1
|
Wang H, Wu Y, Liu A, Li S, Zhu P, Zuo J, Kuang Y, Li J, Jiang X. Design, synthesis and biological evaluation of novel pyrazolinone derivatives as multifunctional ligands for the treatment of Alzheimer's disease. Bioorg Chem 2025; 154:108052. [PMID: 39675097 DOI: 10.1016/j.bioorg.2024.108052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/05/2024] [Accepted: 12/08/2024] [Indexed: 12/17/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the depletion of cholinergic neurons and the accumulation of amyloid β (Aβ) plaques. The complexity and multifaceted nature of AD necessitate further exploration of multi-target drugs for its treatment. In this study, a series of novel pyrazolinone-based compounds were designed, synthesized, and evaluated as acetylcholinesterase (AChE) inhibitors and antioxidants. The lead compounds ET11 and ET21 showed strong inhibitory activity against human AChE, with IC50 values of 6.34 and 1.81 nM, respectively. In vitro DPPH and ORACFL assays confirmed the compounds' strong antioxidant capabilities. ET11 exhibited excellent neuroprotective activity in the tBHP-induced SH-SY5Y cell damage model. Benefiting from the pyridopyrazolone moiety, ET11 showed significant Cu2+ chelating ability and effectively inhibited Cu2+-induced Aβ aggregation. In vivo behavioral studies and histopathology analysis preliminarily confirmed the compound's cognitive improvement and neuroprotective effects. Overall, these findings suggested that compound ET11 is expected to play a synergistic role in the treatment of AD, potentially slowing disease progression.
Collapse
Affiliation(s)
- Huabo Wang
- Department of Medicinal Chemistry, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yulu Wu
- Department of Medicinal Chemistry, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Anran Liu
- Department of Medicinal Chemistry, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Siyi Li
- Department of Medicinal Chemistry, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Peng Zhu
- Department of Medicinal Chemistry, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jianguo Zuo
- Department of Medicinal Chemistry, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Ying Kuang
- School of Basic Medical Sciences, Gannan Medical University, Ganzhou 341000, China
| | - Jiaming Li
- Department of Medicinal Chemistry, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, China.
| | - Xueyang Jiang
- Department of Medicinal Chemistry, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|
2
|
Zhai B, Hao Q, Wang M, Luo Z, Yang R, Yang J, Cao Y. Discovery of new 4-aminoquinoline derivatives containing an amine or hydroxamic acid terminal as multifunctional agents for the treatment of Alzheimer's disease. Bioorg Chem 2024; 153:107954. [PMID: 39571302 DOI: 10.1016/j.bioorg.2024.107954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/03/2024] [Accepted: 11/10/2024] [Indexed: 12/10/2024]
Abstract
Due to the multifactorial nature of Alzheimer's disease (AD), effective multi-targeted directed ligands (MTDLs) are urgently needed for its treatment as single-target drugs currently encounter therapeutic challenges. Two series of new 4-aminoquinoline derivatives containing an amine or hydroxamic acid terminal were designed, synthesized and evaluated for their cholinesterase inhibition, antioxidant and metal-ion chelation properties. Among them, hydroxamic acid-containing compounds 7r and 7f exhibited the best inhibitor activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), respectively, with the corresponding IC50 values of 0.41 and 1.06 μM, which were superior to those of rivastigmine (IC50 = 5.26, 2.02 μM, respectively). Moreover, compounds 7r and 7f presented excellent ABTS radical scavenging efficiency and selective metal-ion chelation ability such as Cu2+ and Fe2+. Both molecular docking and enzyme kinetic analysis revealed that compound 7r was a mixed-type inhibitor of AChE. Additionally, the ADME prediction indicated that compounds 7r and 7f have suitable pharmacokinetic and drug-like properties. Furthermore, they demonstrated good safety and blood-brain barrier permeability in cytotoxicity assays and in vivo experiments, respectively. These findings strongly suggest that the 4-aminoquinoline derivatives containing a hydroxamic acid terminal have great potential as promising MTDLs for the treatment of AD, opening new avenues for future therapeutic strategies.
Collapse
Affiliation(s)
- Bochao Zhai
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Qianyun Hao
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China; College of Ecological Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Mingfan Wang
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Zhiqiang Luo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Evaluation and Research Center of Daodi Herbs of Jiangxi Province, Ganjiang New District, 330000, China
| | - Rui Yang
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China.
| | - Jian Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Evaluation and Research Center of Daodi Herbs of Jiangxi Province, Ganjiang New District, 330000, China.
| | - Yuqing Cao
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China.
