1
|
Barbari R, Bruggink V, Hofstetter RK, Tupini C, Fagnani S, Baldini E, Durini E, Lampronti I, Vertuani S, Baldisserotto A, Werz O, Manfredini S. Synthesis and Biological Activity Assessment of 2-Styrylbenzothiazoles as Potential Multifunctional Therapeutic Agents. Antioxidants (Basel) 2024; 13:1196. [PMID: 39456450 PMCID: PMC11504387 DOI: 10.3390/antiox13101196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
A current trend in healthcare research is to discover multifunctional compounds, able to interact with multiple biological targets, in order to simplify multi-drug therapies and improve patient compliance. The aim of this work was to outline the growing demand for innovative multifunctional compounds, achieved through the synthesis, characterisation and SAR evaluation of a series of 2-styrylbenzothiazole derivatives. The six synthesised compounds were studied for their potential as photoprotective, antioxidant, antiproliferative, and anti-inflammatory agents. In order to profile antioxidant activity against various radical species, in vitro DPPH, FRAP and ORAC assays were performed. UV-filtering activity was studied, first in solution and then in formulation (standard O/W sunscreen containing 3% synthesised molecules) before and after irradiation. Compound BZTst6 proved to be photostable, suitable for broad-spectrum criteria, and is an excellent UVA filter. In terms of antioxidant activity, only compound BZTst4 can be considered a promising candidate, due to the potential of the catechol moiety. Both also showed exceptional inhibitory action against the pro-inflammatory enzyme 5-lipoxygenase (LO), with IC50 values in the sub-micromolar range in both activated neutrophils and under cell-free conditions. The results showed that the compounds under investigation are suitable for multifunctional application purposes, underlining the importance of their chemical scaffolding in terms of different biological behaviours.
Collapse
Affiliation(s)
- Riccardo Barbari
- Department of Life Science and Biotechnology, Section of Medicines and Health Products, University of Ferrara, Via Fossato di Mortara 17-19, I-44121 Ferrara, Italy; (R.B.); (E.B.); (E.D.); (S.V.); (S.M.)
| | - Vera Bruggink
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, 07743 Jena, Germany; (V.B.); (R.K.H.)
| | - Robert Klaus Hofstetter
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, 07743 Jena, Germany; (V.B.); (R.K.H.)
| | - Chiara Tupini
- Department of Life Science and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Via Fossato di Mortara 74, I-44121 Ferrara, Italy; (C.T.); (S.F.); (I.L.)
| | - Sofia Fagnani
- Department of Life Science and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Via Fossato di Mortara 74, I-44121 Ferrara, Italy; (C.T.); (S.F.); (I.L.)
| | - Erika Baldini
- Department of Life Science and Biotechnology, Section of Medicines and Health Products, University of Ferrara, Via Fossato di Mortara 17-19, I-44121 Ferrara, Italy; (R.B.); (E.B.); (E.D.); (S.V.); (S.M.)
| | - Elisa Durini
- Department of Life Science and Biotechnology, Section of Medicines and Health Products, University of Ferrara, Via Fossato di Mortara 17-19, I-44121 Ferrara, Italy; (R.B.); (E.B.); (E.D.); (S.V.); (S.M.)
| | - Ilaria Lampronti
- Department of Life Science and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Via Fossato di Mortara 74, I-44121 Ferrara, Italy; (C.T.); (S.F.); (I.L.)
| | - Silvia Vertuani
- Department of Life Science and Biotechnology, Section of Medicines and Health Products, University of Ferrara, Via Fossato di Mortara 17-19, I-44121 Ferrara, Italy; (R.B.); (E.B.); (E.D.); (S.V.); (S.M.)
| | - Anna Baldisserotto
- Department of Life Science and Biotechnology, Section of Medicines and Health Products, University of Ferrara, Via Fossato di Mortara 17-19, I-44121 Ferrara, Italy; (R.B.); (E.B.); (E.D.); (S.V.); (S.M.)
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, 07743 Jena, Germany; (V.B.); (R.K.H.)
| | - Stefano Manfredini
- Department of Life Science and Biotechnology, Section of Medicines and Health Products, University of Ferrara, Via Fossato di Mortara 17-19, I-44121 Ferrara, Italy; (R.B.); (E.B.); (E.D.); (S.V.); (S.M.)
| |
Collapse
|
2
|
Hussain R, Rahim F, Rehman W, Khan S, Rasheed L, Maalik A, Taha M, Alanazi MM, Alanazi AS, Khan I, Shah SAA. Synthesis, in vitro analysis and molecular docking study of novel benzoxazole-based oxazole derivatives for the treatment of Alzheimer’s disease. ARAB J CHEM 2023; 16:105244. [DOI: 10.1016/j.arabjc.2023.105244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
3
|
Baldisserotto A, Barbari R, Tupini C, Buzzi R, Durini E, Lampronti I, Manfredini S, Baldini E, Vertuani S. Multifunctional Profiling of Moringa oleifera Leaf Extracts for Topical Application: A Comparative Study of Different Collection Time. Antioxidants (Basel) 2023; 12:antiox12020411. [PMID: 36829968 PMCID: PMC9952562 DOI: 10.3390/antiox12020411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
This research investigated plant extracts as a source of potential new actives in the nutritional, cosmetic, and pharmaceutical fields. Moringa oleifera, which is extensively known for its nutritional properties, has been investigated in this work by preparation, characterization, and evaluation of the antioxidant (FRAP, DPPH, ORAC, and PCL test), antifungal, photoprotective, and cytotoxicity profile against human melanoma Colo38 cell line of two different extracts (hydroalcoholic and methanolic) and one infusion of dry leaves collected from Paraguay in four distinct harvest times (February, March, April, and May 2017). The outcomes of this study highlight Moringa oleifera as a potential ally to counteract skin aging and oxidative stress, as indicated by the favorable antioxidant profile of the extracts and infusions of Paraguay, which was, in all cases, superior to that provided by the same plant species when collected from Senegal. Moreover, some samples were more efficient in preventing the photodegradation of UVA filter butyl methoxydibenzoylmethane (Avobenzone) compared to commercial filters, thus suggesting an interesting future role as natural additives in sunscreens.
