliation(s)
- Prakash Shyambabu Mishra
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda (Pb.), 151401, India
| | - Amit Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda (Pb.), 151401, India
| | - Kamalpreet Kaur
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda (Pb.), 151401, India
| | - Vikas Jaitak
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda (Pb.), 151401, India
| |
Collapse
|
5
|
Kornicka A, Balewski Ł, Lahutta M, Kokoszka J. Umbelliferone and Its Synthetic Derivatives as Suitable Molecules for the Development of Agents with Biological Activities: A Review of Their Pharmacological and Therapeutic Potential. Pharmaceuticals (Basel) 2023; 16:1732. [PMID: 38139858 PMCID: PMC10747342 DOI: 10.3390/ph16121732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Umbelliferone (UMB), known as 7-hydroxycoumarin, hydrangine, or skimmetine, is a naturally occurring coumarin in the plant kingdom, mainly from the Umbelliferae family that possesses a wide variety of pharmacological properties. In addition, the use of nanoparticles containing umbelliferone may improve anti-inflammatory or anticancer therapy. Also, its derivatives are endowed with great potential for therapeutic applications due to their broad spectrum of biological activities such as anti-inflammatory, antioxidant, neuroprotective, antipsychotic, antiepileptic, antidiabetic, antimicrobial, antiviral, and antiproliferative effects. Moreover, 7-hydroxycoumarin ligands have been implemented to develop 7-hydroxycoumarin-based metal complexes with improved pharmacological activity. Besides therapeutic applications, umbelliferone analogues have been designed as fluorescent probes for the detection of biologically important species, such as enzymes, lysosomes, and endosomes, or for monitoring cell processes and protein functions as well various diseases caused by an excess of hydrogen peroxide. Furthermore, 7-hydroxy-based chemosensors may serve as a highly selective tool for Al3+ and Hg2+ detection in biological systems. This review is devoted to a summary of the research on umbelliferone and its synthetic derivatives in terms of biological and pharmaceutical properties, especially those reported in the literature during the period of 2017-2023. Future potential applications of umbelliferone and its synthetic derivatives are presented.
Collapse
Affiliation(s)
- Anita Kornicka
- Department of Chemical Technology of Drugs, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland; (Ł.B.); (M.L.); (J.K.)
| | | | | | | |
Collapse
|
6
|
Lin Z, Cheng X, Zheng H. Umbelliferon: a review of its pharmacology, toxicity and pharmacokinetics. Inflammopharmacology 2023:10.1007/s10787-023-01256-3. [PMID: 37308634 DOI: 10.1007/s10787-023-01256-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/24/2023] [Indexed: 06/14/2023]
Abstract
Coumarin, a plant secondary metabolite, has various pharmacological activities, including antioxidant stress and anti-inflammatory effects. Umbelliferone, a common coumarin compound found in almost all higher plants, has been extensively studied for its pharmacological effects in different disease models and doses with complex action mechanisms. This review aims to summarize these studies and provide useful information to relevant scholars. The pharmacological studies demonstrate that umbelliferone has diverse effects such as anti-diabetes, anti-cancer, anti-infection, anti-rheumatoid arthritis, neuroprotection, and improvement of liver, kidney, and myocardial tissue damage. The action mechanisms of umbelliferone include inhibition of oxidative stress, inflammation, and apoptosis, improvement of insulin resistance, myocardial hypertrophy, and tissue fibrosis, in addition to regulation of blood glucose and lipid metabolism. Among the action mechanisms, the inhibition of oxidative stress and inflammation is the most critical. In short, these pharmacological studies disclose that umbelliferone is expected to treat many diseases, and more research should be conducted.
Collapse
Affiliation(s)
- Zhi Lin
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, People's Republic of China
| | - Xi Cheng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, People's Republic of China
| | - Hui Zheng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, People's Republic of China.
| |
Collapse
|
7
|
Won H, Son MG, Pel P, Nhoek P, An CY, Kim YM, Chae HS, Chin YW. Chemical constituents from Morus alba with proprotein convertase subtilisin/kexin type 9 expression and secretion inhibitory activity. Org Biomol Chem 2023; 21:2801-2808. [PMID: 36920451 DOI: 10.1039/d3ob00225j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Six new flavanones, including sanggenol W (1), morusalnol D-F (2-4) and neovanone A and B (5 and6), and fourteen known compounds were isolated from the methanol extract of the dried root bark of Morus alba using various column chromatographic methods. Their structures were elucidated using spectroscopic methods. The isolated compounds were tested in vitro for LDLR, PCSK9 and IDOL mRNA regulatory activity, and it was found that betulinic acid (13) showed the most potent effect on downregulation of PCSK9 and upregulation of LDLR at both mRNA and protein levels, showing comparable results to berberine, the positive control. In addition, betulinic acid (13) inhibited PCSK9 secretion, indicating its role as a future PCSK9 synthesis inhibitor.
