1
|
Tanwar AK, Sengar N, Mase N, Singh IP. Tetrahydroisoquinolines - an updated patent review for cancer treatment (2016 - present). Expert Opin Ther Pat 2024; 34:873-906. [PMID: 39126639 DOI: 10.1080/13543776.2024.2391288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/25/2024] [Accepted: 08/08/2024] [Indexed: 08/12/2024]
Abstract
INTRODUCTION Cancer is a prominent cause of death globally, triggered by both non-genetic and genetic alterations in genes influenced by various environmental factors. The tetrahydroisoquinoline (THIQ), specifically 1,2,3,4-tetrahydroisoquinoline serves as fundamental element in various alkaloids, prevalent in proximity to quinoline and indole alkaloids. AREA COVERED In this review, the therapeutic applications of THIQ derivatives as an anticancer agent from 2016 to 2024 have been examined. The patents were gathered through comprehensive searches of the Espacenet, Google patent, WIPO, and Sci Finder databases. The therapeutic areas encompassed in the patents include numerous targets of cancer. EXPERT OPINION THIQ analogues play a crucial role in medicinal chemistry, with many being integral to pharmacological processes and clinical trials. Numerous THIQ compounds have been synthesized for therapeutic purposes, notably in cancer treatment. They show great promise for developing anticancer drugs, demonstrating strong affinity and efficacy against various cancer targets. The creation of multi-target ligands is a compelling avenue for THIQ-based anticancer drug discovery.
Collapse
Affiliation(s)
- Ankur Kumar Tanwar
- Departments of Natural Products, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, India
| | - Neha Sengar
- Departments of Natural Products, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, India
| | - Nobuyuki Mase
- Research Institute of Green Science and Technology, Shizuoka University, Hamamatsu, Shizuoka, Japan
| | - Inder Pal Singh
- Departments of Natural Products, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, India
| |
Collapse
|
2
|
Bhatia N, Thareja S. Aromatase inhibitors for the treatment of breast cancer: An overview (2019-2023). Bioorg Chem 2024; 151:107607. [PMID: 39002515 DOI: 10.1016/j.bioorg.2024.107607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/02/2024] [Accepted: 06/28/2024] [Indexed: 07/15/2024]
Abstract
Aromatase inhibition is considered a legitimate approach for the treatment of ER-positive (ER+) breast cancer as it accounts for more than 70% of breast cancer cases. Aromatase inhibitor therapy has been demonstrated to be highly effective in decreasing tumour size, increasing survival rates, and lowering the chance of cancer recurrence. The present review deliberates the pathophysiology and the role of aromatase in estrogen biosynthesis. Estrogen biosynthesis, various androgens, and their function in the human body have also been discussed. The salient aspects of the aromatase active site, its mode of action, and AIs, along with their intended interactions with presently FDA-approved inhibitors, have been briefly discussed. It has been detailed how different reported AIs were designed, their SAR investigations, in silico analysis, and biological evaluations. Various AIs from multiple origins, such as synthetic and semi-synthetic, have also been discussed.
Collapse
Affiliation(s)
- Neha Bhatia
- Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India.
| |
Collapse
|
3
|
Janowska S, Holota S, Lesyk R, Wujec M. Aromatase Inhibitors as a Promising Direction for the Search for New Anticancer Drugs. Molecules 2024; 29:346. [PMID: 38257259 PMCID: PMC10819800 DOI: 10.3390/molecules29020346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Aromatase is an enzyme that plays a crucial role in the biosynthesis of estrogens, which are hormones that contribute to the growth of certain types of breast cancer. In particular, aromatase catalyzes the conversion of androgens (male hormones) into estrogens (female hormones) in various tissues, including the adrenal glands, ovaries, and adipose tissue. Given the role of estrogen in promoting the growth of hormone-receptor-positive breast cancers, aromatase has become an important molecular target for the development of anticancer agents. Aromatase inhibitors can be classified into two main groups based on their chemical structure: steroidal and non-steroidal inhibitors. This work presents a review of the literature from the last ten years regarding the search for new aromatase inhibitors. We present the directions of search, taking into account the impact of structure modifications on anticancer activity.
Collapse
Affiliation(s)
- Sara Janowska
- Department of Pathobiochemistry and Interdisciplinary Applications of Ion Chromatography, Biomedical Sciences, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland
| | - Serhii Holota
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine; (S.H.); (R.L.)
