1
|
Indalkar S, Kumar Sahoo D, Bhange DS, Waghmode M, Shekh S, Gaikwad LD, Gadave KM. Pyrimidine-based sulfonamides and acetamides as potent antimicrobial Agents: Synthesis, Computational Studies, and biological assessment. Bioorg Chem 2024; 151:107667. [PMID: 39067418 DOI: 10.1016/j.bioorg.2024.107667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/09/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
A series of novel sulfonamide and acetamide derivatives of pyrimidine were synthesized and their antimicrobial activities were assessed. Based on the Microbroth dilution method, the minimum inhibitory concentration (MIC) of the synthesized compounds demonstrated moderate to good levels of antifungal and antibacterial activity. Structure-activity relationship analysis suggested that the presence of electron-withdrawing groups, such as halogens, nitrile, and nitro groups, on the pyrimidine ring contributed to the enhanced antimicrobial potency, while electron-donating substituents led to a decrease in activity. Computational studies, including density functional theory (DFT), frontier molecular orbitals (FMO), and molecular electrostatic potential (MEP) analysis, provided insights into the electronic properties and charge distribution of the compounds. Drug-likeness evaluation using ADME/Tox analysis indicated that the synthesized compounds possess favorable physicochemical properties and could be potential drug candidates. Molecular docking against the Mycobacterium TB protein tyrosine phosphatase B (MtbPtpB) revealed that the synthesized compounds exhibited strong binding affinities (-46 kcal/mol to - 61 kcal/mol) and formed stable protein-ligand complexes through hydrogen bonding and π-π stacking interactions with key residues in the active site. The observed interactions from the docking simulations were consistent with the predicted interaction sites identified in the FMO and MEP analyses. These findings suggest that the synthesized pyrimidine derivatives could serve as promising antimicrobial agents and warrant further investigation for drug development.
Collapse
Affiliation(s)
- Supriya Indalkar
- Department of Chemistry Prof. Ramakrishna Arts Commerce and Science College, Savitribai Phule Pune University, India; Department of Chemistry, Dr. D.Y. Patil Arts, Commerce & Science College, Pimpri, Savitribai Phule Pune University, India.
| | - Dipak Kumar Sahoo
- School of Sciences, Woxsen University, Kamkole, Sadasivpet, Sangareddy District, Hyderabad 502345, Telangana, India.
| | - Dattatraya S Bhange
- Department of Chemistry Prof. Ramakrishna Arts Commerce and Science College, Savitribai Phule Pune University, India
| | | | - Shamasoddin Shekh
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Lalaso D Gaikwad
- School of Chemical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, India
| | - Kisan M Gadave
- Annasaheb Magar College, Savitribai, Phule Pune University, India.
| |
Collapse
|
2
|
Elneairy MAA, Youssef EGN, Ebrahim SAA, Mohammad NEM, Abd El-Rahman NMS, Elhewaty ASM, Sanad SMH, Mekky AEM. MRSA Inhibitory Activity of Some New Pyrazolo[1,5-a]pyrimidines Linked to Arene and/or Furan or Thiophene Units. Chem Biodivers 2024:e202402031. [PMID: 39284766 DOI: 10.1002/cbdv.202402031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 09/16/2024] [Indexed: 11/02/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a major contributor to hospital-acquired infections and is highly resistant to treatment. Ongoing research focuses on developing new antimicrobial medications to prevent the spread of resistance. A facile method was employed to efficiently synthesize new pyrazolo[1,5-a]pyrimidines in 84-93 % yields by reacting 4-benzyl-1H-pyrazole-3,5-diamine with the respective α,β-unsaturated ketones. The reaction was carried out in ethanol containing 1.2 equivalents of potassium hydroxide at reflux for 5-6 h. The new products are attached to a para-substituted aryl group with variable electronic properties at pyrazolopyrimidine-C5, in addition to one of three units at C7, namely phenyl, thiophen-2-yl, or furan-2-yl units. A wide spectrum of antibacterial activity was displayed by the new pyrimidines against six different bacterial strains. In general, pyrimidines attached to furan-2-yl units at C7, in addition to another aryl unit at C5, attached to 4-Me or 4-OMe groups, demonstrate significant antibacterial activity, particularly against S. aureus strain. They had MIC/MBC of 2.5/5.1 and 2.4/4.9 μM, respectively, which exceeded that of ciprofloxacin. Moreover, they demonstrate more effective MRSA inhibitory activity than linezolid, with MIC/MBC values up to 4.9/19.7 and 2.4/19.7 μM against MRSA ATCC:33591 and ATCC:43300 strains, respectively.
Collapse
Affiliation(s)
| | - Emad G N Youssef
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Sama A A Ebrahim
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Nour E M Mohammad
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | | | - Ahmed S M Elhewaty
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Sherif M H Sanad
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Ahmed E M Mekky
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
3
|
Villa-Reyna AL, Perez-Velazquez M, González-Félix ML, Gálvez-Ruiz JC, Gonzalez-Mosquera DM, Valencia D, Ballesteros-Monreal MG, Aguilar-Martínez M, Leyva-Peralta MA. The Structure-Antiproliferative Activity Relationship of Pyridine Derivatives. Int J Mol Sci 2024; 25:7640. [PMID: 39062883 PMCID: PMC11276865 DOI: 10.3390/ijms25147640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Pyridine, a compound with a heterocyclic structure, is a key player in medicinal chemistry and drug design. It is widely used as a framework for the design of biologically active molecules and is the second most common heterocycle in FDA-approved drugs. Pyridine is known for its diverse biological activity, including antituberculosis, antitumor, anticoagulant, antiviral, antimalarial, antileishmania, anti-inflammatory, anti-Alzheimer's, antitrypanosomal, antimalarial, vasodilatory, antioxidant, antimicrobial, and antiproliferative effects. This review, spanning from 2022 to 2012, involved the meticulous identification of pyridine derivatives with antiproliferative activity, as indicated by their minimum inhibitory concentration values (IC50) against various cancerous cell lines. The aim was to determine the most favorable structural characteristics for their antiproliferative activity. Using computer programs, we constructed and calculated the molecular descriptors and analyzed the electrostatic potential maps of the selected pyridine derivatives. The study found that the presence and positions of the -OMe, -OH, -C=O, and NH2 groups in the pyridine derivatives enhanced their antiproliferative activity over the cancerous cellular lines studied. Conversely, pyridine derivatives with halogen atoms or bulky groups in their structures exhibited lower antiproliferative activity.