Collapse
Affiliation(s)
- Anna Baldisserotto
- Department of Life Sciences and Biotechnology, Section of Medicines and Health Products, University of Ferrara, Via Fossato di Mortara 17–19, I-44121 Ferrara, Italy
- Correspondence: ; Tel.: +39-0532205258
| | - Riccardo Barbari
- Department of Life Sciences and Biotechnology, Section of Medicines and Health Products, University of Ferrara, Via Fossato di Mortara 17–19, I-44121 Ferrara, Italy
| | - Chiara Tupini
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Via Fossato di Mortara 74, I-44121 Ferrara, Italy
| | - Raissa Buzzi
- Department of Life Sciences and Biotechnology, Section of Medicines and Health Products, University of Ferrara, Via Fossato di Mortara 17–19, I-44121 Ferrara, Italy
| | - Elisa Durini
- Department of Life Sciences and Biotechnology, Section of Medicines and Health Products, University of Ferrara, Via Fossato di Mortara 17–19, I-44121 Ferrara, Italy
| | - Ilaria Lampronti
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Via Fossato di Mortara 74, I-44121 Ferrara, Italy
| | - Stefano Manfredini
- Department of Life Sciences and Biotechnology, Section of Medicines and Health Products, University of Ferrara, Via Fossato di Mortara 17–19, I-44121 Ferrara, Italy
| | - Erika Baldini
- Department of Life Sciences and Biotechnology, Section of Medicines and Health Products, University of Ferrara, Via Fossato di Mortara 17–19, I-44121 Ferrara, Italy
| | - Silvia Vertuani
- Department of Life Sciences and Biotechnology, Section of Medicines and Health Products, University of Ferrara, Via Fossato di Mortara 17–19, I-44121 Ferrara, Italy
| |
Collapse
|
4
|
Khodykina ES, Steglenko DV, Vetrova EV, Pugachev AD, Galkina MS, Borodkina IG, Lesin AV, Demidov OP, Metelitsa AV, Kolodina AA. Intramolecular Cyclization of the
ortho
‐Substituted
N
‐arylquinone Imines under Basic and Thermal Conditions. ChemistrySelect 2023. [DOI: 10.1002/slct.202204317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Evgenia S. Khodykina
- Institute of Physical and Organic Chemistry Southern Federal University 194/2 Stachki St. Rostov on Don 344090 Russian Federation
| | - Dmitry V. Steglenko
- Institute of Physical and Organic Chemistry Southern Federal University 194/2 Stachki St. Rostov on Don 344090 Russian Federation
| | - Elena V. Vetrova
- Institute of Physical and Organic Chemistry Southern Federal University 194/2 Stachki St. Rostov on Don 344090 Russian Federation
| | - Artem D. Pugachev
- Institute of Physical and Organic Chemistry Southern Federal University 194/2 Stachki St. Rostov on Don 344090 Russian Federation
| | - Maria S. Galkina
- Institute of Physical and Organic Chemistry Southern Federal University 194/2 Stachki St. Rostov on Don 344090 Russian Federation
| | - Inna G. Borodkina
- Institute of Physical and Organic Chemistry Southern Federal University 194/2 Stachki St. Rostov on Don 344090 Russian Federation
| | - Alexander V. Lesin
- Institute of Physical and Organic Chemistry Southern Federal University 194/2 Stachki St. Rostov on Don 344090 Russian Federation
| | - Oleg P. Demidov
- Department of Chemistry of the Institutes of Mathematics and Natural Sciences North Caucasus Federal University 1a Pushkina St. Stavropol 355009 Russian Federation
| | - Anatoly V. Metelitsa
- Institute of Physical and Organic Chemistry Southern Federal University 194/2 Stachki St. Rostov on Don 344090 Russian Federation
| | - Alexandra A. Kolodina
- Institute of Physical and Organic Chemistry Southern Federal University 194/2 Stachki St. Rostov on Don 344090 Russian Federation
| |
Collapse
|
5
|
Jurek P, Jędrzejewska H, Rode MF, Szumna A. Recognition-Induced Enhanced Emission of Core-Fluorescent ESIPT-type Macrocycles. Chemistry 2023; 29:e202203116. [PMID: 36214211 DOI: 10.1002/chem.202203116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Indexed: 11/07/2022]
Abstract
Core-fluorescent cavitands based on 2-(2'-resorcinol)benzimidazole fluorophores (RBIs) merged with the resorcin[4]arene skeleton were designed and synthesized. The cavitands, due to the presence of intramolecular hydrogen bonds and increased acidity, show excited state intramolecular proton transfer (ESIPT) and readily undergo deprotonation to form dianionic cavitands, capable of strong binding to organic cations. The changes in fluorescence are induced by deprotonation and binding events and involve huge Stokes shifts (due to emission from anionic double keto tautomers) and cation-selective enhancement of emission originating from the restriction of intramolecular motion (RIR) upon recognition in the cavity. Ab initio calculations indicate that the macrocyclic scaffold stabilizes the ground state tautomeric forms of the fluorophores that are not observed for non-macrocyclic analogs. In the excited state, the emitting forms for both macrocyclic scaffolds and non-macrocyclic analogs are anionic double keto tautomers, which are the result of excited state intramolecular proton transfer (ESIPT) or excited state double proton transfer (ESDPT).