| |
Collapse
|
3
|
Matošević A, Opsenica DM, Bartolić M, Maraković N, Stoilković A, Komatović K, Zandona A, Žunec S, Bosak A. Derivatives of Amodiaquine as Potent Human Cholinesterases Inhibitors: Implication for Treatment of Alzheimer's Disease. Molecules 2024; 29:5357. [PMID: 39598746 PMCID: PMC11596630 DOI: 10.3390/molecules29225357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
As some previously reported studies have proven that amodiaquine, in addition to its primary antimalarial activity, also has potential for new applications such as the inhibition of cholinesterases, in our study we focused on the evaluation of the influence of different substituents in the aminoquinoline part of the amodiaquine structure on the inhibition of human acetylcholinesterase and butyrylcholinesterase to investigate the possibility for their use as drugs for the treatment of AD. We synthesized a series of amodiaquine derivatives bearing H-, F-, CF3-, NO2-, CN-, CO2H- or CH3O- groups on the aminoquinoline ring, and determined that all of the tested derivatives were very potent inhibitors of both cholinesterases, with inhibition constants (Ki) in the nM and low μM range and with prominent selectivity (up to 300 times) for the inhibition of acetylcholinesterase. All compounds displayed an ability to chelate biometal ions Fe2+, Zn2+ and Cu2+ and an antioxidant power comparable to that of standard antioxidants. Most of the compounds were estimated to be able to cross the blood-brain barrier by passive transport and were nontoxic toward cells that represent the models of individual organs. Considering all these beneficial features, our study has singled out compound 5, the most potent AChE inhibitor with a CH3O- on C(7) position, followed by 6 and 14, compounds without substituent or hydroxyl groups in the C(17) position, respectively, as the most promising compounds from the series which could be considered as potential multi-target drugs for the treatment of AD.
Collapse
Affiliation(s)
- Ana Matošević
- Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, 10001 Zagreb, Croatia; (A.M.); (M.B.); (N.M.); (A.Z.); (S.Ž.)
| | - Dejan M. Opsenica
- Institute of Chemistry Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Beograd, Serbia;
- Centre of Excellence in Environmental Chemistry and Engineering, Njegoševa 12, 11000 Belgrade, Serbia
| | - Marija Bartolić
- Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, 10001 Zagreb, Croatia; (A.M.); (M.B.); (N.M.); (A.Z.); (S.Ž.)
| | - Nikola Maraković
- Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, 10001 Zagreb, Croatia; (A.M.); (M.B.); (N.M.); (A.Z.); (S.Ž.)
| | - Andriana Stoilković
- Institute of Chemistry Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Beograd, Serbia;
| | - Katarina Komatović
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia;
| | - Antonio Zandona
- Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, 10001 Zagreb, Croatia; (A.M.); (M.B.); (N.M.); (A.Z.); (S.Ž.)
| | - Suzana Žunec
- Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, 10001 Zagreb, Croatia; (A.M.); (M.B.); (N.M.); (A.Z.); (S.Ž.)
| | - Anita Bosak
- Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, 10001 Zagreb, Croatia; (A.M.); (M.B.); (N.M.); (A.Z.); (S.Ž.)
| |
Collapse
|
4
|
Zhang XQ, Xiang YN, Qin T, Zou JP, Guo QW, Han ST, Zhang ZY, Liu WW, Ding G, Dong JQ, Shi DH. Design, synthesis and biological evaluation of bakuchiol derivatives as multi-target agents for the treatment of Alzheimer's disease. Fitoterapia 2024; 174:105867. [PMID: 38382891 DOI: 10.1016/j.fitote.2024.105867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 02/23/2024]
Abstract
The concept of multi-target-directed ligands offers fresh perspectives for the creation of brand-new Alzheimer's disease medications. To explore their potential as multi-targeted anti-Alzheimer's drugs, eighteen new bakuchiol derivatives were designed, synthesized, and evaluated. The structures of the new compounds were elucidated by IR, NMR, and HRMS. Eighteen compounds were assayed for acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) in vitro using Ellman's method. It was shown that most of the compounds inhibited AChE and BuChE to varying degrees, but the inhibitory effect on AChE was relatively strong, with fourteen compounds showing inhibition of >50% at the concentration of 200 μM. Among them, compound 3g (IC50 = 32.07 ± 2.00 μM) and compound 3n (IC50 = 34.78 ± 0.34 μM) showed potent AChE inhibitory activities. Molecular docking studies and molecular dynamics simulation showed that compound 3g interacts with key amino acids at the catalytically active site (CAS) and peripheral anionic site (PAS) of acetylcholinesterase and binds stably to acetylcholinesterase. On the other hand, compounds 3n and 3q significantly reduced the pro-inflammatory cytokines TNF-α and IL-6 released from LPS-induced RAW 264.7 macrophages. Compound 3n possessed both anti-acetylcholinesterase activity and anti-inflammatory properties. Therefore, an in-depth study of compound 3n is expected to be a multi-targeted anti-AD drug.
Collapse
Affiliation(s)
- Xiao-Qing Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, People's Republic of China
| | - Yan-Nan Xiang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, People's Republic of China
| | - Tian Qin
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, People's Republic of China
| | - Jing-Pei Zou
- Key Laboratory of Pesticide, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Qian-Wen Guo
- Key Laboratory of Pesticide, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Shu-Tong Han
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, People's Republic of China
| | - Zhao-Yuan Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, People's Republic of China
| | - Wei-Wei Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, People's Republic of China
| | - Gang Ding
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, People's Republic of China.
| | - Jing-Quan Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, People's Republic of China.
| | - Da-Hua Shi
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, People's Republic of China.