Collapse
Affiliation(s)
- Ana-Laura Villa-Reyna
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Facultad Interdisiplinaria de Ciencias Biológicas y de Salud, Universidad de Sonora, Campus Caborca, Caborca 83600, Mexico; (A.-L.V.-R.); (D.V.); (M.G.B.-M.)
| | - Martin Perez-Velazquez
- Departamento de Investigaciones Científicas y Tecnológicas, Facultad Interdisiplinaria de Ciencias Biológicas y de Salud, Universidad de Sonora, Campus Hermosillo, Hermosillo 83000, Mexico; (M.P.-V.); (M.L.G.-F.)
| | - Mayra Lizett González-Félix
- Departamento de Investigaciones Científicas y Tecnológicas, Facultad Interdisiplinaria de Ciencias Biológicas y de Salud, Universidad de Sonora, Campus Hermosillo, Hermosillo 83000, Mexico; (M.P.-V.); (M.L.G.-F.)
| | - Juan-Carlos Gálvez-Ruiz
- Departamento de Ciencias Químico Biológicas, Facultad Interdisiplinaria de Ciencias Biológicas y de Salud, Universidad de Sonora, Campus Hermosillo, Hermosillo 83000, Mexico;
| | - Dulce María Gonzalez-Mosquera
- Departamento de Farmacia, Facultad de Química-Farmacia, Universidad Central Marta Abreu Las Villitas, Santa Clara, Cuba;
| | - Dora Valencia
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Facultad Interdisiplinaria de Ciencias Biológicas y de Salud, Universidad de Sonora, Campus Caborca, Caborca 83600, Mexico; (A.-L.V.-R.); (D.V.); (M.G.B.-M.)
| | - Manuel G. Ballesteros-Monreal
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Facultad Interdisiplinaria de Ciencias Biológicas y de Salud, Universidad de Sonora, Campus Caborca, Caborca 83600, Mexico; (A.-L.V.-R.); (D.V.); (M.G.B.-M.)
| | - Milagros Aguilar-Martínez
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Facultad Interdisiplinaria de Ciencias Biológicas y de Salud, Universidad de Sonora, Campus Caborca, Caborca 83600, Mexico; (A.-L.V.-R.); (D.V.); (M.G.B.-M.)
| | - Mario-Alberto Leyva-Peralta
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Facultad Interdisiplinaria de Ciencias Biológicas y de Salud, Universidad de Sonora, Campus Caborca, Caborca 83600, Mexico; (A.-L.V.-R.); (D.V.); (M.G.B.-M.)
| |
Collapse
|
4
|
Pedroso de Lima F, Costa M, Sousa A, Proença MF. The Chromenopyridine Scaffold: A Privileged Platform in Drug Design. Molecules 2024; 29:3004. [PMID: 38998955 PMCID: PMC11243271 DOI: 10.3390/molecules29133004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/07/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
The chromenopyridine scaffold represents an important class of heterocyclic compounds exhibiting a broad spectrum of biological properties. This review describes novel and efficient procedures for the synthesis of this scaffold. Herein, several methods were detailed and grouped according to their starting material (e.g., salicylaldehydes, chromones, chromanones and coumarins) and respective biological activity, when reported. This review highlights the potential of the reported synthetic strategies for preparing chromenopyridine derivatives with promising biological activity, paving the way for further developments in drug discovery.
Collapse
Affiliation(s)
- Fábio Pedroso de Lima
- Chemistry Centre, School of Sciences, University of Minho, Gualtar Campus, 4715-303 Braga, Portugal
- Centre for Textile Science and Technology (2C2T), University of Minho, Azurém Campus, 4800-058 Guimarães, Portugal
| | - Marta Costa
- Life and Health Sciences Research Institute (ICVS), University of Minho, Gualtar Campus, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Ana Sousa
- Chemistry Centre, School of Sciences, University of Minho, Gualtar Campus, 4715-303 Braga, Portugal
- Life and Health Sciences Research Institute (ICVS), University of Minho, Gualtar Campus, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Maria Fernanda Proença
- Chemistry Centre, School of Sciences, University of Minho, Gualtar Campus, 4715-303 Braga, Portugal
| |
Collapse
|
5
|
Yang L, Jiao YX, Quan YH, Li MY, Huang XY, Jin JZ, Li S, Quan JS, Jin CH. Synthesis and Antimicrobial Activity Evaluation of Pyridine Derivatives Containing Imidazo[2,1-b][1,3,4]Thiadiazole Moiety. Chem Biodivers 2024; 21:e202400135. [PMID: 38425248 DOI: 10.1002/cbdv.202400135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/02/2024]
Abstract
Four series of novel pyridine derivatives (17 a-i, 18 a-i, 19 a-e, and 20 a-e) were synthesized and their antimicrobial activities were evaluated. Of all the target compounds, almost half target compounds showed moderate or high antibacterial activity. The 4-F substituted compound 17 d (MIC=0.5 μg/mL) showed the highest antibacterial activity, its activity was twice the positive control compound gatifloxacin (MIC=1.0 μg/mL). For fungus ATCC 9763, the activities of compounds 17 a and 17 d are equivalent to the positive control compound fluconazole (MIC=8 μg/mL). Furthermore, compounds 17 a and 17 d showed little cytotoxicity to human LO2 cells, and did not show hemolysis even at ultra-high concentration (200 μM). The results indicate that these compounds are valuable for further development as antibacterial and antifungal agents.
Collapse
Affiliation(s)
- Liu Yang
- Key Laboratory of Natural Medicines of the Changbai Mountain Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Yu-Xin Jiao
- Key Laboratory of Natural Medicines of the Changbai Mountain Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Yan-Hua Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Ming-Yu Li
- Key Laboratory of Natural Medicines of the Changbai Mountain Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Xin-Yi Huang
- Key Laboratory of Natural Medicines of the Changbai Mountain Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Jun-Zheng Jin
- Interdisciplinary Program of Biological Function Molecules, College of Integration Science, Yanbian University, Yanji, 133002, China
| | - Siqi Li
- Key Laboratory of Natural Medicines of the Changbai Mountain Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Ji-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
- Interdisciplinary Program of Biological Function Molecules, College of Integration Science, Yanbian University, Yanji, 133002, China
| | - Cheng-Hua Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
- Interdisciplinary Program of Biological Function Molecules, College of Integration Science, Yanbian University, Yanji, 133002, China
| |
Collapse
|
6
|
Desenko SM, Gorobets MY, Lipson VV, Sakhno YI, Chebanov VA. Dihydroazolopyrimidines: Past, Present and Perspectives in Synthesis, Green Chemistry and Drug Discovery. CHEM REC 2024; 24:e202300244. [PMID: 37668291 DOI: 10.1002/tcr.202300244] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/22/2023] [Indexed: 09/06/2023]
Abstract
Dihydroazolopyrimidines are an important class of heterocycles that are isosteric to natural purines and are therefore of great interest primarily as drug-like molecules. In contrast to the heteroaromatic analogs, synthetic approaches to these compounds were developed much later, and their chemical properties and biological activity have not been studied in detail until recently. In the review, different ways to build dihydroazolopyrimidine systems from different building blocks are described - via the initial formation of a partially hydrogenated pyrimidine ring or an azole ring, as well as a one-pot assembly of azole and azine fragments. Special attention is given to modern approaches: multicomponent reactions, green chemistry, and the use of non-classical activation methods. Information on the chemical properties of dihydroazolopyrimidines and the prospects for their use in the design of drugs of various profiles are also summarized in this review.