Collapse
Affiliation(s)
- Paulina Jurek
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Hanna Jędrzejewska
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Michał F Rode
- Institute of Physics Polish Academy of Sciences, Aleja Lotników 32/46, 02-668, Warsaw, Poland
| | - Agnieszka Szumna
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| |
Collapse
|
6
|
Design, Synthesis and Evaluation of New Multifunctional Benzothiazoles as Photoprotective, Antioxidant and Antiproliferative Agents. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010287. [PMID: 36615480 PMCID: PMC9822352 DOI: 10.3390/molecules28010287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022]
Abstract
A current trend of research in the health field is toward the discovery of multifunctional compounds, capable of interacting with multiple biological targets, thus simplifying multidrug therapies and improving patient compliance. The aim of this work was to synthesize new multifunctional chemical entities bearing a benzothiazole nucleus, a structure that has attracted increasing interest for the great variety of biological actions that it can perform, and already used as a scaffold in several multifunctional drugs. Compounds are reported, divided into two distinct series, synthetized and tested in vitro for the antioxidant, and include UV-filtering and antitumor activities. DPPH and FRAP tests were chosen to outline an antioxidant activity profile against different radical species. The UV-filtering activity was investigated, pre- and post-irradiation, through evaluation of a O/W sunscreen standard formulation containing 3% of the synthetic compounds. The antitumor activity was investigated both on human melanoma cells (Colo-38) and on immortalized human keratinocytes as a control (HaCat). A good antiproliferative profile in terms of IC50 was chosen as a mandatory condition to further investigate apoptosis induction as a possible cytotoxicity mechanism through the Annexin V test. Compound BZTcin4 was endowed with excellent activity and a selectivity profile towards Colo-38, supported by a good antioxidant capacity and an excellent broad-spectrum photoprotective profile.
Collapse
|
7
|
Luan F, Xu Z, Wang K, Qi X, Guo Z. Synthesis of Water-Soluble Sulfonated Chitin Derivatives for Potential Antioxidant and Antifungal Activity. Mar Drugs 2022; 20:md20110668. [PMID: 36354991 PMCID: PMC9697452 DOI: 10.3390/md20110668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
Chitin is a natural renewable and useful biopolymer limited by its insolubility; chemical derivatization can enhance the solubility and bioactivity of chitin. The purpose of this study was to synthesize novel water-soluble chitin derivatives, sulfo-chitin (SCT) and sulfopropyl-chitin (SPCT), as antioxidant and antifungal agents. The target derivatives were characterized by means of elemental analysis, FTIR, 13C NMR, TGA and XRD. Furthermore, the antioxidant activity of the chitin derivatives was estimated by free radical scavenging ability (against DPPH-radical, hydroxyl-radical and superoxide-radical) and ferric reducing power. In addition, inhibitory effects against four fungi were also tested. The findings show that antioxidant abilities and antifungal properties were in order of SPCT > SCT > CT. On the basis of the results obtained, we confirmed that the introduction of sulfonated groups on the CT backbone would help improve the antioxidant and antifungal activity of CT. Moreover, its efficacy as an antioxidant and antifungal agent increased as the chain length of the substituents increased. This derivatization strategy might provide a feasible way to broaden the utilization of chitin. It is of great significance to minimize waste and realize the high-value utilization of aquatic product wastes.
Collapse
Affiliation(s)
- Fang Luan
- Naval Architecture and Port Engineering College, Shandong Jiaotong University, Weihai 264200, China
- Correspondence: (F.L.); (Z.G.); Tel.: +86-535-2109171 (F.L.); +86-6313998919 (Z.G.)
| | - Zhenhua Xu
- Naval Architecture and Port Engineering College, Shandong Jiaotong University, Weihai 264200, China
| | - Kai Wang
- Naval Architecture and Port Engineering College, Shandong Jiaotong University, Weihai 264200, China
| | - Xin Qi
- Naval Architecture and Port Engineering College, Shandong Jiaotong University, Weihai 264200, China
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (F.L.); (Z.G.); Tel.: +86-535-2109171 (F.L.); +86-6313998919 (Z.G.)
| |
Collapse
|
8
|
Mumtaz S, Iqbal S, Shah M, Hussain R, Rahim F, Rehman W, Khan S, Abid OUR, Rasheed L, Dera AA, Al-ghulikah HA, Kehili S, Elkaeed EB, Alrbyawi H, Alahmdi MI. New Triazinoindole Bearing Benzimidazole/Benzoxazole Hybrids Analogs as Potent Inhibitors of Urease: Synthesis, In Vitro Analysis and Molecular Docking Studies. Molecules 2022; 27:6580. [PMID: 36235116 PMCID: PMC9571547 DOI: 10.3390/molecules27196580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
Twenty-four analogs based on triazinoindole bearing benzimidazole/benzoxazole moieties (1-25) were synthesized. Utilizing a variety of spectroscopic methods, including 1H-, 13C-NMR, and HREI-MS, the newly afforded compounds (1-25) were analyzed. The synthesized analogs were tested against urease enzyme (in vitro) as compared to the standard thiourea drug. All triazinoindole-based benzimidazole/benzoxazole analogs (1-25) exhibited moderate to excellent inhibition profiles, having IC50 values of 0.20 ± 0.01 to 36.20 ± 0.70 μM when evaluated under the positive control of thiourea as a standard drug. To better understand the structure-activity relationship, the synthesized compounds were split into two groups, "A" and "B." Among category "A" analogs, analogs 8 (bearing tri-hydroxy substitutions at the 2,4,6-position of aryl ring C) and 5 (bearing di-hydroxy substitutions at the 3,4-position of aryl ring C) emerged as the most potent inhibitors of urease enzyme and displayed many times more potency than a standard thiourea drug. Besides that, analog 22 (which holds di-hydroxy substitutions at the 2,3-position of the aryl ring) and analog 23 (bearing ortho-fluoro substitution) showed ten-fold-enhanced inhibitory potential compared to standard thiourea among category "B" analogs. Molecular docking studies on the active analogs of each category were performed; the results obtained revealed that the presence of hydroxy and fluoro-substitutions on different positions of aryl ring C play a pivotal role in binding interactions with the active site of the targeted urease enzyme.