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine; (S.H.); (R.L.)
| | - Monika Wujec
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki Street, 20-093 Lublin, Poland
| |
Collapse
|
4
|
Maghraby MTE, Mazyad Almutairi T, Bräse S, Salem OIA, Youssif BGM, Sheha MM. New 1,2,3-Triazole/1,2,4-triazole Hybrids as Aromatase Inhibitors: Design, Synthesis, and Apoptotic Antiproliferative Activity. Molecules 2023; 28:7092. [PMID: 37894571 PMCID: PMC10609154 DOI: 10.3390/molecules28207092] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/29/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
A novel series of 1,2,3-triazole/1,2,4-triazole hybrids 5a, 5b, and 6a-i was designed and synthesized as antiproliferative agents targeting aromatase enzymes. The antiproliferative activity of the new hybrids against four cancer cells was studied using Erlotinib as a control. Compounds 6a and 6b demonstrated the highest antiproliferative activity among these hybrids, with GI50 values of 40 nM and 35 nM, respectively. Compound 6b was the most potent derivative, with a GI50 of 35 nM, comparable to Erlotinib's GI50 of 33 nM. Compound 6b inhibited all cancer cell lines with comparable efficacy to Erlotinib. Compounds 5a, 5b, and 6a-i were tested for inhibitory action against aromatase as a potential target for their antiproliferative activity. Results revealed that compounds 6a and 6b were the most potent aromatase inhibitors, with IC50 values of 0.12 ± 0.01 µM and 0.09 ± 0.01 µM, respectively, being more potent than the reference Ketoconazole (IC50 = 2.6 ± 0.20 µM) but less potent than Letrozole (IC50 = 0.002 ± 0.0002). These findings indicated that compounds 6a and 6b had significant aromatase inhibitory action and are potential antiproliferative candidates. The findings were further linked to molecular docking investigations, which gave models of strong interactions with the aromatase domain for inhibitors with high binding scores.
Collapse
Affiliation(s)
- Mohamed T-E Maghraby
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt; (M.T.-E.M.); (O.I.A.S.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, New Valley University, New Valley 72511, Egypt
| | - Tahani Mazyad Almutairi
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Stefan Bräse
- Institute of Biological and Chemical Systems, IBCS-FMS, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Ola I. A. Salem
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt; (M.T.-E.M.); (O.I.A.S.)
| | - Bahaa G. M. Youssif
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt; (M.T.-E.M.); (O.I.A.S.)
| | - Mahmoud M. Sheha
- Department of Medicinal Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt;
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sphinx University, New-Assiut 71684, Egypt
| |
Collapse
|
5
|
Edris A, Abdelrahman M, Osman W, Sherif AE, Ashour A, Garelnabi EAE, Ibrahim SRM, Bafail R, Samman WA, Ghazawi KF, Mohamed GA, Alzain AA. Design of Novel Letrozole Analogues Targeting Aromatase for Breast Cancer: Molecular Docking, Molecular Dynamics, and Theoretical Studies on Gold Nanoparticles. Metabolites 2023; 13:metabo13050583. [PMID: 37233624 DOI: 10.3390/metabo13050583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/10/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023] Open
Abstract
The use of aromatase inhibitors is an established therapy for estrogen-dependent breast cancer in postmenopausal women. However, the only commercially available aromatase inhibitor, letrozole, is not highly selective; in addition to aromatase, it has an affinity for binding to desmolase, an enzyme involved in steroidogenesis, which explains the main side effects. Therefore, we designed new compounds based on the structure of letrozole. More than five thousand compounds were constructed based on the letrozole structure. Then, these compounds were screened for their binding ability toward the target protein, aromatase. Quantum docking, Glide docking, and ADME studies showed 14 new molecules with docking scores of ≤-7 kcal/mol, compared to the docking score of -4.109 kcal/mol of the reference, letrozole. Moreover, molecular dynamics (MD) and post-MD MM-GBSA calculations were calculated for the top three compounds, and the results supported in their interaction's stability. Finally, the density-functional theory (DFT) study applied to the top compound to study the interaction with gold nanoparticles revealed the most stable position for the interaction with the gold nanoparticles. The results of this study confirmed that these newly designed compounds could be useful starting points for lead optimization. Further in vitro and in vivo studies are recommended for these compounds to verify these promising results experimentally.