| |
Collapse
|
5
|
Gupta M, Pant S, Rana P, Kumar A, Prasun C, Nair MS, Paliwal S, Nain S. Investigation, scaffold hopping of novel donepezil-based compounds as anti-Alzhiemer's agents: synthesis, in-silico and pharmacological evaluations. Sci Rep 2024; 14:1687. [PMID: 38242995 PMCID: PMC10799042 DOI: 10.1038/s41598-024-51713-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/09/2024] [Indexed: 01/21/2024] Open
Abstract
Alzheimer's disease (AD) is a multifaceted neurodegenerative condition. The pathogenesis of AD is highly intricate and the disease is apparent in the aged population ~ 50-70 years old. Even after > 100 years of research, the root origin of AD and its pathogenesis is unclear, complex and multifaceted. Herein, we have designed and synthesized 9 novel molecules with three different heterocyclic scaffolds namely pyrrolidone-2-one, quinoline & indoline-2-one to imitate and explore the novel chemical space around donepezil. The synthesized molecules were evaluated for their potential as anti-Alzheimer's agents through in-vitro and in-vivo studies in appropriate animal models. To further understand their interaction with acetylcholinesterase enzyme (AChE), extra-precision docking, and molecular dynamics simulation studies were carried out. As the number of compounds was limited to thoroughly explore the structure-activity relationship, atom-based 3D-quantitative structure-activity relationships (QSAR) studies were carried out to get more insights. All the designed compounds were found to inhibit AChE with IC50 in the micromolar range. From pyrrolidone-2-one series, 6-chloro-N-(1-(1-(3,4-dimethoxybenzyl)-2-oxopyrrolidin-3-yl)piperidin-4-yl)pyridine-3-sulfonamide (9), 2-(1-benzylpiperidin-4-yl)-6,7-dimethoxy-4-(4-methoxyphenyl)quinoline (18) from quinoline series and N-(1-benzylpiperidin-4-yl)-2-(2-oxoindolin-3-yl)acetamide (23) from indolin-2-one series inhibited AChE with an IC50 value of 0.01 µM. Based on other biochemical studies like lipid peroxidation, reduced glutathione, superoxide dismutase, catalase, nitrite, and behavioural studies (Morris water maze), compound 9 was found to be a potent AChE inhibitor which can be further explored as a lead molecule to design more potent and effective anti-Alzheimer's agents.
Collapse
Affiliation(s)
- Mohan Gupta
- Department of Pharmacy, Banasthali Vidyapith Newai, Banasthali, Rajasthan, India
| | - Swati Pant
- Department of Pharmacy, Banasthali Vidyapith Newai, Banasthali, Rajasthan, India
| | - Preeti Rana
- Department of Medicinal Chemistry, National Institute for Pharmaceutical Education and Research (NIPER) Balangar, Hyderabad, India
| | - Avinash Kumar
- Department of Medical Affairs, Curie Sciences Pvt. Ltd., Samastipur, Bihar, 848125, India
| | - Chakrawarti Prasun
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Maya S Nair
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Sarvesh Paliwal
- Department of Pharmacy, Banasthali Vidyapith Newai, Banasthali, Rajasthan, India
| | - Sumitra Nain
- Department of Pharmacy, Banasthali Vidyapith Newai, Banasthali, Rajasthan, India.
| |
Collapse
|
6
|
Zhang Z, Sun J, Li Y, Yang K, Wei G, Zhang S. Ameliorative effects of pine nut peptide-zinc chelate (Korean pine) on a mouse model of Alzheimer's disease. Exp Gerontol 2023; 183:112308. [PMID: 37821052 DOI: 10.1016/j.exger.2023.112308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/17/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023]
Abstract
In this study, 50 SD adult male mice were used to create an Alzheimer's disease model. The mice's learning and memory abilities were evaluated using an eight-arm radial maze experiment, and changes in body weight and food intake were noted. This helped to better validate the improvement of Alzheimer's disease caused by pine nut peptide-zinc chelate (Korean pine). For a more thorough investigation, mice's brains were dissected, Endogenous mercaptan antioxidants (enzymes), which are markers of brain tissue, were assessed, and mouse gut flora was analyzed. The findings demonstrated that pine nut peptide-zinc chelate (Korean pine) can improve learning and memory, stop brain aging and damage, and control gut flora in mice. It may exert its effects by ameliorating decreased AChE levels and increased ChAT levels in the central cholinergic system, endogenous thiol antioxidants (enzymes) in the cerebral cortex, and by controlling the bacterial flora in the gut.
Collapse
Affiliation(s)
- Zhi Zhang
- College of Life Sciences, Northeast Forestry University
| | - Jiajia Sun
- College of Forestry, Northeast Forestry University.
| | - Yanxia Li
- Forestry Research Institute of Heilongjiang Province.
| | - Kexin Yang
- College of Forestry, Northeast Forestry University
| | - Gang Wei
- College of Forestry, Northeast Forestry University
| | - Shenglong Zhang
- Heilongjiang Guohong Energy Saving and Environmental Protection Co
| |
Collapse
|
7
|
Wan D, Wang FQ, Xie J, Chen L, Zhou XL. Design, Synthesis, and Biological Activity of Donepezil: Aromatic Amine Hybrids as Anti-Alzheimerss Drugs. ACS OMEGA 2023; 8:21802-21812. [PMID: 37360465 PMCID: PMC10286275 DOI: 10.1021/acsomega.3c01427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023]
Abstract
In this study, benzylpiperidine, the active group of donepezil (DNP), was connected with the neurotransmitter phenylethylamine by square amide, in which the fat chain of phenylethylamine was reduced and the benzene rings were substituted. A series of multifunctional hybrid compounds, including DNP-aniline hybrids (1-8), DNP-benzylamine hybrids (9-14), and DNP-phenylethylamine hybrids (15-21) were obtained and their cholinesterase inhibitory activity and neuroprotection of the SH-SY5Y cell line were determined. Results showed that compound 3 exhibited excellent acetylcholinesterase inhibitory activity with an IC50 value of 4.4 μM, higher than that of positive control DNP and significant neuroprotective effects against H2O2-induced oxidative damage in SH-SY5Y cells with 80.11% viability rate at 12.5 μM, much higher than that of the model group (viability rate = 53.1%). The mechanism of action of compound 3 was elucidated by molecular docking, reactive oxygen species (ROS), and immunofluorescence analysis. The results suggest that compound 3 could be further explored as a lead compound for the treatment of Alzheimer's disease. In addition, molecular docking research indicated that the square amide group formed strong interactions with the target protein. Based on the above analysis, we believe that square amide could be an interesting construction unit in anti-AD agents.