Collapse
Affiliation(s)
- Sundas Mumtaz
- Department of Chemistry, Hazara University, Mansehra 21300, Pakistan
| | - Shahid Iqbal
- Department of Chemistry, School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), H-12, Islamabad 46000, Pakistan
| | - Mazloom Shah
- Department of Chemistry, Abbottabad University of Science and Technology (AUST), Abbottabad 22010, Pakistan
| | - Rafaqat Hussain
- Department of Chemistry, Hazara University, Mansehra 21300, Pakistan
| | - Fazal Rahim
- Department of Chemistry, Hazara University, Mansehra 21300, Pakistan
| | - Wajid Rehman
- Department of Chemistry, Hazara University, Mansehra 21300, Pakistan
| | - Shoaib Khan
- Department of Chemistry, Hazara University, Mansehra 21300, Pakistan
| | | | - Liaqat Rasheed
- Department of Chemistry, Hazara University, Mansehra 21300, Pakistan
| | - Ayed A. Dera
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61413, Saudi Arabia
| | - Hanan A. Al-ghulikah
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Sana Kehili
- Adham University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Eslam B. Elkaeed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh 13713, Saudi Arabia
| | - Hamad Alrbyawi
- Pharmaceutics and Pharmaceutical Technology Department, College of Pharmacy, Taibah University, Medina 42353, Saudi Arabia
| | - Mohammed Issa Alahmdi
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| |
Collapse
|
9
|
Vishnuvardhan M, Pradeep M, Gangadhar T. Easy and Efficient Microwave-Assisted Synthesis of 1,2,3-Triazolyl-Tethered 2-Pyridinylbenzimidiazoles and Their Antimicrobial Activity. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022040182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Synthesis of Hydroxypropyltrimethyl Ammonium Chitosan Derivatives Bearing Thioctate and the Potential for Antioxidant Application. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092682. [PMID: 35566038 PMCID: PMC9101115 DOI: 10.3390/molecules27092682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/07/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022]
Abstract
Hydroxypropyltrimethyl ammonium chloride chitosan (HACC) is one of the most important water-soluble chitosan derivatives; its derivatives have gained growing attention due to their potential biomedical applications. Here, hydroxypropyltrimethyl ammonium chitosan derivatives bearing thioctate (HACTs), with different degrees of substitution of thioctate, were prepared using HACC and α-lipoic acid as the reaction precursors, using an ion exchange method. The structural characteristics of the synthesized derivatives were confirmed by FTIR, 1H NMR, and 13C NMR spectroscopy. In addition, their antioxidant behaviors were also investigated in vitro by the assays of reducing power, and scavenging activities against hydroxyl radicals and DPPH radicals. The antioxidant assay indicated that HACTs displayed strong antioxidant activity compared with HACC, especially in terms of reducing power. Besides, the antioxidant activities of the prepared products were further enhanced with the increase in the test concentration and the degrees of substitution of thioctate. At the maximum test concentration of 1.60 mg/mL, the absorbance value at 700 nm of HACTs, under the test conditions, was 4.346 ± 0.296, while the absorbance value of HACC was 0.041 ± 0.007. The aforementioned results support the use of HACTs as antioxidant biomaterials in food and the biomedical field.
Collapse
|
11
|
Kisla MM, Ates-Alagoz Z. Benzimidazoles Against Certain Breast Cancer Drug Targets: A Review. Mini Rev Med Chem 2022; 22:2463-2477. [PMID: 35345997 DOI: 10.2174/1389557522666220328161217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/01/2022] [Accepted: 02/09/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Benzimidazoles are widely used scaffolds against various types of cancer including breast cancer. To this end, anticancer agents must be developed using the knowledge of the specific targets of BC. OBJECTIVE In this study, we aim to review the compounds used against some of the biomolecular targets of breast cancer. To this end, we present information about the various targets, with their latest innovative studies. CONCLUSION Benzimidazole ring is an important building block that can target diverse cancer scenarios since it can structurally mimic biomolecules in the human body. Additionally, many studies imply the involvement of this moiety on a plethora of pathways and enzymes related to BC. Herein, our target-based collection of benzimidazole derivatives strongly suggests the utilization of benzimidazole derivatives against BC.