Collapse
Affiliation(s)
- Serhiy M Desenko
- Department of Organic and Bioorganic Chemistry, State Scientific Institution "Institute for Single Crystals" NAS of Ukraine, Nauky ave. 60, Kharkiv, Ukraine, 61072
| | - Mykola Yu Gorobets
- Department of Organic and Bioorganic Chemistry, State Scientific Institution "Institute for Single Crystals" NAS of Ukraine, Nauky ave. 60, Kharkiv, Ukraine, 61072
| | - Victoria V Lipson
- Department of Organic and Bioorganic Chemistry, State Scientific Institution "Institute for Single Crystals" NAS of Ukraine, Nauky ave. 60, Kharkiv, Ukraine, 61072
- Faculty of Chemistry, V.N. Karazin Kharkiv National University, Svobody sq. 4, Kharkiv, Ukraine, 61022
- Department of Medicinal Chemistry, State Institution "V. Ya. Danilevsky Institute for Endocrine Pathology Problems" NAMS of Ukraine, Alchevskikh St. 10, Kharkiv, Ukraine, 61002
| | - Yana I Sakhno
- Department of Organic and Bioorganic Chemistry, State Scientific Institution "Institute for Single Crystals" NAS of Ukraine, Nauky ave. 60, Kharkiv, Ukraine, 61072
| | - Valentyn A Chebanov
- Department of Organic and Bioorganic Chemistry, State Scientific Institution "Institute for Single Crystals" NAS of Ukraine, Nauky ave. 60, Kharkiv, Ukraine, 61072
- Faculty of Chemistry, V.N. Karazin Kharkiv National University, Svobody sq. 4, Kharkiv, Ukraine, 61022
| |
Collapse
|
7
|
Nidhar M, Kumar V, Mahapatra A, Gupta P, Yadav BK, Singh RK, Tewari AK. Ligand-based designing of DPP-4 inhibitors via hybridization; synthesis, docking, and biological evaluation of pyridazine-acetohydrazides. Mol Divers 2023; 27:2729-2740. [PMID: 36534357 DOI: 10.1007/s11030-022-10577-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022]
Abstract
A series of novel pyridazine-acetohydrazide hybrids were designed, synthesized, and evaluated for their in vitro and in vivo antihyperglycemic activity. In this context, pyridazine-acetohydrazides (6a-6p) were synthesized by coupling substituted aldehyde with 2-(5-cyano-6-oxo-3,4-diphenylpyridazine-1-6H-yl) acetohydrazide, which was prepared via the reaction of pyridazine ester with hydrazine hydrate. The molecular docking study was carried out to examine the binding affinities and interaction of designed compounds against the DPP-4 enzyme. Compounds 6e, 6f, 6l, and 6n exhibited interaction with active residue. In silico ADMET properties, and toxicity studies corroborated that compounds were found to have good bioavailability and less toxic. The synthesized compounds were further estimated for in vitro DPP-4 activity. Compounds 6e and 6l were found as the most effective DPP-4 inhibitor in this series with IC50 values (6.48, 8.22 nM) when compared with sitagliptin (13.02 nM). According to the toxicity assay compound, 6l showed very less toxicity at a higher concentration so further selected for the in vivo antihyperglycemic activity.
Collapse
Affiliation(s)
- Manisha Nidhar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Vipin Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Archisman Mahapatra
- Molecular Endocrinology and Toxicology Lab (MET Lab), Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Priya Gupta
- Molecular Endocrinology and Toxicology Lab (MET Lab), Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Brijesh Kumar Yadav
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Rahul Kumar Singh
- Molecular Endocrinology and Toxicology Lab (MET Lab), Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| | - Ashish Kumar Tewari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
8
|
Al-Warhi T, Al-Karmalawy AA, Elmaaty AA, Alshubramy MA, Abdel-Motaal M, Majrashi TA, Asem M, Nabil A, Eldehna WM, Sharaky M. Biological evaluation, docking studies, and in silico ADME prediction of some pyrimidine and pyridine derivatives as potential EGFR WT and EGFR T790M inhibitors. J Enzyme Inhib Med Chem 2023; 38:176-191. [PMID: 36317648 PMCID: PMC9635468 DOI: 10.1080/14756366.2022.2135512] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022] Open
Abstract
Herein, a set of pyridine and pyrimidine derivatives were assessed for their impact on the cell cycle and apoptosis. Human breast cancer (MCF7), hepatocellular carcinoma (HEPG2), larynx cancer (HEP2), lung cancer (H460), colon cancers (HCT116 and Caco2), and hypopharyngeal cancer (FADU), and normal Vero cell lines were used. Compounds 8 and 14 displayed outstanding effects on the investigated cell lines and were further tested for their antioxidant activity in MCF7, H460, FADU, HEP2, HEPG2, HCT116, Caco2, and Vero cells by measuring superoxide dismutase (SOD), malondialdehyde content (MDA), reduced glutathione (GSH), and nitric oxide (NO) content. Besides, Annexin V-FITC apoptosis detection and cell cycle DNA index using the HEPG-2 cell line were established on both compounds as well. Furthermore, compounds 8 and 14 were assessed for their EGFR kinase (Wild and T790M) inhibitory activities, revealing eligible potential. Additionally, molecular docking, ADME, and SAR studies were carried out for the investigated candidates.
Collapse
Affiliation(s)
- Tarfah Al-Warhi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ahmed A. Al-Karmalawy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Ayman Abo Elmaaty
- Department of Medicinal Chemistry, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Maha A. Alshubramy
- Department of Chemistry, College of Science, Qassim University, Buraydah, Saudi Arabia
| | - Marwa Abdel-Motaal
- Department of Chemistry, College of Science, Qassim University, Buraydah, Saudi Arabia
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Taghreed A. Majrashi
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Medhat Asem
- College of Engineering and Information Technology, Onaizah Colleges, Al-Qassim, Saudi Arabia
| | - Ahmed Nabil
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), Tsukuba, Japan
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, Egypt
| | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
- School of Biotechnology, Badr University in Cairo, Badr City, Egypt
| | - Marwa Sharaky
- Cancer Biology Department, Pharmacology Unit, National Cancer Institute (NCI), Cairo University, Cairo, Egypt
| |
Collapse
|
9
|
Ahmed K, Choudhary MI, Saleem RSZ. Heterocyclic pyrimidine derivatives as promising antibacterial agents. Eur J Med Chem 2023; 259:115701. [PMID: 37591149 DOI: 10.1016/j.ejmech.2023.115701] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/18/2023] [Accepted: 07/29/2023] [Indexed: 08/19/2023]
Abstract
Antibiotic resistance is a growing public health concern. The quest to understand the underlying mechanisms of drug resistance needs to be accompanied by an expanded arsenal of drugs. This calls for the development of new compounds with anti-bacterial properties. The ease of functionalization of the pyrimidine core, to produce structurally distinct compound libraries, has made pyrimidine a privileged structure for identifying anti-bacterial hits. The activity of pyrimidine derivatives can be attributed to the various subunits linked with the main core, especially at C-2 or C-4 or C-6. Particularly, presence of NH2 attached to C-2 of the pyrimidine nucleus has been shown to enhance the anti-bacterial activity against pathogenic Gram-positive and Gram-negative bacteria. The diversity of synthetic routes used for the synthesis of such compounds, the reported biological activities, and a growing need to develop novel anti-bacterial agents warrant a review that presents recent reports on the synthesis and anti-bacterial activities of pyrimidine-containing compounds.