Collapse
Affiliation(s)
- Dan Wan
- School
of Life Science and Engineering, Southwest
Jiaotong University, Chengdu 610031, Sichuan, P.R. China
| | - Feng-Qin Wang
- School
of Life Science and Engineering, Southwest
Jiaotong University, Chengdu 610031, Sichuan, P.R. China
| | - Jiang Xie
- Affiliated
Hospital of Southwest Jiaotong University & The Third People Hospital
of Chengdu, Chengdu 610031, Sichuan, P.R. China
| | - Lin Chen
- School
of Life Science and Engineering, Southwest
Jiaotong University, Chengdu 610031, Sichuan, P.R. China
| | - Xian-Li Zhou
- School
of Life Science and Engineering, Southwest
Jiaotong University, Chengdu 610031, Sichuan, P.R. China
- Affiliated
Hospital of Southwest Jiaotong University & The Third People Hospital
of Chengdu, Chengdu 610031, Sichuan, P.R. China
| |
Collapse
|
8
|
Frolov NA, Vereshchagin AN. Piperidine Derivatives: Recent Advances in Synthesis and Pharmacological Applications. Int J Mol Sci 2023; 24:2937. [PMID: 36769260 PMCID: PMC9917539 DOI: 10.3390/ijms24032937] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Piperidines are among the most important synthetic fragments for designing drugs and play a significant role in the pharmaceutical industry. Their derivatives are present in more than twenty classes of pharmaceuticals, as well as alkaloids. The current review summarizes recent scientific literature on intra- and intermolecular reactions leading to the formation of various piperidine derivatives: substituted piperidines, spiropiperidines, condensed piperidines, and piperidinones. Moreover, the pharmaceutical applications of synthetic and natural piperidines were covered, as well as the latest scientific advances in the discovery and biological evaluation of potential drugs containing piperidine moiety. This review is designed to help both novice researchers taking their first steps in this field and experienced scientists looking for suitable substrates for the synthesis of biologically active piperidines.
Collapse
Affiliation(s)
| | - Anatoly N. Vereshchagin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| |
Collapse
|
9
|
Smyrska-Wieleba N, Mroczek T. Natural Inhibitors of Cholinesterases: Chemistry, Structure-Activity and Methods of Their Analysis. Int J Mol Sci 2023; 24:ijms24032722. [PMID: 36769043 PMCID: PMC9916849 DOI: 10.3390/ijms24032722] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
This article aims to provide an updated description and comparison of the data currently available in the literature (from the last 15 years) on the studied natural inhibitors of cholinesterases (IChEs), namely, acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). These data also apply to the likely impact of the structures of the compounds on the therapeutic effects of available and potential cholinesterase inhibitors. IChEs are hitherto known compounds with various structures, activities and origins. Additionally, multiple different methods of analysis are used to determine the cholinesterase inhibitor potency. This summary indicates that natural sources are still suitable for the discovery of new compounds with prominent pharmacological activity. It also emphasizes that further studies are needed regarding the mechanisms of action or the structure-activity correlation to discuss the issue of cholinesterase inhibitors and their medical application.
Collapse
|
10
|
Novel Morpholine-Bearing Quinoline Derivatives as Potential Cholinesterase Inhibitors: The Influence of Amine, Carbon Linkers and Phenylamino Groups. Int J Mol Sci 2022; 23:ijms231911231. [PMID: 36232533 PMCID: PMC9570490 DOI: 10.3390/ijms231911231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022] Open
Abstract
A series of novel 4-N-phenylaminoquinoline derivatives containing a morpholine group were designed and synthesized, and their anti-cholinesterase activities and ABTS radical-scavenging activities were tested. Among them, compounds 11a, 11g, 11h, 11j, 11l, and 12a had comparable inhibition activities to reference galantamine in AChE. Especially, compound 11g revealed the most potent inhibition on AChE and BChE with IC50 values of 1.94 ± 0.13 μM and 28.37 ± 1.85 μM, respectively. The kinetic analysis demonstrated that both the compounds 11a and 11g acted as mixed-type AChE inhibitors. A further docking comparison between the 11a- and 12a-AChE complexes agreed with the different inhibitory potency observed in experiments. Besides, compounds 11f and 11l showed excellent ABTS radical-scavenging activities, with IC50 values of 9.07 ± 1.34 μM and 6.05 ± 1.17 μM, respectively, which were superior to the control, Trolox (IC50 = 11.03 ± 0.76 μM). It is worth noting that 3-aminoquinoline derivatives 12a–12d exhibited better drug-like properties.