Collapse
Affiliation(s)
- Alaa Edris
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Wad Madani 21111, Sudan
| | - Mohammed Abdelrahman
- Department of Pharmaceutics, Faculty of Pharmacy, University of Gezira, Wad Madani 21111, Sudan
| | - Wadah Osman
- Department of Pharmacognosy, Faculty of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, University of Khartoum, Al-Qasr Ave, Khartoum 11111, Sudan
| | - Asmaa E Sherif
- Department of Pharmacognosy, Faculty of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed Ashour
- Department of Pharmacognosy, Faculty of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Elrashied A E Garelnabi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Khartoum, Al-Qasr Ave, Khartoum 11111, Sudan
| | - Sabrin R M Ibrahim
- Preparatory Year Program, Department of Chemistry, Batterjee Medical College, Jeddah 21442, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Rawan Bafail
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taibah University, Medina 42353, Saudi Arabia
| | - Waad A Samman
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Medina 30078, Saudi Arabia
| | - Kholoud F Ghazawi
- Clinical Pharmacy Department, College of Pharmacy, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Gamal A Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdulrahim A Alzain
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Wad Madani 21111, Sudan
| |
Collapse
|
6
|
Khetmalis YM, Shree B, Kumar BVS, Schweipert M, Debarnot C, Ashna F, Sankaranarayanan M, Trinath J, Sharma V, Meyer-Almes FJ, Sekhar KVGC. Design, Synthesis, and Biological Evaluation of Tetrahydroisoquinoline Based Hydroxamate Derivatives as HDAC 6 Inhibitors For Cancer Therapy. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
7
|
Osmaniye D, Hıdır A, Sağlık BN, Levent S, Özkay Y, Kaplancıklı ZA. Synthesis of New Pyrimidine-Triazole Derivatives and Investigation of Their Anticancer Activities. Chem Biodivers 2022; 19:e202200216. [PMID: 35699405 DOI: 10.1002/cbdv.202200216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/13/2022] [Indexed: 11/09/2022]
Abstract
Aromatase inhibitors are the most used anticancer drug group in breast cancer cases. The development of resistance in cancer patients over time and the side effects of existing drugs make the need for new and effective agents permanent. In this study, 10 novel pyrimidine-triazole derivatives were synthesized and their anticancer activities were investigated. Compounds 5c and 5g showed inhibitor activity against MCF-7 cell line with IC 50 =1.573±0.020; 3.698±0.056 µM value, respectively. As a result of in vitro aromatase enzyme inhibition test, compounds 5c and 5g were exhibited significant activity with IC 50 =0.082±0.007 µM and IC50=0.198±0.015 µM, respectively. Estimated physicochemical parameters were calculated using the online SwissADME program for all compounds. Interaction modes of the compounds 5c and 5g were investigated against aromatase enzyme by means of docking studies. As a result of the studies, the importance of the triazole ring for aromatase inhibition has been understood.
Collapse
Affiliation(s)
- Derya Osmaniye
- Anadolu Universitesi, Pharmaceutical Chemistry, Anadolu University Faculty of Pharmacy Pharmaceutical Department, 26470, Eskisehir, TURKEY
| | - Arzu Hıdır
- Anadolu University: Anadolu Universitesi, Pharmaceutical Chemistry, Yunus Emre Campus, Eskişehir, TURKEY
| | - Begüm Nurpelin Sağlık
- Anadolu University: Anadolu Universitesi, Pharmaceutical Chemistry, Yunus Emre Campus, Eskişehir, TURKEY
| | - Serkan Levent
- Anadolu University: Anadolu Universitesi, Pharmaceutical Chemistry, Yunus Emre Campus, Eskişehir, TURKEY
| | - Yusuf Özkay
- Anadolu University: Anadolu Universitesi, Pharmaceutical Chemistry, Yunus Emre Campus, Eskişehir, TURKEY
| | - Zafer Asım Kaplancıklı
- Anadolu University: Anadolu Universitesi, Pharmaceutical Chemistry, Yunus Emre Campus, Eskişehir, TURKEY
| |
Collapse
|
8
|
Triazoles Synthesis & Applications as Nonsteroidal Aromatase Inhibitors for Hormone-Dependent Breast Cancer Treatment. HETEROATOM CHEMISTRY 2022. [DOI: 10.1155/2022/5349279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the last few years, nonsteroidal aromatase inhibitors (AIs) have been emerged as promising agents for treating hormone-dependent breast cancer in postmenopausal women because of their inhibitory effect on estrogen synthesis. Indeed, these compounds can block the activity of aromatase, the enzyme that intervenes in the last steps of estrogen production pathway. Triazoles are the core structures of nonsteroidal AIs. The nitrogen atom of the triazole moiety plays a fundamental role in the aromatase functionality by interacting with the iron ions of the heme group. In general, AIs possess numerous advantages as they quench the last step of estrogen synthesis without any inhibitory effects on the production of other steroids produced via the same pathway. Some AIs as anastrozole, letrozole, and vorozole have already been approved by the Food and Drug Administration in the treatment of breast cancer. The previously mentioned compounds present severe and adverse effects as polycystic ovary syndrome (PCOS), resistance onset on long-term treatments, and a higher risk of bone fractures. This review focuses intensively on the role of AIs in the treatment of hormone-sensitive types of cancers, especially the role of triazoles as nonsteroidal AIs. Also, the review provides an overview about the chemistry of triazoles along with the different methods by which the
-triazoles and s-triazoles are synthesized.