Collapse
Affiliation(s)
- Kainat Ahmed
- Department of Chemistry and Chemical Engineering, SBASSE, Lahore University of Management Sciences, Sector-U, DHA, Lahore, 54792, Pakistan
| | - M Iqbal Choudhary
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Rahman Shah Zaib Saleem
- Department of Chemistry and Chemical Engineering, SBASSE, Lahore University of Management Sciences, Sector-U, DHA, Lahore, 54792, Pakistan.
| |
Collapse
|
10
|
Nasuhipur F, Ghasemi Z, Poupon M, Dušek M. POCl 3 mediated one-pot deoxygenative aromatization and electrophilic chlorination of dihydroxy-2-methyl-4-oxo-indeno[1,2- b]pyrroles. RSC Adv 2023; 13:17812-17816. [PMID: 37323449 PMCID: PMC10261912 DOI: 10.1039/d3ra02515b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023] Open
Abstract
A class of indenopyrroles is presented by the treatment of known dihydroxy-2-methyl-4-oxoindeno[1,2-b]pyrroles with phosphorus oxychloride (POCl3). The elimination of vicinal hydroxyl groups at the 3a and 8b positions, formation of a π bond, and electrophilic chlorination of the methyl group attached to C2 resulted in the fused aromatic pyrrole structures. Benzylic substitution of various nucleophiles such as H2O, EtOH, and NaN3 with a chlorine atom gave diverse 4-oxoindeno[1,2-b]pyrrole derivatives in 58 to 93% yields. The reaction was investigated in different aprotic solvents, and the highest reaction yield was obtained in DMF. The structures of the products were confirmed by spectroscopic methods, elemental analysis, and X-ray crystallography.
Collapse
Affiliation(s)
- Forough Nasuhipur
- Department of Organic Chemistry and Biochemistry, Faculty of Chemistry, University of Tabriz Tabriz 5166614766 Iran
| | - Zarrin Ghasemi
- Department of Organic Chemistry and Biochemistry, Faculty of Chemistry, University of Tabriz Tabriz 5166614766 Iran
| | - Morgane Poupon
- Institute of Physics ASCR, v.v.i. Na Slovance 2, 182 21 Praha 8 Czech Republic
| | - Michal Dušek
- Institute of Physics ASCR, v.v.i. Na Slovance 2, 182 21 Praha 8 Czech Republic
| |
Collapse
|
11
|
Bharath kumar M, Hariprasad V, Joshi SD, Jayaprakash GK, L. P, Pani AS, Babu DD, Naik P. Bis(azolyl)pyridine‐2,6‐dicarboxamide Derivatives: Synthesis, Bioassay Analysis and Molecular Docking Studies. ChemistrySelect 2023. [DOI: 10.1002/slct.202204927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
12
|
Dharmashekar C, Shreevatsa B, Jain AS, Harendra B, Pradeep S, Vishwanath PM, Singh P, V B, KK V, Patil SS, Shati AA, Alfaifi MY, Elbehairi SEI, Amachawadi RG, Kollur SP, Shivamallu C. Evaluating the Antimicrobial and Anti-Hemolytic Activity of Synthesized Pseudopeptide against Leptospiral Species: In Silico and In Vitro Approach. Molecules 2023; 28:1106. [PMID: 36770771 PMCID: PMC9920664 DOI: 10.3390/molecules28031106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023] Open
Abstract
Bacterial infections are one of the leading causes of morbidity, mortality, and healthcare complications in patients. Leptospirosis is found to be the most prevalent, re-emergent, and neglected tropical zoonotic disease worldwide. The adaptation to various environmental conditions has made Leptospira acquire a large genome (~4.6 Mb) and a complex outer membrane, making it unique among bacteria that mimic the symptoms of jaundice and hemorrhage. Sph2 is another important virulence factor that enhances hemolytic sphingomyelinase-capable of moving inside mitochondria-which increases the ROS level and decreases the mitochondrial membrane potential, thereby leading to cell apoptosis. In the present study, 25 suspected bovine serum samples were subjected to the Microscopic Agglutination Test (MAT) across the Mysuru region. Different samples, such as urine, serum, and aborted materials from the confirmed MAT-positive animals, were used for isolation and genomic detection by conventional PCR targeting virulence gene, Lipl32, using specific primers. Further, in vitro and in silico studies were performed on isolated cultures to assess the anti-leptospiral, anti-hemolytic, and sphingomyelinase enzyme inhibition using novel pseudopeptides. The microdilution technique (MDT) and dark field microscope (DFM) assays revealed that at a concentration of 62.5 μg/mL, the pseudopeptide inhibited 100% of the growth of Leptospira spp., suggesting its efficiency in the treatment of leptospirosis. The flow cytometry analyses show the potency of the pseudopeptide against sphingomyelinase enzymes using human umbilical vein endothelial cells (HUVECs). Thus, the present study demonstrated the efficacy of the pseudopeptide in the inhibition of the growth of Leptospira, and therefore, this can be used as an alternative drug for the treatment of leptospirosis.
Collapse
Affiliation(s)
- Chandan Dharmashekar
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru 570 015, India
| | - Bhargav Shreevatsa
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru 570 015, India
| | - Anisha S. Jain
- Department of Microbiology, JSS Academy of Higher Education and Research, Mysuru 570 015, India
| | - Bhavana Harendra
- Department of Microbiology, JSS Academy of Higher Education and Research, Mysuru 570 015, India
| | - Sushma Pradeep
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru 570 015, India
| | - Prashanth M. Vishwanath
- Department of Biochemistry, JSS Academy of Higher Education and Research, Mysuru 570 015, India
| | - Pranav Singh
- Department of Medicine, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Udupi 576 104, India
| | - Balamurugan V
- ICAR, National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru 560 064, India
| | - Vinod KK
- ICAR, National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru 560 064, India
| | - Sharanagouda S. Patil
- ICAR, National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru 560 064, India
| | - Ali A. Shati
- Biology Department, Faculty of Science, King Khalid University, Abha 9004, Saudi Arabia
| | - Mohammad Y. Alfaifi
- Biology Department, Faculty of Science, King Khalid University, Abha 9004, Saudi Arabia
| | - Serag Eldin I. Elbehairi
- Biology Department, Faculty of Science, King Khalid University, Abha 9004, Saudi Arabia
- Cell Culture Lab, Egyptian Organization for Biological Products and Vaccines (VACSERA Holding Company), 51 Wezaret El-Zeraa St., Agouza, Giza 12654, Egypt
| | - Raghavendra G. Amachawadi
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Shiva Prasad Kollur
- School of Physical Sciences, Amrita Vishwa Vidyapeetham, Mysuru Campus, Mysuru 570 026, India
| | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru 570 015, India
| |
Collapse
|
13
|
Nadar S, Khan T. Pyrimidine: An elite heterocyclic leitmotif in drug discovery-synthesis and biological activity. Chem Biol Drug Des 2022; 100:818-842. [PMID: 34914188 DOI: 10.1111/cbdd.14001] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/07/2021] [Accepted: 12/01/2021] [Indexed: 01/25/2023]
Abstract
Heterocyclic compounds bearing the pyrimidine core are of tremendous interest as they constitute an important class of natural and synthetic compounds exhibiting diverse useful biological activities that hold attractive potential for clinical translation as therapeutic agents in alleviation of a myriad of diseases. Heterocycles possessing a pyrimidine scaffold have piqued tremendous interest of organic and medicinal chemists owing to their privileged bioactivities. Drugs having the pyrimidine motif have manifested to exhibit gratifying biological activity like anticancer, antiviral, anti-inflammatory, antibacterial, and antihypertensive activities. This heterocycle, being a significant endogenous component of the body, the pyrimidine derivatives can easily interact with enzymes, genetic materials, and bio components within the cell. The landscape of FDA approved drugs, presently marketed incorporating the pyrimidine scaffold continues to evolve in number and diversity. There is a tremendous surge in discovery of new targets across many diseases especially those involving emerging resistance to clinically used battery of drugs. Pyrimidine scaffolds will continue to be explored expanding their chemical space portfolio in an effort to find novel drugs impacting these targets. This review aims to provide an elaborate recapitulation of the recent trends adopted to synthesize propitious pyrimidine incorporated hits and also focuses on the clinical significance reported for functionalized pyrimidine analogues that would quintessentially aid medicinal chemists for new research explorations in this arena.