Collapse
Affiliation(s)
- Hongic Won
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| | - Min-Gyung Son
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| | - Pisey Pel
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| | - Piseth Nhoek
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| | - Chae-Yeong An
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| | - Young-Mi Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| | - Hee-Sung Chae
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| | - Young-Won Chin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
8
|
Sun W, Shahrajabian MH. Therapeutic Potential of Phenolic Compounds in Medicinal Plants-Natural Health Products for Human Health. Molecules 2023; 28:1845. [PMID: 36838831 PMCID: PMC9960276 DOI: 10.3390/molecules28041845] [Citation(s) in RCA: 147] [Impact Index Per Article: 73.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Phenolic compounds and flavonoids are potential substitutes for bioactive agents in pharmaceutical and medicinal sections to promote human health and prevent and cure different diseases. The most common flavonoids found in nature are anthocyanins, flavones, flavanones, flavonols, flavanonols, isoflavones, and other sub-classes. The impacts of plant flavonoids and other phenolics on human health promoting and diseases curing and preventing are antioxidant effects, antibacterial impacts, cardioprotective effects, anticancer impacts, immune system promoting, anti-inflammatory effects, and skin protective effects from UV radiation. This work aims to provide an overview of phenolic compounds and flavonoids as potential and important sources of pharmaceutical and medical application according to recently published studies, as well as some interesting directions for future research. The keyword searches for flavonoids, phenolics, isoflavones, tannins, coumarins, lignans, quinones, xanthones, curcuminoids, stilbenes, cucurmin, phenylethanoids, and secoiridoids medicinal plant were performed by using Web of Science, Scopus, Google scholar, and PubMed. Phenolic acids contain a carboxylic acid group in addition to the basic phenolic structure and are mainly divided into hydroxybenzoic and hydroxycinnamic acids. Hydroxybenzoic acids are based on a C6-C1 skeleton and are often found bound to small organic acids, glycosyl moieties, or cell structural components. Common hydroxybenzoic acids include gallic, syringic, protocatechuic, p-hydroxybenzoic, vanillic, gentistic, and salicylic acids. Hydroxycinnamic acids are based on a C6-C3 skeleton and are also often bound to other molecules such as quinic acid and glucose. The main hydroxycinnamic acids are caffeic, p-coumaric, ferulic, and sinapic acids.
Collapse
Affiliation(s)
- Wenli Sun
- Correspondence: ; Tel.: +86-13-4260-83836
| | | |
Collapse
|
9
|
Sudevan ST, Oh JM, Abdelgawad MA, Abourehab MAS, Rangarajan TM, Kumar S, Ahmad I, Patel H, Kim H, Mathew B. Introduction of benzyloxy pharmacophore into aryl/heteroaryl chalcone motifs as a new class of monoamine oxidase B inhibitors. Sci Rep 2022; 12:22404. [PMID: 36575270 PMCID: PMC9794710 DOI: 10.1038/s41598-022-26929-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
The inhibitory action of fifteen benzyloxy ortho/para-substituted chalcones (B1-B15) was evaluated against human monoamine oxidases (hMAOs). All the molecules inhibited hMAO-B isoform more potently than hMAO-A. Furthermore, the majority of the molecules showed strong inhibitory actions against hMAO-B at 10 μM level with residual activities of less than 50%. Compound B10 has an IC50 value of 0.067 μM, making it the most potent inhibitor of hMAO-B, trailed by compound B15 (IC50 = 0.12 μM). The thiophene substituent (B10) in the A-ring exhibited the strongest hMAO-B inhibition structurally, however, increased residue synthesis did not result in a rise in hMAO-B inhibition. In contrast, the benzyl group at the para position of the B-ring displayed more hMAO-B inhibition than the other positions. Compounds B10 and B15 had relatively high selectivity index (SI) values for hMAO-B (504.791 and 287.600, respectively). Ki values of B10 and B15 were 0.030 ± 0.001 and 0.033 ± 0.001 μM, respectively. The reversibility study showed that B10 and B15 were reversible inhibitors of hMAO-B. PAMPA assay manifested that the benzyloxy chalcones (B10 and B15) had a significant permeability and CNS bioavailability with Pe value higher than 4.0 × 10-6 cm/s. Both compounds were stabilized in protein-ligand complexes by the π-π stacking, which enabled them to bind to the hMAO-B enzyme's active site incredibly effectively. The hMAO-B was stabilized by B10- and B15-hMAO-B complexes, with binding energies of - 74.57 and - 87.72 kcal/mol, respectively. Using a genetic algorithm and multiple linear regression, the QSAR model was created. Based on the best 2D and 3D descriptor-based QSAR model, the following statistics were displayed: R2 = 0.9125, Q2loo = 0.8347. These findings imply that B10 and B15 are effective, selective, and reversible hMAO-B inhibitors.