Collapse
|
9
|
Evren AE, Nuha D, Dawbaa S, Sağlık BN, Yurttaş L. Synthesis of novel thiazolyl hydrazone derivatives as potent dual monoamine oxidase-aromatase inhibitors. Eur J Med Chem 2022; 229:114097. [PMID: 34998057 DOI: 10.1016/j.ejmech.2021.114097] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 12/18/2022]
Abstract
The inhibitory effects of 2-thiazolyl hydrazones on monoamine oxidase enzymes are known for a long time. In this study, a new series of 2-thiazolyl hydrazone derivatives were synthesized starting from 6-methoxy-2-naphthaldehyde. All of the synthesized compounds were investigated in terms of their monoamine oxidase (MAO) inhibitory effects and significant results were found. The results showed that compound 2j potently inhibited MAO-A and MAO-B, while compound 2t strongly and selectively inhibited MAO-B compared to standard drugs. Compounds 2k and 2q exhibited selective and satisfying inhibition on MAO-B. In the aromatase inhibition studies of the compounds, it was determined that compounds 2q and 2u had high inhibitory properties. Molecular docking studies on MAO-A, MAO-B, and aromatase enzymes were carried out for the aforementioned compounds. Additionally, molecular dynamics simulation was studied for compound 2q on MAO-B and aromatase complexes. Finally, the Field-based QSAR study was developed and the structure-activity relationship (SAR) was explained. For the first time, dual inhibitors on MAO and aromatase enzyme were investigated together. The aim of this approach is for finding the potential agents that do not cause the cognitive disorders and may even treat neurodegenerative symptoms, thus, the aim was reached successfully.
Collapse
Affiliation(s)
- Asaf Evrim Evren
- Anadolu University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 26470, Eskişehir, Turkey; Bilecik Şeyh Edebali University, Vocational School of Health Services, Department of Pharmacy Services, 11000, Bilecik, Turkey.
| | - Demokrat Nuha
- Anadolu University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 26470, Eskişehir, Turkey; Eskisehir Technical University, Faculty of Science, Department of Chemistry, 26555, Eskişehir, Turkey
| | - Sam Dawbaa
- Anadolu University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 26470, Eskişehir, Turkey; Department of Pharmacy, Faculty of Medicine and Health Sciences, Thamar University, Dhamar, Yemen
| | - Begüm Nurpelin Sağlık
- Anadolu University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 26470, Eskişehir, Turkey
| | - Leyla Yurttaş
- Anadolu University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 26470, Eskişehir, Turkey
| |
Collapse
|
10
|
Pingaew R, Choomuenwai V, Leechaisit R, Prachayasittikul V, Prachayasittikul S, Prachayasittikul V. 1,2,3-Triazole Scaffold in Recent Medicinal Applications: Synthesis and Anticancer Potentials. HETEROCYCLES 2022. [DOI: 10.3987/rev-22-sr(r)4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Sulfonamide derivatives as potential anti-cancer agents and their SARs elucidation. Eur J Med Chem 2021; 226:113837. [PMID: 34530384 DOI: 10.1016/j.ejmech.2021.113837] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 11/24/2022]
Abstract
Currently, the arise of drug resistance and undesirable off-target effects of anti-cancer agents are major challenges for cancer treatment, which energizes medicinal chemists to develop more anti-cancer agents with high efficiency and low toxicity continuously. Sulfonamide derivatives are a class of promising compounds with diverse biological activities including anti-cancer, and parts of them have been marketed for cancer therapy, such as Belinostat, ABT-199 and Amsacrine. In this review, we summed up the recent advances of sulfonamide derivatives as potential anti-cancer agents based on the anti-cancer targets, such as aromatase, carbonic anhydrase (CA), anti-apoptotic B-cell lymphoma-2 (Bcl-2) proteins, topoisomerase and phosphatidylinositol 3-kinase (PI3K), and elucidated the corresponding structure-activity relationships (SARs) of most sulfonamide derivatives. We hope this review could provide a clear insight for medicinal chemists in the rational design of more potent and bio-target specific anti-cancer agents.