Collapse
Affiliation(s)
- Mehmet Murat Kisla
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Zeynep Ates-Alagoz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
12
|
Djuidje EN, Barbari R, Baldisserotto A, Durini E, Sciabica S, Balzarini J, Liekens S, Vertuani S, Manfredini S. Benzothiazole Derivatives as Multifunctional Antioxidant Agents for Skin Damage: Structure–Activity Relationship of a Scaffold Bearing a Five-Membered Ring System. Antioxidants (Basel) 2022; 11:antiox11020407. [PMID: 35204288 PMCID: PMC8869097 DOI: 10.3390/antiox11020407] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/10/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
Skin diseases often give multifactorial damages; therefore, the development of multifunctional compounds represents a suitable approach especially against disorders that are induced by oxidative stress. Thus, taking into account the successful results we achieved on benzimidazoles, we have devised a new series of isosteric benzothiazoles and investigated their antioxidant, photoprotective, antifungal and antiproliferative activity. Particular attention has been paid to synergistic antioxidant and photoprotective properties. For compounds 9a and 10a, a multifunctional profile was outlined, supported by an excellent filtering capacity, mainly UVB, which has higher capacities than those of the reference PBSA which is currently in the market as a UV sunscreen filter. The two compounds were also the best in terms of growth inhibition of dermatophytes and Candida albicans, and 10a also showed good antioxidant activity. Furthermore, 9a was also effective on melanoma tumor cells (SK-Mel 5), making these compounds good candidates in the development of new skin protective and preventive agents.
Collapse
Affiliation(s)
- Ernestine Nicaise Djuidje
- Department of Life Sciences and Biotechnology, Master Course in Cosmetic Science and Technologies, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy; (E.N.D.); (E.D.); (S.S.); (S.M.)
| | - Riccardo Barbari
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy;
| | - Anna Baldisserotto
- Department of Life Sciences and Biotechnology, Master Course in Cosmetic Science and Technologies, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy; (E.N.D.); (E.D.); (S.S.); (S.M.)
- Correspondence: (A.B.); (S.V.); Tel.: +39-0532-455258 (A.B.); +39-0532-455294 (S.V.)
| | - Elisa Durini
- Department of Life Sciences and Biotechnology, Master Course in Cosmetic Science and Technologies, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy; (E.N.D.); (E.D.); (S.S.); (S.M.)
| | - Sabrina Sciabica
- Department of Life Sciences and Biotechnology, Master Course in Cosmetic Science and Technologies, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy; (E.N.D.); (E.D.); (S.S.); (S.M.)
| | - Jan Balzarini
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology and Immunology, KU Leuven, University of Leuven, B-3000 Leuven, Belgium; (J.B.); (S.L.)
| | - Sandra Liekens
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology and Immunology, KU Leuven, University of Leuven, B-3000 Leuven, Belgium; (J.B.); (S.L.)
| | - Silvia Vertuani
- Department of Life Sciences and Biotechnology, Master Course in Cosmetic Science and Technologies, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy; (E.N.D.); (E.D.); (S.S.); (S.M.)
- Correspondence: (A.B.); (S.V.); Tel.: +39-0532-455258 (A.B.); +39-0532-455294 (S.V.)
| | - Stefano Manfredini
- Department of Life Sciences and Biotechnology, Master Course in Cosmetic Science and Technologies, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy; (E.N.D.); (E.D.); (S.S.); (S.M.)
| |
Collapse
|
13
|
Bhurta D, Bharate SB. Styryl Group, a Friend or Foe in Medicinal Chemistry. ChemMedChem 2022; 17:e202100706. [PMID: 35166041 DOI: 10.1002/cmdc.202100706] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/12/2022] [Indexed: 11/10/2022]
Abstract
The styryl (Ph-CH=CH-R) group is widely represented in medicinally important compounds, including drugs, clinical candidates, and molecular probes as it positively impacts the lipophilicity, oral absorption, and biological activity. The analysis of matched molecular pairs (styryl vs. phenethyl, phenyl, methyl, H) for the biological activity indicates the superiority aspect of styryl compounds. However, the Michael acceptor site in the styryl group makes it amenable to the nucleophilic attack by biological nucleophiles and transformation to the toxic metabolites. One of the downsides of styryl compounds is isomerization that impacts the molecular conformation and directly affects biological activity. The impact of cis-trans isomerism and isosteric replacements on biological activity is exemplified. We also discuss the styryl group-bearing drugs, clinical candidates, and fluorescent probes. Overall, the present review reveals the utility of the styryl group in medicinal chemistry and drug discovery.