Collapse
|
11
|
Komatović K, Matošević A, Terzić-Jovanović N, Žunec S, Šegan S, Zlatović M, Maraković N, Bosak A, Opsenica DM. 4-Aminoquinoline-Based Adamantanes as Potential Anticholinesterase Agents in Symptomatic Treatment of Alzheimer's Disease. Pharmaceutics 2022; 14:1305. [PMID: 35745878 PMCID: PMC9229919 DOI: 10.3390/pharmaceutics14061305] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 12/03/2022] Open
Abstract
Considering that acetylcholinesterase (AChE) inhibition is the most important mode of action expected of a potential drug used for the treatment of symptoms of Alzheimer's disease (AD), our previous pilot study of 4-aminoquinolines as potential human cholinesterase inhibitors was extended to twenty-two new structurally distinct 4-aminoquinolines bearing an adamantane moiety. Inhibition studies revealed that all of the compounds were very potent inhibitors of AChE and butyrylcholinesterase (BChE), with inhibition constants (Ki) ranging between 0.075 and 25 µM. The tested compounds exhibited a modest selectivity between the two cholinesterases; the most selective for BChE was compound 14, which displayed a 10 times higher preference, while compound 19 was a 5.8 times more potent inhibitor of AChE. Most of the compounds were estimated to be able to cross the blood-brain barrier (BBB) by passive transport. Evaluation of druglikeness singled out fourteen compounds with possible oral route of administration. The tested compounds displayed modest but generally higher antioxidant activity than the structurally similar AD drug tacrine. Compound 19 showed the highest reducing power, comparable to those of standard antioxidants. Considering their simple structure, high inhibition of AChE and BChE, and ability to cross the BBB, 4-aminoquinoline-based adamantanes show promise as structural scaffolds for further design of novel central nervous system drugs. Among them, two compounds stand out: compound 5 as the most potent inhibitor of both cholinesterases with a Ki constant in low nano molar range and the potential to cross the BBB, and compound 8, which met all our requirements, including high cholinesterase inhibition, good oral bioavailability, and antioxidative effect. The QSAR model revealed that AChE and BChE inhibition was mainly influenced by the ring and topological descriptors MCD, Nnum, RP, and RSIpw3, which defined the shape, conformational flexibility, and surface properties of the molecules.
Collapse
Affiliation(s)
- Katarina Komatović
- Faculty of Chemistry, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (K.K.); (M.Z.)
| | - Ana Matošević
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10 000 Zagreb, Croatia; (A.M.); (S.Ž.); (N.M.)
| | - Nataša Terzić-Jovanović
- Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia; (N.T.-J.); (S.Š.)
| | - Suzana Žunec
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10 000 Zagreb, Croatia; (A.M.); (S.Ž.); (N.M.)
| | - Sandra Šegan
- Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia; (N.T.-J.); (S.Š.)
| | - Mario Zlatović
- Faculty of Chemistry, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (K.K.); (M.Z.)
| | - Nikola Maraković
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10 000 Zagreb, Croatia; (A.M.); (S.Ž.); (N.M.)
| | - Anita Bosak
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10 000 Zagreb, Croatia; (A.M.); (S.Ž.); (N.M.)
| | - Dejan M. Opsenica
- Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia; (N.T.-J.); (S.Š.)
- Centre of Excellence in Environmental Chemistry and Engineering, ICTM, 11000 Belgrade, Serbia
| |
Collapse
|
12
|
Electrochemical Methodologies for Investigating the Antioxidant Potential of Plant and Fruit Extracts: A Review. Antioxidants (Basel) 2022; 11:antiox11061205. [PMID: 35740101 PMCID: PMC9220340 DOI: 10.3390/antiox11061205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/03/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022] Open
Abstract
In recent years, the growing research interests in the applications of plant and fruit extracts (synthetic/stabilization materials for the nanomaterials, medicinal applications, functional foods, and nutraceuticals) have led to the development of new analytical techniques to be utilized for identifying numerous properties of these extracts. One of the main properties essential for the applicability of these plant extracts is the antioxidant capacity (AOC) that is conventionally determined by spectrophotometric techniques. Nowadays, electrochemical methodologies are emerging as alternative tools for quantifying this particular property of the extract. These methodologies address numerous drawbacks of the conventional spectroscopic approach, such as the utilization of expensive and hazardous solvents, extensive sample pre-treatment requirements, long reaction times, low sensitivity, etc. The electrochemical methodologies discussed in this review include cyclic voltammetry (CV), square wave voltammetry (SWV), differential pulse voltammetry (DPV), and chronoamperometry (CAP). This review presents a critical comparison between both the conventional and electrochemical approaches for the quantification of the parameter of AOC and discusses the numerous applications of the obtained bioextracts based on the AOC parameter.
Collapse
|
13
|
Discovery of Guanidine Derivatives from Buthus martensii Karsch with Metal-Binding and Cholinesterase Inhibition Properties. Molecules 2021; 26:molecules26216737. [PMID: 34771145 PMCID: PMC8588048 DOI: 10.3390/molecules26216737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/31/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
Two rare guanidine-type alkaloids, Buthutin A (1) and Buthutin B (2), along with two other compounds (3, 4), were isolated from Buthus martensii Karsch, and determined using extensive spectroscopic data analysis and high resolution-mass spectrometry. Compound 1 showed the most potent inhibition on AChE and BChE with IC50 values of 7.83 ± 0.06 and 47.44 ± 0.95 μM, respectively. Kinetic characterization of compound 1 confirmed a mixed-type of AChE inhibition mechanism in accordance with the docking results, which shows its interaction with both catalytic active (CAS) and peripheral anionic (PAS) sites. The specific binding of compound 1 to PAS domain of AChE was also confirmed experimentally. Moreover, compounds 1 and 3 exhibited satisfactory biometal binding abilities toward Cu2+, Fe2+, Zn2+ and Al3+ ions. These results provide a new evidence for further development and utilization of B. martensii in health and pharmaceutical products.