Collapse
Affiliation(s)
- Sachithra Thazhathuveedu Sudevan
- grid.411370.00000 0000 9081 2061Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041 India
| | - Jong Min Oh
- grid.412871.90000 0000 8543 5345Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922 Republic of Korea
| | - Mohamed A. Abdelgawad
- grid.440748.b0000 0004 1756 6705Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, 72341 Saudi Arabia ,grid.411662.60000 0004 0412 4932Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514 Egypt
| | - Mohammed A. S. Abourehab
- grid.412832.e0000 0000 9137 6644Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah, 21955 Saudi Arabia
| | - T. M. Rangarajan
- grid.8195.50000 0001 2109 4999Department of Chemistry, Sri Venketeswara College, University of Delhi, New Delhi, 110021 India
| | - Sunil Kumar
- grid.411370.00000 0000 9081 2061Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041 India
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Gondur, Dhule, 424002 Maharashtra India
| | - Harun Patel
- grid.412233.50000 0001 0641 8393Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405 Maharashtra India
| | - Hoon Kim
- grid.412871.90000 0000 8543 5345Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922 Republic of Korea
| | - Bijo Mathew
- grid.411370.00000 0000 9081 2061Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041 India
| |
Collapse
|
10
|
Protective Mechanisms of Nootropic Herb Shankhpushpi ( Convolvulus pluricaulis) against Dementia: Network Pharmacology and Computational Approach. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1015310. [PMID: 36225186 PMCID: PMC9550454 DOI: 10.1155/2022/1015310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 07/28/2022] [Indexed: 11/28/2022]
Abstract
Convolvulus pluricaulis (CP), a Medhya Rasayana (nootropic) herb, is a major ingredient in Ayurvedic and Traditional Chinese formulae indicated for neurological conditions, namely, dementia, anxiety, depression, insanity, and epilepsy. Experimental evidence suggests various neuroactive potentials of CP such as memory-enhancing, neuroprotective, and antiepileptic. However, precise mechanisms underlying the neuropharmacological effects of CP remain unclear. The study, therefore, aimed at deciphering the molecular basis of neuroprotective effects of CP phytochemicals against the pathology of dementia disorders such as Alzheimer's (AD) and Parkinson's (PD) disease. The study exploited bioinformatics tools and resources, such as Cytoscape, DAVID (Database for annotation, visualization, and integrated discovery), NetworkAnalyst, and KEGG (Kyoto Encyclopedia of Genes and Genomes) database to investigate the interaction between CP compounds and molecular targets. An in silico analysis was also employed to screen druglike compounds and validate some selective interactions. ADME (absorption, distribution, metabolism, and excretion) analysis predicted a total of five druglike phytochemicals from CP constituents, namely, scopoletin, 4-hydroxycinnamic acid, kaempferol, quercetin, and ayapanin. In network analysis, these compounds were found to interact with some molecular targets such as prostaglandin G/H synthase 1 and 2 (PTGS1 and PTGS2), endothelial nitric oxide synthase (NOS3), insulin receptor (INSR), heme oxygenase 1 (HMOX1), acetylcholinesterase (ACHE), peroxisome proliferator-activated receptor-gamma (PPARG), and monoamine oxidase A and B (MAOA and MAOB) that are associated with neuronal growth, survival, and activity. Docking simulation further confirmed interaction patterns and binding affinity of selected CP compounds with those molecular targets. Notably, scopoletin showed the highest binding affinity with PTGS1, NOS3, PPARG, ACHE, MAOA, MAOB, and TRKB, quercetin with PTGS2, 4-hydroxycinnamic acid with INSR, and ayapanin with HMOX1. The findings indicate that scopoletin, kaempferol, quercetin, 4-hydroxycinnamic acid, and ayapanin are the main active constituents of CP which might account for its memory enhancement and neuroprotective effects and that target proteins such as PTGS1, PTGS2, NOS3, PPARG, ACHE, MAOA, MAOB, INSR, HMOX1, and TRKB could be druggable targets against dementia.
Collapse
|
11
|
6-Formyl Umbelliferone, a Furanocoumarin from Angelica decursiva L., Inhibits Key Diabetes-Related Enzymes and Advanced Glycation End-Product Formation. Molecules 2022; 27:molecules27175720. [PMID: 36080485 PMCID: PMC9458250 DOI: 10.3390/molecules27175720] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Over the years, great attention has been paid to coumarin derivatives, a set of versatile molecules that exhibit a wide variety of biological activities and have few toxic side effects. In this study, we investigated the antidiabetic potential of 6-formyl umbelliferone (6-FU), a novel furanocoumarin isolated from Angelica decursiva. Numerous pharmacological activities of 6-FU have been previously reported; however, the mechanism of its antidiabetic activity is unknown. Therefore, we examined the action of 6-FU on a few candidate-signaling molecules that may underlie its antidiabetic activity, including its inhibition of protein tyrosine phosphatase 1B (PTP1B), α-glucosidase, human recombinant aldose reductase (HRAR), and advanced glycation end-product (AGE) formation (IC50 = 1.13 ± 0.12, 58.36 ± 1.02, 5.11 ± 0.21, and 2.15 ± 0.13 μM, respectively). A kinetic study showed that 6-FU exhibited mixed-type inhibition against α-glucosidase and HRAR and competitive inhibition of PTP1B. Docking simulations of 6-FU demonstrated negative binding energies and close proximity to residues in the binding pockets of those enzymes. We also investigated the molecular mechanisms underlying 6-FU's antidiabetic effects. 6-FU significantly increased glucose uptake and decreased PTP1B expression in insulin-resistant C2C12 skeletal muscle cells. Moreover, 6-FU (0.8-100 μM) remarkably inhibited the formation of fluorescent AGEs in glucose-fructose-induced human serum albumin glycation over the course of 4 weeks. The findings clearly indicate that 6-FU will be useful in the development of multiple target-oriented therapeutic modalities for the treatment of diabetes and diabetes-related complications.