Collapse
Affiliation(s)
- Deendyal Bhurta
- Council of Scientific & Industrial Research Indian Institute of Integrative Medicine, Natural Products and medicinal chemistry, 180001, Jammu, INDIA
| | - Sandip Bibishan Bharate
- Indian Institute of Integrative Medicine CSIR, Natural Products & Medicinal Chemistry, Canal Road, 180001, Jammu, INDIA
| |
Collapse
|
14
|
Laha JK, Hunjan MK. Diversity in Heterocycle Synthesis Using α-Iminocarboxylic Acids: Decarboxylation Dichotomy. J Org Chem 2022; 87:2315-2323. [DOI: 10.1021/acs.joc.1c02110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Joydev K. Laha
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, S. A. S. Nagar, Punjab 160062, India
| | - Mandeep Kaur Hunjan
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, S. A. S. Nagar, Punjab 160062, India
| |
Collapse
|
15
|
Scattolin T, Valente G, Luzietti L, Piva M, Demitri N, Lampronti I, Gambari R, Visentin F. Synthesis and anticancer activity of Pt(0)‐olefin complexes bearing 1,3,5‐triaza‐7‐phosphaadamantane and
N
‐heterocyclic carbene ligands. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Thomas Scattolin
- Dipartimento di Scienze Molecolari e Nanosistemi Università Ca' Foscari Venezia‐Mestre Italy
| | - Giorgia Valente
- Dipartimento di Scienze Molecolari e Nanosistemi Università Ca' Foscari Venezia‐Mestre Italy
| | - Lara Luzietti
- Dipartimento di Scienze della Vita e Biotecnologie Università degli Studi di Ferrara Ferrara Italy
| | - Michele Piva
- Dipartimento di Scienze Molecolari e Nanosistemi Università Ca' Foscari Venezia‐Mestre Italy
| | - Nicola Demitri
- S.S. 14 Km 163.5 in Area Science Park Elettra–Sincrotrone Trieste Trieste Italy
| | - Ilaria Lampronti
- Dipartimento di Scienze della Vita e Biotecnologie Università degli Studi di Ferrara Ferrara Italy
| | - Roberto Gambari
- Dipartimento di Scienze della Vita e Biotecnologie Università degli Studi di Ferrara Ferrara Italy
| | - Fabiano Visentin
- Dipartimento di Scienze Molecolari e Nanosistemi Università Ca' Foscari Venezia‐Mestre Italy
| |
Collapse
|
16
|
Brishty SR, Hossain MJ, Khandaker MU, Faruque MRI, Osman H, Rahman SMA. A Comprehensive Account on Recent Progress in Pharmacological Activities of Benzimidazole Derivatives. Front Pharmacol 2021; 12:762807. [PMID: 34803707 PMCID: PMC8597275 DOI: 10.3389/fphar.2021.762807] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/01/2021] [Indexed: 12/11/2022] Open
Abstract
Nowadays, nitrogenous heterocyclic molecules have attracted a great deal of interest among medicinal chemists. Among these potential heterocyclic drugs, benzimidazole scaffolds are considerably prevalent. Due to their isostructural pharmacophore of naturally occurring active biomolecules, benzimidazole derivatives have significant importance as chemotherapeutic agents in diverse clinical conditions. Researchers have synthesized plenty of benzimidazole derivatives in the last decades, amidst a large share of these compounds exerted excellent bioactivity against many ailments with outstanding bioavailability, safety, and stability profiles. In this comprehensive review, we have summarized the bioactivity of the benzimidazole derivatives reported in recent literature (2012-2021) with their available structure-activity relationship. Compounds bearing benzimidazole nucleus possess broad-spectrum pharmacological properties ranging from common antibacterial effects to the world's most virulent diseases. Several promising therapeutic candidates are undergoing human trials, and some of these are going to be approved for clinical use. However, notable challenges, such as drug resistance, costly and tedious synthetic methods, little structural information of receptors, lack of advanced software, and so on, are still viable to be overcome for further research.
Collapse
Affiliation(s)
- Shejuti Rahman Brishty
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Md. Jamal Hossain
- Department of Pharmacy, State University of Bangladesh, Dhaka, Bangladesh
| | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, Bandar Sunway, Malaysia
| | | | - Hamid Osman
- Department of Radiological Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - S. M. Abdur Rahman
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
17
|
Ivakhnenko EP, Knyazev PA, Vitkovskaya YG, Popov LD, Lyssenko KA, Demidov OP, Starikov AG, Borodkin GS, Minkin VI. Synthesis, Staructure and Redox Properties of Cu(II) Chelate Complexes on the Basis of 2‐(Hydroxyphenyl)‐1H‐benzo[d]imidazol‐1‐yl Phenol Ligands. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Eugeny P. Ivakhnenko
- Institute of Physical and Organic Chemistry Southern Federal University 194/2 Stachki st. Rostov-on-Don 344090 Russian Federation
| | - Pavel A. Knyazev
- Institute of Physical and Organic Chemistry Southern Federal University 194/2 Stachki st. Rostov-on-Don 344090 Russian Federation
| | - Yulia G. Vitkovskaya
- Institute of Physical and Organic Chemistry Southern Federal University 194/2 Stachki st. Rostov-on-Don 344090 Russian Federation
| | - Leonid D. Popov
- Chemistry Department Southern Federal University 7 Zorge st. Rostov-on-Don 344090 Russian Federation
| | - Konstantin A. Lyssenko
- A.N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences 28 Vavilov st. Moscow 119991 Russian Federation
| | - Oleg P. Demidov
- North Caucasus Federal University 1 Pushkin st. Stavropol 355017 Russian Federation
| | - Andrey G. Starikov
- Institute of Physical and Organic Chemistry Southern Federal University 194/2 Stachki st. Rostov-on-Don 344090 Russian Federation
| | - Gennady S. Borodkin
- Institute of Physical and Organic Chemistry Southern Federal University 194/2 Stachki st. Rostov-on-Don 344090 Russian Federation
| | - Vladimir I. Minkin
- Institute of Physical and Organic Chemistry Southern Federal University 194/2 Stachki st. Rostov-on-Don 344090 Russian Federation
| |
Collapse
|
18
|
Küçükbay H, Uçkun M, Apohan E, Yeşilada Ö. Cytotoxic and antimicrobial potential of benzimidazole derivatives. Arch Pharm (Weinheim) 2021; 354:e2100076. [PMID: 33872394 DOI: 10.1002/ardp.202100076] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 11/07/2022]
Abstract
New benzimidazole derivatives were synthesized and their structures were characterized by spectroscopic and microanalysis techniques. The cytotoxic properties of ten benzimidazole derivatives, five of which were synthesized in our previous studies, were determined against the lung cancer cell line, A549, and the healthy lung epithelial cell line, BEAS-2B. Among the ten compounds tested, based on the 72-h incubation results, compound 12 was the most cytotoxic against the A549 cell line, whereas against the BEAS-2B cell line, it was as cytotoxic as cisplatin. The IC50 values of compound 12 were 3.98 and 2.94 µg/ml for A549 and BEAS-2B cells, respectively. The cisplatin values were 6.75 and 2.75 µg/ml for A549 and BEAS-2B cells, respectively. Compounds 10, 8, 7, and 13 showed toxic effects against A549 cells, but were less toxic against BEAS-2B cells than cisplatin. The antimicrobial activity of these compounds against pathogenic bacteria and yeasts was also evaluated based on their minimum inhibitory concentration (MIC) values. The compounds, except 12 and 13, generally showed higher antimicrobial activity against yeasts, compared with bacteria. Compound 12 showed better activity against Pseudomonas aeruginosa and Staphylococcus aureus than against Escherichia coli. Compounds 7, 8, and 11 were the most effective ones against the microorganisms, and yeasts were highly sensitive to these compounds with MIC values of 25-100 µg/ml.