Collapse
|
14
|
Zaib S, Munir R, Younas MT, Kausar N, Ibrar A, Aqsa S, Shahid N, Asif TT, Alsaab HO, Khan I. Hybrid Quinoline-Thiosemicarbazone Therapeutics as a New Treatment Opportunity for Alzheimer's Disease‒Synthesis, In Vitro Cholinesterase Inhibitory Potential and Computational Modeling Analysis. Molecules 2021; 26:molecules26216573. [PMID: 34770983 PMCID: PMC8587653 DOI: 10.3390/molecules26216573] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and the leading cause of dementia worldwide. The limited pharmacological approaches based on cholinesterase inhibitors only provide symptomatic relief to AD patients. Moreover, the adverse side effects such as nausea, vomiting, loss of appetite, muscle cramps, and headaches associated with these drugs and numerous clinical trial failures present substantial limitations on the use of medications and call for a detailed insight of disease heterogeneity and development of preventive and multifactorial therapeutic strategies on urgent basis. In this context, we herein report a series of quinoline-thiosemicarbazone hybrid therapeutics as selective and potent inhibitors of cholinesterases. A facile multistep synthetic approach was utilized to generate target structures bearing multiple sites for chemical modifications and establishing drug-receptor interactions. The structures of all the synthesized compounds were fully established using readily available spectroscopic techniques (FTIR, 1H- and 13C-NMR). In vitro inhibitory results revealed compound 5b as a promising and lead inhibitor with an IC50 value of 0.12 ± 0.02 μM, a 5-fold higher potency than standard drug (galantamine; IC50 = 0.62 ± 0.01 μM). The synergistic effect of electron-rich (methoxy) group and ethylmorpholine moiety in quinoline-thiosemicarbazone conjugates contributes significantly in improving the inhibition level. Molecular docking analysis revealed various vital interactions of potent compounds with amino acid residues and reinforced the in vitro results. Kinetics experiments revealed the competitive mode of inhibition while ADME properties favored the translation of identified inhibitors into safe and promising drug candidates for pre-clinical testing. Collectively, inhibitory activity data and results from key physicochemical properties merit further research to ensure the design and development of safe and high-quality drug candidates for Alzheimer’s disease.
Collapse
Affiliation(s)
- Sumera Zaib
- Department of Biochemistry, Faculty of Life Sciences, University of Central Punjab, Lahore 54590, Pakistan;
- Correspondence: (S.Z.); (R.M.); (I.K.)
| | - Rubina Munir
- Department of Chemistry, Kinnaird College for Women, Lahore 54000, Pakistan; (S.A.); (N.S.); (T.T.A.)
- Correspondence: (S.Z.); (R.M.); (I.K.)
| | - Muhammad Tayyab Younas
- Department of Biochemistry, Faculty of Life Sciences, University of Central Punjab, Lahore 54590, Pakistan;
| | - Naghmana Kausar
- Department of Chemistry, University of Gujrat, Gujrat 50700, Pakistan;
| | - Aliya Ibrar
- Department of Chemistry, Faculty of Natural Sciences, The University of Haripur, Haripur 22620, Pakistan;
| | - Sehar Aqsa
- Department of Chemistry, Kinnaird College for Women, Lahore 54000, Pakistan; (S.A.); (N.S.); (T.T.A.)
| | - Noorma Shahid
- Department of Chemistry, Kinnaird College for Women, Lahore 54000, Pakistan; (S.A.); (N.S.); (T.T.A.)
| | - Tahira Tasneem Asif
- Department of Chemistry, Kinnaird College for Women, Lahore 54000, Pakistan; (S.A.); (N.S.); (T.T.A.)
| | - Hashem O. Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Imtiaz Khan
- Department of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
- Correspondence: (S.Z.); (R.M.); (I.K.)
| |
Collapse
|
15
|
Zhou S, Huang G. Synthesis and activities of acetylcholinesterase inhibitors. Chem Biol Drug Des 2021; 98:997-1006. [PMID: 34570966 DOI: 10.1111/cbdd.13958] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 09/11/2021] [Indexed: 11/30/2022]
Abstract
Cholinesterase (ChE) inhibitors can be divided into two categories: acetylcholinesterase (AChE) inhibitors and butylcholinesterase (BuChE) inhibitors. Therefore, the development of selective inhibition of AChE and BuChE activities is the central content of ChE pharmacochemistry research. In order to clarify the progress of AChE inhibitor-based design, synthesis, and activity studies, we reviewed the pharmacochemical and pharmacological properties of selective AChE inhibitors over the past decade. We hope that this review will make it easier for readers to understand the development of new drug chemistry methods for AChE inhibitors in order to develop more effective and selective AChE inhibitors.