Collapse
|
12
|
Sudevan ST, Rangarajan TM, Al-Sehemi AG, Nair AS, Koyiparambath VP, Mathew B. Revealing the role of the benzyloxy pharmacophore in the design of a new class of monoamine oxidase-B inhibitors. Arch Pharm (Weinheim) 2022; 355:e2200084. [PMID: 35567313 DOI: 10.1002/ardp.202200084] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 11/09/2022]
Abstract
The conceptual layout of monoamine oxidase (MAO) inhibitors has been modified to explore their potential biological application in the case of neurological disorders for the time being. The current review article is an effort to display the summation of innovative conceptual prospects of MAO inhibitors and their intriguing chemistry and bioactivity. Based on this scenario, we emphasize the pivotal role of the benzyloxy moiety attached to scaffolds like oxadiazolones, indolalkylamines, safinamide, caffeine, benzofurans, α-tetralones, β-nitrostyrene, benzoquinones, coumarins, indoles, chromones, and chromanone analogs, while acting as an MAO inhibitor.
Collapse
Affiliation(s)
- Sachithra T Sudevan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - T M Rangarajan
- Department of Chemistry, Sri Venketeswara College, University of Delhi, New Delhi, India
| | - Abdullah G Al-Sehemi
- Research Center for Advanced Materials Science, King Khalid University, Abha, Saudi Arabia.,Department of Chemistry, KingKhalid University, 61413, Abha, Saudi Arabia
| | - Aathira S Nair
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Vishal P Koyiparambath
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| |
Collapse
|
13
|
Pourabdi L, Küçükkılınç TT, Khoshtale F, Ayazgök B, Nadri H, Farokhi Alashti F, Forootanfar H, Akbari T, Shafiei M, Foroumadi A, Sharifzadeh M, Shafiee Ardestani M, Abaee MS, Firoozpour L, Khoobi M, Mojtahedi MM. Synthesis of New 3-Arylcoumarins Bearing N-Benzyl Triazole Moiety: Dual Lipoxygenase and Butyrylcholinesterase Inhibitors With Anti-Amyloid Aggregation and Neuroprotective Properties Against Alzheimer’s Disease. Front Chem 2022; 9:810233. [PMID: 35127652 PMCID: PMC8812461 DOI: 10.3389/fchem.2021.810233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
A novel series of coumarin derivatives linked to the N-benzyl triazole group were synthesized and evaluated against 15-lipoxygenase (15-LOX), and acetyl- and butyrylcholinesterase (AChE and BuChE) to find the most potent derivative against Alzheimer’s disease (AD). Most of the compounds showed weak to moderate activity against ChEs. Among the most active BuChE and 15-LOX inhibitors, 8l and 8n exhibited an excellent neuroprotective effect, higher than the standard drug (quercetin) on the PC12 cell model injured by H2O2 and significantly reduced aggregation of amyloid Aβ1-42, with potencies of 1.44 and 1.79 times higher than donepezil, respectively. Compound 8l also showed more activity than butylated hydroxytoluene (BHT) as the reference antioxidant agent in reducing the levels of H2O2 activated by amyloid β in BV2 microglial cells. Kinetic and ligand–enzyme docking studies were also performed for better understanding of the mode of interaction between the best BuChE inhibitor and the enzyme. Considering the acceptable BuChE and 15-LOX inhibition activities as well as significant neuroprotection, and anti-amyloid aggregation activities, 8l and 8n could be considered as potential MTDLs for further modification and studies against AD.