Collapse
Affiliation(s)
- Hasan Küçükbay
- Department of Chemistry, Faculty of Arts and Sciences, İnönü University, Malatya, Turkey
| | - Mustafa Uçkun
- Department of Biology, Faculty of Arts and Sciences, İnönü University, Malatya, Turkey
| | - Elif Apohan
- Department of Biology, Faculty of Arts and Sciences, İnönü University, Malatya, Turkey
| | - Özfer Yeşilada
- Department of Biology, Faculty of Arts and Sciences, İnönü University, Malatya, Turkey
| |
Collapse
|
19
|
Baldisserotto A, Demurtas M, Lampronti I, Tacchini M, Moi D, Balboni G, Vertuani S, Manfredini S, Onnis V. In-Vitro Evaluation of Antioxidant, Antiproliferative and Photo-Protective Activities of Benzimidazolehydrazone Derivatives. Pharmaceuticals (Basel) 2020; 13:ph13040068. [PMID: 32326658 PMCID: PMC7243105 DOI: 10.3390/ph13040068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 01/02/2023] Open
Abstract
In the search of multifunctional compounds we designed benzimidazole derivatives endowed with phenolic hydroxy groups and a hydrazone moiety as potential radical-scavenger and the antioxidant agents. The target molecules have been prepared by a simple synthetic procedure and tested for their antioxidant activity by DPPH, FRAP, and ORAC test, for photoprotective activity against UV rays and for antiproliferative activity against Colo-38 melanoma cells. Furthermore, two different dermocosmetic formulations were prepared with the compounds endowed with the best antioxidant and photoprotective profile and their release from formulation evaluated using Franz Cells system. High antioxidant activity is related to the presence of at least two hydroxy groups on arylidene moiety of benzimidazoles. Structure activity analysis revealed that the position of hydroxy groups is crucial for antioxidant activity as well as the presence of a 2-hydroxy-4-(diethylamino)arylidene group. The same correlation pattern was found to be related to photoprotective activity resulting in an UVA Protection Factor better than the commercial solar filter PBSA and antiproliferative activity against melanoma cells without producing cytotoxicity on normal keratinocytes. The release analysis indicated that high antioxidant activities are achieved with limited release at concentration compatible with the use as UV sunscreen filter.
Collapse
Affiliation(s)
- Anna Baldisserotto
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 17-19, I-44121 Ferrara, Italy; (A.B.); (S.M.); (S.V.)
| | - Monica Demurtas
- Department of Life and Environmental Sciences, Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, University Campus, S.P. n° 8, Km 0.700, I-09042 Monserrato (CA), Italy; (M.D.); (D.M.); (G.B.)
| | - Ilaria Lampronti
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Via Fossato di Mortara 74, I-44121 Ferrara, Italy;
| | - Massimo Tacchini
- Department of Life Sciences and Biotechnology, Section of Pharmaceutical Biology, University of Ferrara, Piazzale Luciano Chiappini 3, I-44123 Malborghetto di Boara (FE), Italy;
| | - Davide Moi
- Department of Life and Environmental Sciences, Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, University Campus, S.P. n° 8, Km 0.700, I-09042 Monserrato (CA), Italy; (M.D.); (D.M.); (G.B.)
| | - Gianfranco Balboni
- Department of Life and Environmental Sciences, Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, University Campus, S.P. n° 8, Km 0.700, I-09042 Monserrato (CA), Italy; (M.D.); (D.M.); (G.B.)
| | - Silvia Vertuani
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 17-19, I-44121 Ferrara, Italy; (A.B.); (S.M.); (S.V.)
| | - Stefano Manfredini
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 17-19, I-44121 Ferrara, Italy; (A.B.); (S.M.); (S.V.)
| | - Valentina Onnis
- Department of Life and Environmental Sciences, Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, University Campus, S.P. n° 8, Km 0.700, I-09042 Monserrato (CA), Italy; (M.D.); (D.M.); (G.B.)
- Correspondence:
| |
Collapse
|
20
|
Spasov AA, Kucheryavenko AF, Gaidukova KA, Kosolapov VA, Zhukovskaya ON. Antiplatelet activity of new derivatives of benzimidazole containing sterically hindered phenolic group in their structure. RESEARCH RESULTS IN PHARMACOLOGY 2020. [DOI: 10.3897/rrpharmacology.6.50373] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Introduction: Cardiovascular diseases are currently the leading cause of global disability and mortality. According to the centers for disease control and prevention, the average life expectancy of a person would be 10 years longer but for a high prevalence of cardiovascular diseases, and if antiplatelet drugs and special therapy were used.