Collapse
Affiliation(s)
- Shiyang Zhou
- Chongqing Chemical Industry Vocational College, Chongqing, China.,Active Carbohydrate Research Institute, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing, China
| | - Gangliang Huang
- Active Carbohydrate Research Institute, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing, China
| |
Collapse
|
16
|
Emodin derivatives with multi-factor anti-AD activities: AChE inhibitor, anti-oxidant and metal chelator. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130459] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Pavlidis N, Kofinas A, Papanikolaou MG, Miras HN, Drouza C, Kalampounias AG, Kabanos TA, Konstandi M, Leondaritis G. Synthesis, characterization and pharmacological evaluation of quinoline derivatives and their complexes with copper(ΙΙ) in in vitro cell models of Alzheimer's disease. J Inorg Biochem 2021; 217:111393. [PMID: 33610031 DOI: 10.1016/j.jinorgbio.2021.111393] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/30/2021] [Accepted: 02/05/2021] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder of the central nervous system. The main pathophysiological mechanisms involve cholinergic neurotransmission, beta-amyloid (Αβ) and Tau proteins, several metal ions and oxidative stress, among others. Current drugs offer only relief of symptoms and not a cure of AD. Accumulating evidence suggests that multifunctional compounds, targeting multiple pathophysiological mechanisms, may have a great potential for the treatment of AD. In this study, we report on the synthesis and physicochemical characterization of four quinoline-based metal chelators and their respective copper(II) complexes. Most compounds were non-toxic at concentrations ≤5 μM. In neuroprotection studies employing undifferentiated and differentiated SH-SY5Y cells, the metal chelator N2,N6-di(quinolin-8-yl)pyridine-2,6-dicarboxamide (H2dqpyca) appeared to exert significant neuroprotection against both, Aβ peptide- and H2O2-induced toxicities. The copper(II) complex [CuII(H2bqch)Cl2].3H2O (H2bqch = N,N'-Bis(8-quinolyl)cyclohexane-1,2-diamine) also protected against H2O2-induced toxicity, with a half-maximal effective concentration of 80 nM. Molecular docking simulations, using the crystal structure of the acetylcholinesterase (AChE)-rivastigmine complex as a template, indicated a strong interaction of the metal chelator H2dqpyca, followed by H2bqch, with both the peripheral anionic site and the catalytic active site of AChE. In conclusion, the sufficient neuroprotection provided by the metal chelator H2dqpyca and the copper(II) complex [CuII(H2bqch)Cl2].3H2O along with the evidence for interaction between H2dqpyca and AChE, indicate that these compounds have the potential and should be further investigated in the framework of preclinical studies employing animal models of AD as candidate multifunctional lead compounds for the treatment of the disease.
Collapse
Affiliation(s)
- Nikolaos Pavlidis
- Department of Pharmacology, Faculty of Medicine, University of Ioannina, Ioannina 45110, Greece; Section of Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, Ioannina 45110, Greece.
| | - Aristeidis Kofinas
- Department of Pharmacology, Faculty of Medicine, University of Ioannina, Ioannina 45110, Greece.
| | - Michael G Papanikolaou
- Section of Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, Ioannina 45110, Greece.
| | - Haralampos N Miras
- West CHEM, School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK.
| | - Chryssoula Drouza
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus.
| | - Angelos G Kalampounias
- Physical Chemistry Laboratory, Department of Chemistry, University of Ioannina, Ioannina 45110, Greece; Institute of Materials Science and Computing, University Research Center of Ioannina (URCI), Ioannina 45110, Greece.
| | - Themistoklis A Kabanos
- Section of Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, Ioannina 45110, Greece.
| | - Maria Konstandi
- Department of Pharmacology, Faculty of Medicine, University of Ioannina, Ioannina 45110, Greece.
| | - George Leondaritis
- Department of Pharmacology, Faculty of Medicine, University of Ioannina, Ioannina 45110, Greece.
| |
Collapse
|
18
|
Soheili M, Karimian M, Hamidi G, Salami M. Alzheimer's disease treatment: The share of herbal medicines. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:123-135. [PMID: 33953850 PMCID: PMC8061323 DOI: 10.22038/ijbms.2020.50536.11512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/07/2020] [Indexed: 11/25/2022]
Abstract
One of the most frequent forms of dementia in neurological disorders is Alzheimer's disease (AD). It is a chronic neurodegenerative disease characterized by impaired learning and memory. Pathological symptoms as extracellular amyloid-beta (Aβ) plaques and intracellular accumulation of neurofibrillary tangles occur in AD. Due to the aging of the population and increased prevalence of AD, discovery of new therapeutic agents with the highest effectiveness and fewer side effect seems to be necessary. Numerous synthetic medicines such as tacrine, donepezil, galantamine, rivastigmine, memantine, glutathione, ascorbic acid, ubiquinone, ibuprofen, and ladostigil are routinely used for reduction of the symptoms and prevention of disease progression. Nowadays, herbal medicines have attracted popular attention for numerous beneficial effects with little side effects. Lavandula angustifolia, Ginkgo biloba, Melissa officinalis, Crocus sativus, Ginseng, Salvia miltiorrhiza, and Magnolia officinalis have been widely used for relief of symptoms of some neurological disorders. This paper reviews the therapeutic effects of phytomedicines with prominent effects against various factors implicated in the emergence and progression of AD.