Collapse
Affiliation(s)
- Sahaya Nadar
- Department of Pharmaceutical Chemistry, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Tabassum Khan
- Department of Pharmaceutical Chemistry and Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| |
Collapse
|
14
|
Paunova-Krasteva T, Hemdan BA, Dimitrova PD, Damyanova T, El-Feky AM, Elbatanony MM, Stoitsova S, El-Liethy MA, El-Taweel GE, El Nahrawy AM. Hybrid Chitosan/CaO-Based Nanocomposites Doped with Plant Extracts from Azadirachta indica and Melia azedarach: Evaluation of Antibacterial and Antibiofilm Activities. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-01047-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Radwan EK, Rashdan HRM, Hemdan BA, Koryam AA, El-Naggar ME. A dual-functional sulfone biscompound containing 1,2,3-triazole moiety for decolorization and disinfection of contaminated water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:77238-77252. [PMID: 35676578 PMCID: PMC9581830 DOI: 10.1007/s11356-022-20932-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/13/2022] [Indexed: 05/28/2023]
Abstract
Water decontamination from toxic dyes and pathogenic microorganisms is critical for life on Earth. Herein, we report the synthesis of sulfone biscompound containing 1,2,3-triazole moiety and evaluation of its dye decolorization and biocidal and disinfection efficiencies. The decolorization efficiency was tested under different experimental conditions, while the biocidal action was examined against various types of waterborne pathogens, and the disinfection of some pathogenic microbes was executed in artificially contaminated water. The findindgs illustrated that the solution initial pH (pHi) affected the decolorization efficiency significantly. About complete removal of 10 mg/L malachite green (MG) dye was achieved after 10 min using 3 g/L of the sulfone biscompound at pHi 6. The pseudo-second-order equation suited the adsorption kinetics accurately, while the equilibrium data was suited by Langmuir isotherm model. Electrostatic, n-π, and π-π interactions brought about the adsorption of MG onto the sulfone biscompound. The biocidal results indicated that the sulfone biscompound had a powerful antibacterial potential against the tested bacterial species. Likewise, the distinction trail revealed that after 70-90 min of direct contact with an effective dose, the tested pathogens could be completely eliminated (6-log reduction). Overall, the newly synthesized sulfone biscompound can efficiently remove cationic dyes and disinfect contaminated water.
Collapse
Affiliation(s)
- Emad K Radwan
- Water Pollution Research Department, National Research Centre, 33 El Buhouth St, Dokki, Giza, 12622, Egypt.
| | - Huda R M Rashdan
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Buhouth St, Dokki, Giza, 12622, Egypt
| | - Bahaa A Hemdan
- Water Pollution Research Department, National Research Centre, 33 El Buhouth St, Dokki, Giza, 12622, Egypt
| | - Asmaa A Koryam
- Water Pollution Research Department, National Research Centre, 33 El Buhouth St, Dokki, Giza, 12622, Egypt
| | - Mehrez E El-Naggar
- Institute of Textile Research and Technology, National Research Centre, 33 El Bohouth St, Dokki, Giza, 12622, Egypt.
| |
Collapse
|
16
|
Sepehrmansourie H, Zarei M, Zolfigol MA, Gu Y. A New Approach for the Synthesis of Bis(3-Indolyl)Pyridines via a Cooperative Vinylogous Anomeric Based Oxidation Using Ammonium Acetate as a Dual Reagent-Catalyst Role under Mild and Green Condition. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2128830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Hassan Sepehrmansourie
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Mahmoud Zarei
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Yanlong Gu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Abbas HS, Abo Zeina EA, Radwan HA, Shati AA, Alfaifi MY, Elbehairi SEI. Efficient Synthesis and Biological Evaluation of some new series of pyridine derivatives: Promising and Potent New Class of Anticancer Agents. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hebat‐Allah S. Abbas
- Chemistry Department, Faculty of Science King Khalid University Abha Saudi Arabia
- Photochemistry Department National Research Centre Dokki Cairo Egypt
| | - Esraa A. Abo Zeina
- Chemistry Department, Faculty of Science King Khalid University Abha Saudi Arabia
| | - Hayam A. Radwan
- Chemistry Department, Faculty of Women of Arts, Sciences and Educatin Ain Shams University Cairo, Egypt Abidah Saudi Arabia
| | - Ali A. Shati
- Biology Department, Faculty of Science King Khalid University Abha Saudi Arabia
| | - Mohammad Y. Alfaifi
- Biology Department, Faculty of Science King Khalid University Abha Saudi Arabia
| | - Serag Eldin I. Elbehairi
- Biology Department, Faculty of Science King Khalid University Abha Saudi Arabia
- Cell Culture Lab, Egyptian Organization for Biological Products and Vaccines (VACSERA Holding Company), 51 Wezaret El‐Zeraa St., Agouza Giza Egypt
| |
Collapse
|
18
|
Mohammad Abu-Taweel G, Ibrahim MM, Khan S, Al-Saidi HM, Alshamrani M, Alhumaydhi FA, Alharthi SS. Medicinal Importance and Chemosensing Applications of Pyridine Derivatives: A Review. Crit Rev Anal Chem 2022; 54:599-616. [PMID: 35724248 DOI: 10.1080/10408347.2022.2089839] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Pyridine derivatives are the most common and significant heterocyclic compounds, which play an important role in various fields ranging from medicinal to chemosensing applications. Pyridine derivatives possess different biological activities such as antifungal, antibacterial, antioxidant, antiglycation, analgesic, antiparkinsonian, anticonvulsant, anti-inflammatory, ulcerogenic, antiviral, and anticancer activity. Furthermore, these derivatives have a high affinity for various ions and neutral species and can be used as a highly effective chemosensor for the determination of different species. In this review article, generally used synthetic routes of pyridine, structural characterization, medicinal applications, and potential of pyridine derivatives in analytical chemistry as chemosensors have been discussed. We hope this study will support the new thoughts to design biological active compounds and highly selective and effective chemosensors for the detection of various species (anions, cations, and neutral species) in various samples (environmental, agricultural, and biological). [Figure: see text].