Collapse
Affiliation(s)
- Ladan Pourabdi
- Department of Organic Chemistry and Natural Products, Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran
| | | | - Fatemeh Khoshtale
- Department of Organic Chemistry and Natural Products, Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran
| | - Beyza Ayazgök
- Faculty of Pharmacy, Department of Biochemistry, Hacettepe University, Ankara, Turkey
| | - Hamid Nadri
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Farid Farokhi Alashti
- Department of Organic Chemistry and Natural Products, Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran
| | - Hamid Forootanfar
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Tayebeh Akbari
- Department of Microbiology, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Mohammad Shafiei
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Foroumadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Pharmaceutical Sciences Research Center, The institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Shafiee Ardestani
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - M. Saeed Abaee
- Department of Organic Chemistry and Natural Products, Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran
| | - Loghman Firoozpour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Khoobi
- Pharmaceutical Sciences Research Center, The institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Mohammad M. Mojtahedi, ; Mehdi Khoobi, ,
| | - Mohammad M. Mojtahedi
- Department of Organic Chemistry and Natural Products, Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran
- *Correspondence: Mohammad M. Mojtahedi, ; Mehdi Khoobi, ,
| |
Collapse
|
14
|
Skarga VV, Negrebetsky VV, Baukov YI, Malakhov MV. Twice as Nice: The Duff Formylation of Umbelliferone Revised. Molecules 2021; 26:7482. [PMID: 34946562 PMCID: PMC8706561 DOI: 10.3390/molecules26247482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/04/2021] [Accepted: 12/08/2021] [Indexed: 11/17/2022] Open
Abstract
More efficient and preferably more convenient and greener synthetic solutions in coumarin scaffold functionalization are in steady demand. The Duff ortho-formylation of unsubstituted umbelliferone was revised in this study. The reaction conditions were optimized based upon data from the literature analysis and resulted in unexpectedly rapid ortho-formylation of umbelliferone, yielding a mixture of ortho-formyl position isomers. Thorough studies on the separation of ortho-formylated umbelliferones using chromatographic and recrystallization methods as well as the evaluation of their solubility in common organic solvents led to complete resolution of 8-formyl- and 6-formylumbelliferones. The precise protocol for simultaneous preparation, extraction, and purification of 8-formyl- and 6-formylumbelliferones is provided, and the prospective studies of biological and pharmacological activities of these compounds are synopsized.
Collapse
Affiliation(s)
| | | | | | - Mikhail V. Malakhov
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (V.V.S.); (V.V.N.); (Y.I.B.)
| |
Collapse
|
15
|
Guesne S, Connole L, Kim S, Motevalli M, Robson L, Michael-Titus AT, Sullivan A. Umbelliferyloxymethyl phosphonate compounds-weakly binding zinc ionophores with neuroprotective properties. Dalton Trans 2021; 50:17041-17051. [PMID: 34761777 PMCID: PMC8631114 DOI: 10.1039/d1dt02298a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 11/04/2021] [Indexed: 11/21/2022]
Abstract
Umbelliferone is a member of the coumarin family of compounds which are known for diverse pharmacological activity including in targets relevant to Alzheimers disease, AD. The toxicity associated with some forms of the amyloid protein, Aβ, and the role of Zn2+ (and other biometals) dyshomeostasis in this, are of great interest in AD and make metal ionophore capability desirable in so called multi target drug ligands MTDLs. A new series of umbelliferyloxymethyl phosphonic acid diethylester compounds (umbelliferyloxymethyl phosphonates) bearing a phosphonate at the 7-position (compounds 1, 3-6), hydrolysis products 2, 2a and 2b from 1 and analogues 7 and 8 of 1 with 7-O to 7-S and 1-O to 1-NH substitutions, are reported. Single crystal X-ray structures of compounds 1, 2 and 2a were determined. In terms of neuroprotective properties, the compounds 1, 2, 3, 4, 5 and 6 at 1 μM concentration, inhibited the toxicity of Aβ1-42 (Aβ42) in both toxic Amyloid Derived Diffusible Ligand (ADDL) and fibrillar (fibril) forms towards rat hippocampal cells. Compound 7 displayed cytotoxicity and 8 failed to inhibit Aβ42 toxicity. Concerning compound-metal ionophore activity (assessed using chemical experiments), despite weak binding to Zn2+ determined from 31P NMR titration of 1 and 2 by ZnCl2, compounds 1, 3, 4, 5 and 6 demonstrated ionophore assisted partition of Zn2+ from water to octanol at micromolar concentrations with efficacy on a par with or better than the chelator MTDL clioquinol (5-chloro-7-iodo-8-hydroxyquinoline). Partition was assessed using furnace Atomic Absorption Spectroscopy (AAS). In further experiments interaction of compound 1 with Zn2+ or it's pathways was inferred by (i) delayed fluorescence response with added Zn2+ in cells treated with FluoZin-3 and (ii) by suppression of Zn2+ promoted aggregation of Aβ42.