Collapse
Affiliation(s)
- Masoud Soheili
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Karimian
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Gholamali Hamidi
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahmoud Salami
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
19
|
Kareem RT, Abedinifar F, Mahmood EA, Ebadi AG, Rajabi F, Vessally E. The recent development of donepezil structure-based hybrids as potential multifunctional anti-Alzheimer's agents: highlights from 2010 to 2020. RSC Adv 2021; 11:30781-30797. [PMID: 35498922 PMCID: PMC9041380 DOI: 10.1039/d1ra03718h] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/14/2021] [Indexed: 11/21/2022] Open
Abstract
Dementia is a term used to define different brain disorders that affect memory, thinking, behavior, and emotion. Alzheimer's disease (AD) is the second cause of dementia that is generated by the death of cholinergic neurons (especially acetylcholine (ACh)), which have a vital role in cognition. Acetylcholinesterase inhibitors (AChEI) affect acetylcholine levels in the brain and are broadly used to treat Alzheimer's. Donepezil, rivastigmine, and galantamine, which are FDA-approved drugs for AD, are cholinesterase inhibitors. In addition, scientists are attempting to develop hybrid molecules and multi-target-directed ligands (MTDLs) that can simultaneously modulate multiple biological targets. This review highlights recent examples of MTDLs and fragment-based strategy in the rational design of new potential AD medications from 2010 onwards. This review highlights recent examples of multi-target-directed ligands (MTDLs) based on donepezil structure modification from 2010 onwards.![]()
Collapse
Affiliation(s)
- Rzgar Tawfeeq Kareem
- Department of Chemistry, College of Science, University of Bu Ali Sina, Hamadan, Iran
| | - Fahimeh Abedinifar
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Evan Abdolkareem Mahmood
- College of Health Sciences, University of Human Development, Sulaimaniyah, Kurdistan region of Iraq
| | - Abdol Ghaffar Ebadi
- Department of Agriculture, Jouybar Branch, Islamic Azad University, Jouybar, Iran
| | - Fatemeh Rajabi
- Department of Chemistry, Payame Noor University, P.O. Box 19395-3697, Tehran, Iran
| | - Esmail Vessally
- Department of Chemistry, Payame Noor University, P.O. Box 19395-3697, Tehran, Iran
| |
Collapse
|
20
|
Baswar D, Sharma A, Mishra A. In silico Screening of Pyridoxine Carbamates for Anti-Alzheimer's Activities. Cent Nerv Syst Agents Med Chem 2020; 21:39-52. [PMID: 33213353 DOI: 10.2174/1871524920666201119144535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/07/2020] [Accepted: 10/16/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Alzheimer's disease (AD), an irreversible complex neurodegenerative disorder, is the most common type of dementia, with progressive loss of cholinergic neurons. Based on the multi-factorial etiology of Alzheimer's disease, novel ligands strategy appears as an up-coming approach for the development of newer molecules against AD. This study is envisaged to investigate anti-Alzheimer's potential of 10 synthesized compounds. The screening of compounds (1-10) was carried out using in silico techniques. METHODS For in silico screening of physicochemical properties of compounds, Molinspiration property engine v.2018.03, Swiss ADME online web-server and pkCSM ADME were used. For pharmacodynamic prediction, PASS software was used, while the toxicity profile of compounds was analyzed through ProTox-II online software. Simultaneously, molecular docking analysis was performed on mouse AChE enzyme (PDB ID:2JGE, obtained from RSCB PDB) using Auto Dock Tools 1.5.6. RESULTS Based on in silico studies, compound 9 and 10 have been found to have better druglikeness, LD50 value, better anti-Alzheimer's, and nootropic activities. However, these compounds had poor blood-brain barrier (BBB) permeability. Compounds 4 and 9 were predicted with a better docking score for the AChE enzyme. CONCLUSION The outcome of in silico studies has suggested, out of various substitutions at different positions of pyridoxine-carbamate, compound 9 has shown promising drug-likeness, with better safety and efficacy profile for anti-Alzheimer's activity. However, BBB permeability appears as one of the major limitations of all these compounds. Further studies are required to confirm its biological activities.
Collapse
Affiliation(s)
- Dnyaneshwar Baswar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow-226002, U.P., India
| | - Abha Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow-226002, U.P., India
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow-226002, U.P., India
| |
Collapse
|
21
|
Haider K, Haider MR, Neha K, Yar MS. Free radical scavengers: An overview on heterocyclic advances and medicinal prospects. Eur J Med Chem 2020; 204:112607. [PMID: 32721784 DOI: 10.1016/j.ejmech.2020.112607] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/08/2020] [Accepted: 06/19/2020] [Indexed: 12/22/2022]
Abstract
In the present scenario, there has been a lot of consideration toward the field of free radical chemistry. Free radicals responsive oxygen species are produced by different endogenous frameworks, exposure to various physicochemical conditions, radiation, toxins, metabolized drug by-product, and pathological states. On the off chance that free radical overpowers the body's capacity, it generates a condition known as oxidative stress, which can alter physiological conditions of the body and results in several diseases. For appropriate physiological function, it is necessary to have a proper balance between free radicals and antioxidants. Antioxidants chemically inhibit the oxidation process; they are also known as free radical scavengers. For tackling the problem of oxidative stress application of an external source of antioxidant is helpful. A lot of antioxidants of natural, semi-synthetic and synthetic origin are in use, with time search of more effective, nontoxic, safe antioxidant is intensified. The present review, discuss different synthetic derivatives bearing various heterocyclic scaffolds as radical scavengers.
Collapse
Affiliation(s)
- Kashif Haider
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Md Rafi Haider
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Kumari Neha
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - M Shahar Yar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|