Collapse
Affiliation(s)
| | - Munjed M Ibrahim
- Department of Pharmaceutical Chemistry, College of pharmacy, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
| | - Sikandar Khan
- Department of Chemistry, University of Malakand, Chakdara, Khyber Pakhtunkhwa, Pakistan
| | - Hamed M Al-Saidi
- Department of Chemistry, University College in Al-Jamoum, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Meshal Alshamrani
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Salman S Alharthi
- Department of Chemistry, College of Science, Taif University, P.O. Box 110999, Taif 21944, Saudi Arabia
| |
Collapse
|
19
|
Ecofriendly synthesis and characterization of Ni 2+ codoped silica magnesium zirconium copper nanoceramics for wastewater treatment applications. Sci Rep 2022; 12:9855. [PMID: 35701523 PMCID: PMC9198069 DOI: 10.1038/s41598-022-13785-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/27/2022] [Indexed: 12/23/2022] Open
Abstract
This article investigates the effect of Ni2+ content on structural (XRD, XPS), morphological (TEM), and magnetic behaviors of silica magnesium zirconium copper nanoceramics calcined at 800 °C. The sol–gel route is followed for the silica magnesium zirconium copper/(0.0–0.7) Ni2+ samples preparation. X-ray photoelectron spectroscopy is employed to analyze the chemical states of elements for the samples. The three representative binding energy magnitudes for O, Ni, and Cu reside at 534, 857, and 979 eV, consecutively. The saturation magnetization constricts with the elevation of Ni2+ content, while the magnetic hysteresis loop resembles the superparamagnetic attitude. The optical spectra present the possibility of direct and indirect transitions in the prepared nanoceramics. Energy gap (value and type), refractive index, and real and imaginary dielectric constant were extracted. The energy gap approaches 3.75 eV and 3.71 eV for direct and indirect transitions correspondingly with (0.7) Ni2+. The antimicrobial and the toxicity performance of all inspected nanocomposites were conducted against pathogenic microbes. The attained results evidenced that SMZC-0.7Ni possesses energetic antimicrobial potential against all targeted microbes. The investigated SMZC-0.7Ni nanocomposite functioned to eradicate frequent waterborne pathogens in wastewater at an appropriate dose (100 mg/L), demonstrating that SMZC can be utilized as a competent disinfectant in the municipal wastewater decontamination process. Inherently, SMZC-0.7Ni can be employed as an excellent nano-weapon against multiple dangerous microorganisms.
Collapse
|
20
|
Novel Thiadiazole-Based Molecules as Promising Inhibitors of Black Fungi and Pathogenic Bacteria: In Vitro Antimicrobial Evaluation and Molecular Docking Studies. Molecules 2022; 27:molecules27113613. [PMID: 35684551 PMCID: PMC9182183 DOI: 10.3390/molecules27113613] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/29/2022] [Accepted: 06/02/2022] [Indexed: 02/01/2023] Open
Abstract
Novel 1,3,4-thiadiazole derivatives were synthesized through the reaction of methyl 2-(4-hydroxy-3-methoxybenzylidene) hydrazine-1-carbodithioate and the appropriate hydrazonoyl halides in the presence of a few drops of diisopropylethylamine. The chemical structure of the newly fabricated compounds was inferred from their microanalytical and spectral data. With the increase in microbial diseases, fungi remain a devastating threat to human health because of the resistance of microorganisms to antifungal drugs. COVID-19-associated pulmonary aspergillosis (CAPA) and COVID-19-associated mucormycosis (CAM) have higher mortality rates in many populations. The present study aimed to find new antifungal agents using the disc diffusion method, and minimal inhibitory concentration (MIC) values were estimated by the microdilution assay. An in vitro experiment of six synthesized chemical compounds exhibited antifungal activity against Rhizopus oryzae; compounds with an imidazole moiety, such as the compound 7, were documented to have energetic antibacterial, antifungal properties. As a result of these findings, this research suggests that the synthesized compounds could be an excellent choice for controlling black fungus diseases. Furthermore, a molecular docking study was achieved on the synthesized compounds, of which compounds 2, 6, and 7 showed the best interactions with the selected protein targets.
Collapse
|
21
|
Alshubramy MA, Asem M, Abdel-Motaal M. Efficient Synthesis of New Fused Thiadiazines and Their Spectroscopic, In Silico Drug Likeness, and ADME Properties. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022040224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Nanostructured Na2CaP2O7: A New and Efficient Catalyst for One-Pot Synthesis of 2-Amino-3-Cyanopyridine Derivatives and Evaluation of Their Antibacterial Activity. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12115487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A facile and novel synthesis of thirteen 2-amino-3-cyanopyridine derivatives 5(a–m) by a one-pot multicomponent reactions (MCRs) is described for the first time, starting from aromatic aldehydes, malononitrile, methyl ketones, or cyclohexanone and ammonium acetate in the presence of the nanostructured diphosphate Na2CaP2O7 (DIPH) at 80 °C under solvent-free conditions. These compounds were brought into existence in a short period with good to outstanding yields (84–94%). The diphosphate Na2CaP2O7 was synthesized and characterized by different techniques (FT-IR, XRD, SEM, and TEM) and used as an efficient, environmentally friendly, easy-to-handle, harmless, secure, and reusable catalyst. Our study was strengthened by combining five new pyrido[2,3-d]pyrimidine derivatives 6(b, c, g, h, j) by intermolecular cyclization of 2-amino-3-cyanopyridines 5(b, c, g, h, j) with formamide. The synthesized products were characterized by FT-IR, 1H NMR, and 13C NMR and by comparing measured melting points with known values reported in the literature. Gas chromatography/mass spectrometry was used to characterize the newly synthesized products and evaluate their purity. The operating conditions were optimized using a model reaction in which the catalyst amount, temperature, time, and solvent effect were evaluated. Antibacterial activity was tested against approved Gram-positive and Gram-negative strains for previously mentioned compounds.
Collapse
|
23
|
AL-Shammri KN, Elkanzi NA, Arafa WA, Althobaiti IO, Bakr RB, Moustafa SMN. Novel indan-1,3-dione derivatives: Design, green synthesis, effect against tomato damping-off disease caused by Fusarium oxysporum and in silico molecular docking study. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103731] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
24
|
Roman G. Thiophene-containing compounds with antimicrobial activity. Arch Pharm (Weinheim) 2022; 355:e2100462. [PMID: 35289443 DOI: 10.1002/ardp.202100462] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/19/2022]
Abstract
Thiophene, as a member of the group of five-membered heterocycles containing one heteroatom, is one of the simplest heterocyclic systems. Many synthetic strategies allow the accurate positioning of various functionalities onto the thiophene ring. This review provides a comprehensive, systematic and detailed account of the developments in the field of antimicrobial compounds featuring at least one thiophene ring in their structure, over the last decade.