Collapse
|
12
|
Design, synthesis, in vitro and in silico studies of some novel triazoles as anticancer agents for breast cancer. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Pingaew R, Mandi P, Prachayasittikul V, Thongnum A, Prachayasittikul S, Ruchirawat S, Prachayasittikul V. Investigations on Anticancer and Antimalarial Activities of Indole-Sulfonamide Derivatives and In Silico Studies. ACS OMEGA 2021; 6:31854-31868. [PMID: 34870008 PMCID: PMC8638007 DOI: 10.1021/acsomega.1c04552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/10/2021] [Indexed: 05/04/2023]
Abstract
A library of 44 indole-sulfonamide derivatives (1-44) were investigated for their cytotoxic activities against four cancer cell lines (i.e., HuCCA-1, HepG2, A549, and MOLT-3) and antimalarial effect. Most of the studied indoles exhibit anticancer activity against the MOLT-3 cell line, whereas only hydroxyl-containing bisindoles displayed anticancer activities against the other tested cancer cells as well as antimalarial effect. The most promising anticancer compounds were noted to be CF3, Cl, and NO2 derivatives of hydroxyl-bearing bisindoles (30, 31, and 36), while the most promising antimalarial compound was an OCH3 derivative of non-hydroxyl-containing bisindole 11. Five quantitative structure-activity relationship (QSAR) models were successfully constructed, providing acceptable predictive performance (training set: R = 0.6186-0.9488, RMSE = 0.0938-0.2432; validation set: R = 0.4242-0.9252, RMSE = 0.1100-0.2785). QSAR modeling revealed that mass, charge, polarizability, van der Waals volume, and electronegativity are key properties governing activities of the compounds. QSAR models were further applied to guide the rational design of an additional set of 22 compounds (P1-P22) in which their activities were predicted. The prediction revealed a set of promising virtually constructed compounds (P1, P3, P9, P10, and P16) for further synthesis and development as anticancer and antimalarial agents. Molecular docking was also performed to reveal possible modes of bindings and interactions between the studied compounds and target proteins. Taken together, insightful structure-activity relationship information obtained herein would be beneficial for future screening, design, and structural optimization of the related compounds.
Collapse
Affiliation(s)
- Ratchanok Pingaew
- Department
of Chemistry, Faculty of Science, Srinakharinwirot
University, Bangkok 10110, Thailand
- . Tel.: +66-2-649-5000 ext 18253. Fax: 662-260-0128
| | - Prasit Mandi
- Department
of Community Medical Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Veda Prachayasittikul
- Center
of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
- . Tel.: +66-2-441-4376
| | - Anusit Thongnum
- Department
of Physics, Faculty of Science, Srinakharinwirot
University, Bangkok 10110, Thailand
| | - Supaluk Prachayasittikul
- Center
of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Somsak Ruchirawat
- Laboratory
of Medicinal Chemistry, Chulabhorn Research Institute, and Program
in Chemical Sciences, Chulabhorn Graduate
Institute, Bangkok 10210, Thailand
- Center of
Excellence on Environmental Health and Toxicology (EHT), Commission
on Higher Education, Ministry of Education, Bangkok 10400, Thailand
| | - Virapong Prachayasittikul
- Department
of Clinical Microbiology and Applied Technology, Faculty of Medical
Technology, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
14
|
Zorba L, Egaña E, Gómez-Bengoa E, Vougioukalakis GC. Zinc Iodide Catalyzed Synthesis of Trisubstituted Allenes from Terminal Alkynes and Ketones. ACS OMEGA 2021; 6:23329-23346. [PMID: 34549133 PMCID: PMC8444324 DOI: 10.1021/acsomega.1c03092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 07/13/2021] [Indexed: 05/03/2023]
Abstract
A straightforward, user-friendly, efficient protocol for the one pot, ZnI2-catalyzed allenylation of terminal alkynes with pyrrolidine and ketones, toward trisubstituted allenes, is described. Trisubstituted allenes can be obtained under either conventional heating or microwave irradiation conditions, which significantly reduces the reaction time. A sustainable, widely available, and low-cost metal salt catalyst is employed, and the reactions are carried out under solvent-free conditions. Among others, synthetically valuable allenes bearing functionalities such as amide, hydroxyl, or phthalimide can be efficiently prepared. Mechanistic experiments, including kinetic isotope effect measurements and density functional theory (DFT) calculations, suggest a rate-determining [1,5]-hydride transfer during the transformation of the intermediate propargylamine to the final allene.