Collapse
Affiliation(s)
- Sebastien Guesne
- Dept. of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, UK.
| | - Laura Connole
- Blizard Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, Mile End Road, London E1 4NS, UK
| | - Stephanie Kim
- Dept. of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, UK.
| | - Majid Motevalli
- Dept. of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, UK.
| | - Lesley Robson
- Blizard Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, Mile End Road, London E1 4NS, UK
| | - Adina T Michael-Titus
- Blizard Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, Mile End Road, London E1 4NS, UK
| | - Alice Sullivan
- Dept. of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, UK.
| |
Collapse
|
16
|
Aydin T, Akincioglu H, Gumustas M, Gulcin I, Kazaz C, Cakir A. human monoamine oxidase (hMAO) A and hMAO B inhibitors from Artemisia dracunculus L. herniarin and skimmin: human mononamine oxidase A and B inhibitors from A. dracunculus L. ACTA ACUST UNITED AC 2021; 75:459-466. [PMID: 32598328 DOI: 10.1515/znc-2019-0227] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 05/25/2020] [Indexed: 12/28/2022]
Abstract
The aim of this study was to investigate the effects of extracts and pure Artemisia dracunculus L. (tarragon) metabolites on the antimonoamine oxidase and anticholinesterase activities. The compounds were characterized as stigmasterol (1), herniarin (2), (2E,4E)-1-(piperidin-1-yl)undeca-2,4-diene-8,10-diyn-1-one (3), (2E,4E)-N-isobutylundeca-2,4-dien-8,10-diynamide (4), 3,4-dehydroherniarin (5) and skimmin (6) by 1H-NMR, 13C-NMR, 1D and 2D NMR methods. The compounds 5 and 6 were isolated from tarragon for the first time. The extracts and pure compounds have inhibitory effects on the human monoamine oxidase (hMAO) A and B enzymes, whereas they did not exhibit any anticholinesterase activities. Among the tarragon compounds, only 2 and 6 compounds showed the inhibitory effects against hMAO A (IC50 = 51.76 and 73.47 μM, respectively) and hMAO B (IC50 = 0.84 and 1.63 mM, respectively). In the study, herniarin content in the extracts was also analysed by high-performance liquid chromatography and it was found that there was a relationship between the inhibition effects of the extracts and their herniarin content.
Collapse
Affiliation(s)
- Tuba Aydin
- Department of Pharmacognosy, Faculty of Pharmacy, Agri Ibrahim Cecen University, Agri04100, Turkey
| | - Hulya Akincioglu
- Department of Biochemistry, Faculty of Science and Letters, Agri Ibrahim Cecen University, Agri04100, Turkey
| | | | - Ilhami Gulcin
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum25070, Turkey
| | - Cavit Kazaz
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum25070, Turkey
| | - Ahmet Cakir
- Department of Chemistry, Faculty of Science and Letters, Kilis 7 Aralik University, Kilis79000, Turkey
| |
Collapse
|
17
|
Koyiparambath VP, Prayaga Rajappan K, Rangarajan TM, Al-Sehemi AG, Pannipara M, Bhaskar V, Nair AS, Sudevan ST, Kumar S, Mathew B. Deciphering the detailed structure-activity relationship of coumarins as Monoamine oxidase enzyme inhibitors-An updated review. Chem Biol Drug Des 2021; 98:655-673. [PMID: 34233082 DOI: 10.1111/cbdd.13919] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/28/2021] [Accepted: 07/03/2021] [Indexed: 11/28/2022]
Abstract
In the last few years, Monoamine oxidase (MAO) have emerged as a target for the treatment of many neurodegenerative diseases including anxiety, depression, Alzheimer's, and Parkinson's diseases. The MAO inhibitors especially selective and reversible inhibitors of either of the isoenzymes (MAO-A & MAO-B) have been given more attention as both the form have different therapeutic properties and hence can be used for different neurological disorders. The lack of selective and reversible inhibitors available for both the enzymes and severity of the neuronal disorder in society have opened a new door to the researchers to carry out large and dedicated researches in this field. Among the several classes of the molecule as the inhibitors, coumarins hold a rank as a potent scaffold with its ease of synthesis, high therapeutic potential, and reversibility in inhibiting MAOs. The current review is an update of the research in the field that covers the works during the last six years (2014-2020) with a major focus on the SAR of the coumarin derivatives including synthetic, natural, and hybrids of coumarins with FDA-approved drugs.