Collapse
Affiliation(s)
- Gheorghe Roman
- Department of Inorganic Polymers, Petru Poni Institute of Macromolecular Chemistry, Iaşi, Romania
| |
Collapse
|
25
|
Singh G, Diksha, Mohit, Suman, Sushma, Devi A, Gupta S, Espinosa-Ruíz C, Angeles Esteban M. Pyridine derived organosilatranes and their silica nanoparticles as “Turn-on” fluorescence sensor for selective detection of Zn2+ ions and their cytotoxicity evaluation. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Barut B, Baş H, Biyiklioğlu Z. Pyridine substituted BODIPYs: synthesis, characterization and cholinesterease, α-glucosidase inhibitory, DNA hydrolytic cleavage effects. Turk J Chem 2021; 45:1567-1575. [PMID: 34849067 PMCID: PMC8596534 DOI: 10.3906/kim-2105-69] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/09/2021] [Indexed: 01/17/2023] Open
Abstract
In this study, the synthesis of new monostyryl (BDPY-2) and distyryl BODIPY dyes (BDPY-4, BDPY-5) containing pyridine groups has been reported for the first time. The acetylcholinesterase from Electrophorus electricus (AChE), butyrylcholinesterase from equine serum (BuChE), α-glucosidase from Saccharomyces cerevisiae and DNA hydrolytic cleavage actions of BDPY-2, BDPY-4, BDPY-5 were investigated using various techniques. The results indicated that the compounds had varying inhibition properties against AChE, BuChE, and α-glucosidase. BDPY-4 was the most potent compound on AChE with IC50 of 54.78 ± 4.51 µM, and Lineweaver-Burk plots indicated that the compound is bound to a site other than the active site as a noncompetitive inhibitor. The compound-protein binding experiment showed that BDPY-4 changed the microenvironment around AChE. On the other hand, the compounds showed lower α-glucosidase inhibition than the positive control. The DNA hydrolytic cleavage effects were not observed on supercoiled plasmid DNA in the presence of the compounds as compared to negative controls. These findings suggested that BDPY-4 might be a promising compound to treat Alzheimer's diseases.
Collapse
Affiliation(s)
- Burak Barut
- Department of Biochemistry, Karadeniz Technical University, Trabzon Turkey
| | - Hüseyin Baş
- Department of Chemistry, Karadeniz Technical University, Trabzon Turkey
| | | |
Collapse
|
27
|
Shirani MA, Maleki MH, Asadi P, Dinari M. Benzothiazolopyridine compounds: Facial synthesis, characterization, and molecular docking study on estrogen and progesterone receptors. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
Yalçın E. Synthesis of novel fused acenaphtopyrimidine hybrid, its photophysical properties and HSA interaction. Supramol Chem 2021. [DOI: 10.1080/10610278.2021.1975710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ergin Yalçın
- Iskenderun Technical University(ISTE), Department of Engineering Basic Sciences, Turkey
- ISTE Centre for Science and Technology Studies and Research (ISTE-CSTSR), Iskenderun, Turkey
| |
Collapse
|
29
|
Rashdan HRM, Shehadi IA, Abdelrahman MT, Hemdan BA. Antibacterial Activities and Molecular Docking of Novel Sulfone Biscompound Containing Bioactive 1,2,3-Triazole Moiety. Molecules 2021; 26:molecules26164817. [PMID: 34443405 PMCID: PMC8399954 DOI: 10.3390/molecules26164817] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, a new synthetic 1,2,3-triazole-containing disulfone compound was derived from dapsone. Its chemical structure was confirmed using microchemical and analytical data, and it was tested for its in vitro antibacterial potential. Six different pathogenic bacteria were selected. MICs values and ATP levels were determined. Further, toxicity performance was measured using MicroTox Analyzer. In addition, a molecular docking study was performed against two vital enzymes: DNA gyrase and Dihydropteroate synthase. The results of antibacterial abilities showed that the studied synthetic compound had a strong bactericidal effect against all tested bacterial strains, as Gram-negative species were more susceptible to the compound than Gram-positive species. Toxicity results showed that the compound is biocompatible and safe without toxic impact. The molecular docking of the compound showed interactions within the pocket of two enzymes, which are able to stabilize the compound and reveal its antimicrobial activity. Hence, from these results, this study recommends that the established compound could be an outstanding candidate for fighting a broad spectrum of pathogenic bacterial strains, and it might therefore be used for biomedical and pharmaceutical applications.
Collapse
Affiliation(s)
- Huda R. M. Rashdan
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, Cairo 12622, Egypt
- Correspondence:
| | - Ihsan A. Shehadi
- Chemistry Department, College of Science, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Mohamad T. Abdelrahman
- Radioisotopes Department, Nuclear Research Centre, Egyptian Atomic Energy Authority, Cairo 12311, Egypt;
| | - Bahaa A. Hemdan
- Water Pollution Research Department, Environmental Research Division, National Research Centre, 33 El Buhouth Street, Cairo 12622, Egypt;
| |
Collapse
|
30
|
Gouda MA, Qurban J. Recent progress in the chemical reactivity of 3-Amino-1H-pyrazol-5(4H)-one derivatives (part II). SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1941115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Moustafa A. Gouda
- Department of Chemistry, Faculty of Science and Arts, Ulla, Taibah University, KSA, Medina, Saudi Arabia
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Jihan Qurban
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
31
|
Wang L, Zhang Q, Wang Z, Zhu W, Tan N. Design, synthesis, docking, molecular dynamics and bioevaluation studies on novel N-methylpicolinamide and thienopyrimidine derivatives with inhibiting NF-κB and TAK1 activities: Cheminformatics tools RDKit applied in drug design. Eur J Med Chem 2021; 223:113576. [PMID: 34153577 DOI: 10.1016/j.ejmech.2021.113576] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/26/2022]
Abstract
Using cheminformatics tools RDKit and literature investigation, four series of 24 thienopyrimidine/N-methylpicolinamide derivatives substituted with pyrimidine were designed, synthesized and evaluated for activities against three cancer cell lines (MDA-MB-231, HCT116 and A549), TAK1 kinase and NF-κB signaling pathway. Almost all compounds showed selectivity toward the A549 cell lines and the most promising compound 38 could inhibit TAK1 kinase and NF-κB signaling pathway with the IC50 values of 0.58 and 0.84 μM. Moreover, 38 can induce cell cycle arrest of A549 cells at the G2/M checkpoint with 30.57% and induce apoptosis (34.94%) in a concentration-dependent manner. And western blot showed that compound 38 could inhibit TNF-α-induced IκBα phosphorylation, IκBα degradation, p65 phosphorylation and TAK1 phosphorylation, and reduce the expression of p65. What's more, the studies of docking, molecular dynamics, MM/PBSA and frequency analysis theoretically supported the conclusions of the bioevaluation.