Materials and methods: Antiplatelet activity of the novel benzimidazole derivatives containing a sterically hindered phenolic group in their structure has been investigated in vitro, using a model of ADP-induced platelet aggregation of rabbit’s plasma. The compounds exhibiting high antiplatelet activity and acetylsalicylic acid, as a reference drug, were examined for antioxidant properties in an ascorbate-dependent model of lipid peroxidation.
Results: It was established that the compounds with high antiplatelet activity demonstrated the pronounced antioxidant action. The compound RU-1144 (1-(3,5-ditretbutyl-4-hydroxyphenyl) -1-hydroxypropyl)-phenyl-pyrimidobenzimidazole hydrochloride), in in vitro experiments, had a pronounced antiplatelet activity, surpassing the reference drug acetylsalicylic acid by 21.8 times; in the study of antioxidant activity, the leader compound was inferior to the reference drug dibunol by 1.7 times. By inhibiting intravascular platelet aggregation in vivo, this compound exceeded acetylsalicylic acid by 1.5 times and was slightly inferior to clopidogrel by 1.4 times.
Discussion: Benzimidazole derivatives with a hindered phenolic substituent in their structure exhibited antiplatelet and antioxidant properties. It was established that the compounds with high antiplatelet activity demonstrated the pronounced antioxidant action.
Conclusion: The chemical class of benzimidazole derivatives with a hindered phenolic substituent in their structure is promising for the search for new antiaggregant and antioxidant drugs.
Collapse
|
21
|
Deep Eutectic Solvents as Effective Reaction Media for the Synthesis of 2-Hydroxyphenylbenzimidazole-based Scaffolds en Route to Donepezil-Like Compounds. Molecules 2020; 25:molecules25030574. [PMID: 32013037 PMCID: PMC7037276 DOI: 10.3390/molecules25030574] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/18/2020] [Accepted: 01/27/2020] [Indexed: 12/25/2022] Open
Abstract
An unsubstituted 2-hydroxyphenylbenzimidazole has recently been included as a scaffold in a series of hybrids (including the hit compound PZ1) based on the framework of the acetylcholinesterase (AChE) inhibitor Donepezil, which is a new promising multi-target ligand in Alzheimer’s disease (AD) treatment. Building upon these findings, we have now designed and completed the whole synthesis of PZ1 in the so-called deep eutectic solvents (DESs), which have emerged as an unconventional class of bio-renewable reaction media in green synthesis. Under optimized reaction conditions, the preparation of a series of 2-hydroxyphenylbenzimidazole-based nuclei has also been perfected in DESs, and comparison with other routes which employ toxic and volatile organic solvents (VOCs) provided. The functionalization of the aromatic ring can have implications on some important biological properties of the described derivatives and will be the subject of future studies of structure-activity relationships (SARs).
Collapse
|
22
|
Zuo M, Guo W, Pang Y, Guo R, Hou C, Sun S, Wu H, Sun Z, Chu W. Direct synthesis of 2-substituted benzimidazoles via dehydrogenative coupling of aromatic-diamine and primary alcohol catalyzed by a Co complex. NEW J CHEM 2020. [DOI: 10.1039/d0nj03619f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A Co(ii) complex was synthesized and used as catalyst to synthesize a series of 2-substituted benzimidazoles with o-phenylenediamines and primary alcohol as the substrates under mild reaction conditions.
Collapse
Affiliation(s)
- Minghui Zuo
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin 150080
- P. R. China
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion
| | - Weihao Guo
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin 150080
- P. R. China
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion
| | - Yucheng Pang
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin 150080
- P. R. China
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion
| | - Rui Guo
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin 150080
- P. R. China
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion
| | - Chuanfu Hou
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin 150080
- P. R. China
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion
| | - Shouneng Sun
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin 150080
- P. R. China
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion
| | - Hongfeng Wu
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin 150080
- P. R. China
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion
| | - Zhizhong Sun
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin 150080
- P. R. China
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion
| | - Wenyi Chu
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin 150080
- P. R. China
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion
| |
Collapse
|
23
|
Fogagnolo M, Bergamini P, Marchesi E, Marvelli L, Gambari R, Lampronti I. Polytopic carriers for platinum ions: from digalloyl depside to tannic acid. NEW J CHEM 2020. [DOI: 10.1039/d0nj01352h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Multinuclear platinum complexes of the natural antioxidant tannic acid and its aglycone part methyl digallate can be prepared via an environmentally friendly, solvent-free process exploiting the convenient precursor [PtCO3(Me2SO-S)2].
Collapse
Affiliation(s)
- Marco Fogagnolo
- Dipartimento di Scienze Chimiche e Farmaceutiche
- Università degli Studi di Ferrara
- 44121 Ferrara
- Italy
| | - Paola Bergamini
- Dipartimento di Scienze Chimiche e Farmaceutiche
- Università degli Studi di Ferrara
- 44121 Ferrara
- Italy
| | - Elena Marchesi
- Dipartimento di Scienze Chimiche e Farmaceutiche
- Università degli Studi di Ferrara
- 44121 Ferrara
- Italy
| | - Lorenza Marvelli
- Dipartimento di Scienze Chimiche e Farmaceutiche
- Università degli Studi di Ferrara
- 44121 Ferrara
- Italy
| | - Roberto Gambari
- Dipartimento di Scienze della Vita e Biotecnologie
- Sezione di Biochimica e Biologia Molecolare
- Università degli Studi di Ferrara
- 44121 Ferrara
- Italy
| | - Ilaria Lampronti
- Dipartimento di Scienze della Vita e Biotecnologie
- Sezione di Biochimica e Biologia Molecolare
- Università degli Studi di Ferrara
- 44121 Ferrara
- Italy
| |
Collapse
|