Collapse
Affiliation(s)
- Vishal Payyalot Koyiparambath
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Krishnendu Prayaga Rajappan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - T M Rangarajan
- Department of Chemistry, Sri Venketeswara College, University of Delhi, New Delhi, India
| | - Abdullah G Al-Sehemi
- Research center for Advanced Materials Science, King Khalid University, Abha, Saudi Arabia
| | - Mehboobali Pannipara
- Research center for Advanced Materials Science, King Khalid University, Abha, Saudi Arabia
| | - Vaishnav Bhaskar
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Aathira Sujathan Nair
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Sachithra Thazhathuveedu Sudevan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Sunil Kumar
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| |
Collapse
|
18
|
Jalali A, Firouzabadi N, Zarshenas MM. Pharmacogenetic-based management of depression: Role of traditional Persian medicine. Phytother Res 2021; 35:5031-5052. [PMID: 34041799 DOI: 10.1002/ptr.7134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/26/2021] [Accepted: 04/10/2021] [Indexed: 12/11/2022]
Abstract
Depression is one of the most common mental disorders worldwide. The genetic factors are linked to depression and anti-depressant outcomes. Traditional Persian medicine (TPM) manuscripts have provided various anti-depressant remedies, which may be useful in depression management. This review has studied the bioactive compounds, underlying mechanisms, and treatment outcomes of the medicinal plants traditionally mentioned effective for depression from "The storehouse of medicament" (a famous pharmacopeia of TPM) to merge those with the novel genetics science and serve new scope in depression prevention and management. This review paper has been conducted in two sections: (1) Collecting medicinal plants and their bioactive components from "The storehouse of medicament," "Physician's Desk Reference (PDR) for Herbal Medicines," and "Google scholar" database. (2) The critical key factors and genes in depression pathophysiology, prevention, and treatment were clarified. Subsequently, the association between bioactive components' underlying mechanism and depression treatment outcomes via considering polymorphisms in related genes was derived. Taken together, α-Mangostin, β-carotene, β-pinene, apigenin, caffeic acid, catechin, chlorogenic acid, citral, ellagic acid, esculetin, ferulic acid, gallic acid, gentiopicroside, hyperoside, kaempferol, limonene, linalool, lycopene, naringin, protocatechuic acid, quercetin, resveratrol, rosmarinic acid, and umbelliferone are suitable for future pharmacogenetics-based studies in the management of depression.
Collapse
Affiliation(s)
- Atefeh Jalali
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Firouzabadi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad M Zarshenas
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
19
|
Pattarachotanant N, Tencomnao T. Citrus hystrix Extracts Protect Human Neuronal Cells against High Glucose-Induced Senescence. Pharmaceuticals (Basel) 2020; 13:ph13100283. [PMID: 33007805 PMCID: PMC7600454 DOI: 10.3390/ph13100283] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 12/17/2022] Open
Abstract
Citrus hystrix (CH) is a beneficial plant utilized in traditional folk medicine to relieve various health ailments. The antisenescent mechanisms of CH extracts were investigated using human neuroblastoma cells (SH-SY5Y). Phytochemical contents and antioxidant activities of CH extracts were analyzed using a gas chromatograph–mass spectrometer (GC-MS), 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) assay and 2,2′-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) assay. Effects of CH extracts on high glucose-induced cytotoxicity, reactive oxygen species (ROS) generation, cell cycle arrest and cell cycle-associated proteins were assessed using a 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide tetrazolium (MTT) assay, non-fluorescent 2′, 7′-dichloro-dihydrofluorescein diacetate (H2DCFDA) assay, flow cytometer and Western blot. The extracts protected neuronal senescence by inhibiting ROS generation. CH extracts induced cell cycle progression by releasing senescent cells from the G1 phase arrest. As the Western blot confirmed, the mechanism involved in cell cycle progression was associated with the downregulation of cyclin D1, phospho-cell division cycle 2 (pcdc2) and phospho-Retinoblastoma (pRb) proteins. Furthermore, the Western blot showed that extracts increased Surtuin 1 (SIRT1) expression by increasing the phosphorylation of Glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Collectively, CH extracts could protect high glucose-induced human neuronal senescence by inducing cell cycle progression and up-regulation of SIRT1, thus leading to the improvement of the neuronal cell functions.
Collapse
Affiliation(s)
- Nattaporn Pattarachotanant
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
- Age-Related Inflammation and Degeneration Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tewin Tencomnao
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
- Age-Related Inflammation and Degeneration Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: ; Tel.: +66-2-218-1533
| |
Collapse
|
20
|
Esculetin as a Bifunctional Antioxidant Prevents and Counteracts the Oxidative Stress and Neuronal Death Induced by Amyloid Protein in SH-SY5Y Cells. Antioxidants (Basel) 2020; 9:antiox9060551. [PMID: 32630394 PMCID: PMC7346165 DOI: 10.3390/antiox9060551] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/21/2020] [Accepted: 06/23/2020] [Indexed: 12/18/2022] Open
Abstract
Oxidative stress (OS) appears to be an important determinant during the different stages of progression of Alzheimer’s Disease (AD). In particular, impaired antioxidant defense mechanisms, such as the decrease of glutathione (GSH) and nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2), a master regulator of antioxidant genes, including those for GSH, are associated with OS in the human AD brain. Among the neuropathological hallmarks of AD, the soluble oligomers of amyloid beta (Aβ) peptides seem to promote neuronal death through mitochondrial dysfunction and OS. In this regard, bifunctional antioxidants can exert a dual neuroprotective role by scavenging reactive oxygen species (ROS) directly and concomitant induction of antioxidant genes. In this study, among natural coumarins (esculetin, scopoletin, fraxetin and daphnetin), we demonstrated the ability of esculetin (ESC) to prevent and counteract ROS formation in neuronal SH-SY5Y cells, suggesting its profile as a bifunctional antioxidant. In particular, ESC increased the resistance of the SH-SY5Y cells against OS through the activation of Nrf2 and increase of GSH. In similar experimental conditions, ESC could also protect the SH-SY5Y cells from the OS and neuronal death evoked by oligomers of Aβ1–42 peptides. Further, the use of the inhibitors PD98059 and LY294002 also showed that Erk1/2 and Akt signaling pathways were involved in the neuroprotection mediated by ESC. These results encourage further research in AD models to explore the efficacy and safety profile of ESC as a novel neuroprotective agent.