Collapse
Affiliation(s)
- Leandros
P. Zorba
- Laboratory
of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Athens, Greece
| | - Eunate Egaña
- Department
of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain
| | - Enrique Gómez-Bengoa
- Department
of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain
| | - Georgios C. Vougioukalakis
- Laboratory
of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Athens, Greece
| |
Collapse
|
15
|
Rani S, Raheja K, Luxami V, Paul K. A review on diverse heterocyclic compounds as the privileged scaffolds in non-steroidal aromatase inhibitors. Bioorg Chem 2021; 113:105017. [PMID: 34091288 DOI: 10.1016/j.bioorg.2021.105017] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/15/2021] [Accepted: 05/20/2021] [Indexed: 12/11/2022]
Abstract
Breast cancer, emerging malignancy is common among women due to overexpression of estrogen. Estrogens are biosynthesized from androgens by aromatase, a cytochrome P450 enzyme complex, and play a pivotal role in stimulating cell proliferation. Therefore, deprivation of estrogen by blocking aromatase is considered as the effective way for the inhibition and treatment of breast cancer. In recent years, various non-steroidal heterocyclic functionalities have been extensively developed and studied for their aromatase inhibition activity. This review provides information about the structural-activity relationship of heterocycles (Type II) towards aromatase. This aids the medicinal chemist around the significance of different heterocyclic moieties and helps to design potent aromatase inhibitors.
Collapse
Affiliation(s)
- Sudesh Rani
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147001, India
| | - Konpal Raheja
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147001, India
| | - Vijay Luxami
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147001, India
| | - Kamaldeep Paul
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147001, India.
| |
Collapse
|
16
|
Faheem, Karan Kumar B, Venkata Gowri Chandra Sekhar K, Chander S, Kunjiappan S, Murugesan S. 1,2,3,4-Tetrahydroisoquinoline (THIQ) as privileged scaffold for anticancer de novo drug design. Expert Opin Drug Discov 2021; 16:1119-1147. [PMID: 33908322 DOI: 10.1080/17460441.2021.1916464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: Cancer is a dreadful disorder that is emerging as one of the leading causes of mortality across the globe. The complex tumor environment, supplemented with drawbacks of the existing drugs, has made it a global health concern. The Tetrahydroisoquinoline (THIQ) ring holds an important position in medicinal chemistry due to its wide range of pharmacological properties. Several THIQ based natural products have been previously explored for their antitumor properties, making it a vital scaffold for anticancer drug design.Areas covered: This review article addresses the potential of THIQ as anticancer agents. Various medicinal chemistry strategies employed for the design and development of THIQ analogs as inhibitors or modulators of relevant anticancer targets have been discussed in detail. Moreover, the common strategies employed for the synthesis of the core scaffold are also highlighted.Expert opinion: Evidently, THIQs have tremendous potential in anticancer drug design. Some of these analogs exhibited potent activity against various cancer molecular targets. However, there are some drawbacks, such as selectivity that need addressing. The synthetic ease for constructing the core scaffold complimented with its reactivity makes it ideal for further structure-activity relationship studies. For these reasons, THIQ is a privileged scaffold for the design and development of novel anticancer agents.
Collapse
Affiliation(s)
- Faheem
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani, India
| | - Banoth Karan Kumar
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani, India
| | | | - Subhash Chander
- Amity Institute of Phytomedicine and Phytochemistry, Amity University Uttar Pradesh, Noida, India
| | - Selvaraj Kunjiappan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, India
| | - Sankaranarayanan Murugesan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani, India
| |
Collapse
|
17
|
Afshar N, Hatamjafari F, Shiroudi A, Pourshamsian K, Oliaey AR. Synthesis and Characterization of Some New Indoline-Based
1,2,4-Triazole Derivatives. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1070428020120179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Zorn KM, Foil DH, Lane TR, Hillwalker W, Feifarek DJ, Jones F, Klaren WD, Brinkman AM, Ekins S. Comparing Machine Learning Models for Aromatase (P450 19A1). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15546-15555. [PMID: 33207874 PMCID: PMC8194505 DOI: 10.1021/acs.est.0c05771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Aromatase, or cytochrome P450 19A1, catalyzes the aromatization of androgens to estrogens within the body. Changes in the activity of this enzyme can produce hormonal imbalances that can be detrimental to sexual and skeletal development. Inhibition of this enzyme can occur with drugs and natural products as well as environmental chemicals. Therefore, predicting potential endocrine disruption via exogenous chemicals requires that aromatase inhibition be considered in addition to androgen and estrogen pathway interference. Bayesian machine learning methods can be used for prospective prediction from the molecular structure without the need for experimental data. Herein, the generation and evaluation of multiple machine learning models utilizing different sources of aromatase inhibition data are described. These models are applied to two test sets for external validation with molecules relevant to drug discovery from the public domain. In addition, the performance of multiple machine learning algorithms was evaluated by comparing internal five-fold cross-validation statistics of the training data. These methods to predict aromatase inhibition from molecular structure, when used in concert with estrogen and androgen machine learning models, allow for a more holistic assessment of endocrine-disrupting potential of chemicals with limited empirical data and enable the reduction of the use of hazardous substances.
Collapse
Affiliation(s)
- Kimberley M. Zorn
- Collaborations Pharmaceuticals Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC, USA
| | - Daniel H. Foil
- Collaborations Pharmaceuticals Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC, USA
| | - Thomas R. Lane
- Collaborations Pharmaceuticals Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC, USA
| | - Wendy Hillwalker
- Global Product Safety, SC Johnson and Son, Inc., Racine, WI, USA
| | | | - Frank Jones
- Global Product Safety, SC Johnson and Son, Inc., Racine, WI, USA
| | | | | | - Sean Ekins
- Collaborations Pharmaceuticals Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC, USA
| |
Collapse
|
19
|
Ferreira Almeida C, Oliveira A, João Ramos M, Fernandes PA, Teixeira N, Amaral C. Estrogen receptor-positive (ER +) breast cancer treatment: Are multi-target compounds the next promising approach? Biochem Pharmacol 2020; 177:113989. [PMID: 32330493 DOI: 10.1016/j.bcp.2020.113989] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/10/2020] [Indexed: 02/07/2023]
Abstract
Endocrine therapy is currently the main therapeutic approach for estrogen receptor-positive (ER+) breast cancer, the most frequent subtype of breast cancer in women worldwide. For this subtype of tumors, the current clinical treatment includes aromatase inhibitors (AIs) and anti-estrogenic compounds, such as Tamoxifen and Fulvestrant, being AIs the first-line treatment option for post-menopausal women. Moreover, the recent guidelines also suggest the use of these compounds by pre-menopausal women after suppressing ovaries function. However, besides its therapeutic efficacy, the prolonged use of this type of therapies may lead to the development of several adverse effects, as well as, endocrine resistance, limiting the effectiveness of such treatments. In order to surpass this issues and clinical concerns, during the last years, several studies have been suggesting alternative therapeutic approaches, considering the function of aromatase, ERα and ERβ. Here, we review the structural and functional features of these three targets and their importance in ER+ breast cancer treatment, as well as, the current treatment strategies used in clinic, emphasizing the importance of the development of multi-target compounds able to simultaneously modulate these key targets, as a novel and promising therapeutic strategy for this type of cancer.