Collapse
|
21
|
Ali MY, Seong SH, Jung HA, Choi JS. Angiotensin-I-Converting Enzyme Inhibitory Activity of Coumarins from Angelica decursiva. Molecules 2019; 24:molecules24213937. [PMID: 31683604 PMCID: PMC6864762 DOI: 10.3390/molecules24213937] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 02/01/2023] Open
Abstract
The bioactivity of ten traditional Korean Angelica species were screened by angiotensin-converting enzyme (ACE) assay in vitro. Among the crude extracts, the methanol extract of Angelica decursiva whole plants exhibited potent inhibitory effects against ACE. In addition, the ACE inhibitory activity of coumarins 1–5, 8–18 was evaluated, along with two phenolic acids (6, 7) obtained from A. decursiva. Among profound coumarins, 11–18 were determined to manifest marked inhibitory activity against ACE with IC50 values of 4.68–20.04 µM. Compounds 12, 13, and 15 displayed competitive inhibition against ACE. Molecular docking studies confirmed that coumarins inhibited ACE via many hydrogen bond and hydrophobic interactions with catalytic residues and zinc ion of C- and N-domain ACE that blocked the catalytic activity of ACE. The results derived from these computational and in vitro experiments give additional scientific support to the anecdotal use of A. decursiva in traditional medicine to treat cardiovascular diseases such as hypertension.
Collapse
Affiliation(s)
- Md Yousof Ali
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QC H4B 1R6, Canada.
- Department of Biology, Faculty of Arts and Science, Concordia University, 7141 Sherbrooke St. W., Montreal, QC H4B 1R6, Canada.
- Centre for Structural and Functional Genomic, Department of Biology, Faculty of Arts and Science, Concordia University, 7141 Sherbrooke St. W., Montreal, QC H4B 1R6, Canada.
| | - Su Hui Seong
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
| | - Hyun Ah Jung
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju 54896, Korea.
| | - Jae Sue Choi
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
| |
Collapse
|
22
|
Seong SH, Paudel P, Jung HA, Choi JS. Identifying Phlorofucofuroeckol-A as a Dual Inhibitor of Amyloid-β 25-35 Self-Aggregation and Insulin Glycation: Elucidation of the Molecular Mechanism of Action. Mar Drugs 2019; 17:E600. [PMID: 31652867 PMCID: PMC6891666 DOI: 10.3390/md17110600] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/19/2019] [Accepted: 10/20/2019] [Indexed: 02/07/2023] Open
Abstract
Both amyloid-β (Aβ) and insulin are amyloidogenic peptides, and they play a critical role in Alzheimer's disease (AD) and type-2 diabetes (T2D). Misfolded or aggregated Aβ and glycated insulin are commonly found in AD and T2D patients, respectively, and exhibit neurotoxicity and oxidative stress. The present study examined the anti-Aβ25-35 aggregation and anti-insulin glycation activities of five phlorotannins isolated from Ecklonia stolonifera. Thioflavin-T assay results suggest that eckol, dioxinodehydroeckol, dieckol, and phlorofucofuroeckol-A (PFFA) significantly inhibit Aβ25-35 self-assembly. Molecular docking and dynamic simulation analyses confirmed that these phlorotannins have a strong potential to interact with Aβ25-35 peptides and interrupt their self-assembly and conformational transformation, thereby inhibiting Aβ25-35 aggregation. In addition, PFFA dose-dependently inhibited d-ribose and d-glucose induced non-enzymatic insulin glycation. To understand the molecular mechanism for insulin glycation and its inhibition, we predicted the binding site of PFFA in insulin via computational analysis. Interestingly, PFFA strongly interacted with the Phe1 in insulin chain-B, and this interaction could block d-glucose access to the glycation site of insulin. Taken together, our novel findings suggest that phlorofucofuroeckol-A could be a new scaffold for AD treatment by inhibiting the formation of β-sheet rich structures in Aβ25-35 and advanced glycation end-products (AGEs) in insulin.
Collapse
Affiliation(s)
- Su Hui Seong
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
| | - Pradeep Paudel
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
| | - Hyun Ah Jung
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju 54896, Korea.
| | - Jae Sue Choi
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
| |
Collapse
|