Collapse
Affiliation(s)
- Cristina Ferreira Almeida
- UCIBIO.REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Ana Oliveira
- UCIBIO.REQUIMTE, Computational Biochemistry Laboratory, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Maria João Ramos
- UCIBIO.REQUIMTE, Computational Biochemistry Laboratory, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Pedro A Fernandes
- UCIBIO.REQUIMTE, Computational Biochemistry Laboratory, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Natércia Teixeira
- UCIBIO.REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Cristina Amaral
- UCIBIO.REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal.
| |
Collapse
|
20
|
Synthesis, Docking Studies and Biological Activity of New Benzimidazole- Triazolothiadiazine Derivatives as Aromatase Inhibitor. Molecules 2020; 25:molecules25071642. [PMID: 32252458 PMCID: PMC7180718 DOI: 10.3390/molecules25071642] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 02/01/2023] Open
Abstract
In the last step of estrogen biosynthesis, aromatase enzyme catalyzes the conversion of androgens to estrogens. Aromatase inhibition is an important way to control estrogen-related diseases and estrogen levels. In this study, sixteen of benzimidazole-triazolothiadiazine derivatives have been synthesized and studied as potent aromatase inhibitors. First, these compounds were tested for their anti-cancer properties against human breast cancer cell line (MCF-7). The most active compounds 5c, 5e, 5k, and 5m on MCF-7 cell line were subject to further in vitro aromatase enzyme inhibition assays to determine the possible mechanisms of action underlying their activity. Compound 5e showed slight less potent aromatase inhibitory activity than that of letrozole with IC50 = 0.032 ± 0.042 µM, compared to IC50 = 0.024 ± 0.001 µM for letrozole. Furthermore, compound 5e and reference drug letrozole were docked into human placental aromatase enzyme to predict their possible binding modes with the enzyme. Finally, ADME parameters (absorption, distribution, metabolism, and excretion) of synthesized compounds (5a–5p) were calculated by QikProp 4.8 software.
Collapse
|
21
|
Acar Çevik U, Sağlık BN, Osmaniye D, Levent S, Kaya Çavuşoğlu B, Karaduman AB, Özkay Y, Kaplancıklı ZA. Synthesis and docking study of benzimidazole–triazolothiadiazine hybrids as aromatase inhibitors. Arch Pharm (Weinheim) 2020; 353:e2000008. [DOI: 10.1002/ardp.202000008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Ulviye Acar Çevik
- Department of Pharmaceutical Chemistry, Faculty of PharmacyAnadolu UniversityEskişehir Turkey
- Doping and Narcotic Compounds Analysis Laboratory, Faculty of PharmacyAnadolu UniversityEskişehir Turkey
| | - Begüm N. Sağlık
- Department of Pharmaceutical Chemistry, Faculty of PharmacyAnadolu UniversityEskişehir Turkey
- Doping and Narcotic Compounds Analysis Laboratory, Faculty of PharmacyAnadolu UniversityEskişehir Turkey
| | - Derya Osmaniye
- Department of Pharmaceutical Chemistry, Faculty of PharmacyAnadolu UniversityEskişehir Turkey
- Doping and Narcotic Compounds Analysis Laboratory, Faculty of PharmacyAnadolu UniversityEskişehir Turkey
| | - Serkan Levent
- Department of Pharmaceutical Chemistry, Faculty of PharmacyAnadolu UniversityEskişehir Turkey
- Doping and Narcotic Compounds Analysis Laboratory, Faculty of PharmacyAnadolu UniversityEskişehir Turkey
| | - Betül Kaya Çavuşoğlu
- Department of Pharmaceutical Chemistry, Faculty of PharmacyAnadolu UniversityEskişehir Turkey
- Doping and Narcotic Compounds Analysis Laboratory, Faculty of PharmacyAnadolu UniversityEskişehir Turkey
| | - Abdullah B. Karaduman
- Department of Pharmaceutical Toxicology, Faculty of PharmacyAnadolu UniversityEskişehir Turkey
| | - Yusuf Özkay
- Department of Pharmaceutical Chemistry, Faculty of PharmacyAnadolu UniversityEskişehir Turkey
- Doping and Narcotic Compounds Analysis Laboratory, Faculty of PharmacyAnadolu UniversityEskişehir Turkey
| | - Zafer A. Kaplancıklı
- Department of Pharmaceutical Chemistry, Faculty of PharmacyAnadolu UniversityEskişehir Turkey
| |
Collapse
|