Collapse
Affiliation(s)
- Linxiao Wang
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Qian Zhang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science &Technology Normal University, Nanchang, 330013, China
| | - Zhe Wang
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Wufu Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science &Technology Normal University, Nanchang, 330013, China.
| | - Ninghua Tan
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
32
|
Kalhor S, Zarei M, Sepehrmansourie H, Zolfigol MA, Shi H, Wang J, Arjomandi J, Hasani M, Schirhagl R. Novel uric acid-based nano organocatalyst with phosphorous acid tags: Application for synthesis of new biologically-interest pyridines with indole moieties via a cooperative vinylogous anomeric based oxidation. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
33
|
Zarenezhad E, Farjam M, Iraji A. Synthesis and biological activity of pyrimidines-containing hybrids: Focusing on pharmacological application. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129833] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
El Nahrawy AM, Elzwawy A, Alam M, Hemdan BA, Asiri AM, Karim MR, Hammad ABA, Rahman MM. Synthesis, structural analysis, electrochemical and antimicrobial activities of copper magnesium zirconosilicate (Cu20Mg10Si40Zr(30-x)O:(x = 0,5,7,10) Ni2+) nanocrystals. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105881] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
35
|
Khan E. Pyridine Derivatives as Biologically Active Precursors; Organics and Selected Coordination Complexes. ChemistrySelect 2021. [DOI: 10.1002/slct.202100332] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ezzat Khan
- Department of Chemistry University of Malakand, Chakdara 18800, Lower Dir Khyber Pakhtunkhwa Pakistan
- Department of Chemistry, College of Science University of Bahrain Sakhir 32038 Bahrain
| |
Collapse
|
36
|
Amin S, Alam MM, Akhter M, Najmi AK, Siddiqui N, Husain A, Shaquiquzzaman M. A review on synthetic procedures and applications of phosphorus oxychloride (POCl 3) in the last biennial period (2018–19). PHOSPHORUS SULFUR 2021. [DOI: 10.1080/10426507.2020.1831499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shaista Amin
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - M. Mumtaz Alam
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mymoona Akhter
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - A. K. Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Nadeem Siddiqui
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Asif Husain
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - M. Shaquiquzzaman
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
37
|
Gouda MA, Qurban J. Recent progress on the synthetic routes of 5-amino-2,4-dihydro-3H-pyrazol-3-one derivatives and their reactivity Part (I). SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1885717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Moustafa A. Gouda
- Department of Chemistry, Faculty of Science and Arts, Ulla, Taibah University, Saudi Arabia
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Jihan Qurban
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
38
|
Farooq S, Ngaini Z. One‐pot
and
two‐pot
methods for chalcone derived pyrimidines synthesis and applications. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4226] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Saba Farooq
- Faculty of Resource Science and Technology Universiti Malaysia Sarawak Kota Samarahan Malaysia
| | - Zainab Ngaini
- Faculty of Resource Science and Technology Universiti Malaysia Sarawak Kota Samarahan Malaysia
| |
Collapse
|
39
|
Khalaj M, Taherkhani M, Kalhor M. Preparation of some chromeno[4,3- d]pyrido[1,2- a]pyrimidine derivatives by ultrasonic irradiation using NiFe 2O 4@SiO 2 grafted di(3-propylsulfonic acid) nanoparticles. NEW J CHEM 2021. [DOI: 10.1039/d1nj01676h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
NiFe2O4@SiO2 grafted di(3-propylsulfonic acid) was prepared by a facile method and characterized by XRD, FT-IR, SEM-EDX, TGA, and BET techniques.
Collapse
Affiliation(s)
- Mehdi Khalaj
- Department of Chemistry
- Buinzahra Branch
- Islamic Azad University Buinzahra
- Iran
| | - Mahboubeh Taherkhani
- Department of Chemistry
- College of Science
- Takestan Branch
- Islamic Azad University
- Takestan
| | - Mehdi Kalhor
- Department of Organic Chemistry
- Payame Noor University
- Tehran
- Iran
| |
Collapse
|
40
|
El Malah T, Soliman HA, Hemdan BA, Abdel Mageid RE, Nour HF. Synthesis and antibiofilm activity of 1,2,3-triazole-pyridine hybrids against methicillin-resistant Staphylococcus aureus (MRSA). NEW J CHEM 2021. [DOI: 10.1039/d1nj00773d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Antibiotic-resistant bacteria are emerging at an alarming rate, posing a potential threat to human health. A series of 1,2,3-triazole-pyridine hybrids were synthesised as promising antibiofilm agents against planktonic and sessile MRSA.
Collapse
Affiliation(s)
- Tamer El Malah
- Photochemistry Department
- Chemical Industries Research Division
- National Research Centre
- Cairo
- Egypt
| | - Hanan A. Soliman
- Photochemistry Department
- Chemical Industries Research Division
- National Research Centre
- Cairo
- Egypt
| | - Bahaa A. Hemdan
- Water Pollution Research Department, Environmental Research Division
- National Research Centre
- Cairo
- Egypt
| | - Randa E. Abdel Mageid
- Photochemistry Department
- Chemical Industries Research Division
- National Research Centre
- Cairo
- Egypt
| | - Hany F. Nour
- Photochemistry Department
- Chemical Industries Research Division
- National Research Centre
- Cairo
- Egypt
| |
Collapse
|
41
|
S. Joshi H, M. Panchani N. A Facile, Efficient and Catalyst Free Synthesis of Imidazole, Tetrazole and Pyrimidine Combined Moiety as Potential Antimicrobial and Antitubercular Agents. HETEROCYCLES 2021. [DOI: 10.3987/com-21-14512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
42
|
Barut B, Yalçın CÖ, Demirbaş Ü. The water soluble Zn(II) and Mg(II) phthalocyanines: Synthesis, photochemical, DNA photodamage and PDT effects against A549 cells. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.112946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
43
|
Salotra R, Utreja D. A Comprehensive Appraisal of Chalcones and Their Heterocyclic Analogs as Antimicrobial Agents. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999200922090524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Owing to the growing demand for compelling antimicrobial agents, chalcones and
their heterocyclic derivatives have engrossed prodigious attention of medicinal chemists as an
effective clinical template for the synthesis of such agents on account of their structural diversity
and molecular flexibility. Chalcones are considered as a fortunate scaffold in the field of
both synthetic as well as natural product chemistry. They are reflected as a remarkable section
of logically occurring pharmacophores that possess a comprehensive scale of biological activities,
such as anti-cancer, anti-malarial, anti-viral and anti-inflammatory, rendering them
with a high degree of assortment and noble therapeutic profile. They act as a crucial intermediate
for the synthesis of novel heterocyclic skeletons holding biodynamic behavior. This
review emphasizes on different aspects of chalcones including their natural sources, recent
synthetic methodologies and evaluation of their anti-microbial potential. It is expected as a persuasive compilation on
chalcones that may benefit the experts to design potent and less toxic chalcone referents as medicinal agents.
Collapse
Affiliation(s)
- Riddhi Salotra
- Department of Chemistry, Punjab Agricultural University, Ludhiana, 141004, India
| | - Divya Utreja
- Department of Chemistry, Punjab Agricultural University, Ludhiana, 141004, India
| |
Collapse
|
44
|
Abou Hammad AB, Hemdan BA, El Nahrawy AM. Facile synthesis and potential application of Ni0.6Zn0.4Fe2O4 and Ni0.6Zn0.2Ce0.2Fe2O4 magnetic nanocubes as a new strategy in sewage treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 270:110816. [PMID: 32501235 DOI: 10.1016/j.jenvman.2020.110816] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/06/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
Disinfection using chlorine has paramount importance in the treatment of either drinking water or sewage since it can kill and inhibit all waterborne pathogens, but it may result in carcinogenic substances when interacting with organic matter. An eco-friendly sol-gel process with citrate was used to prepare the nano-cubic activated nickel-zinc ferrite magnetic nanostructures (Ni0.6Zn0.4Fe2O4 and Ni0.6Zn0.2Ce0.2Fe2O4). The activated nanomagnetic samples were characterized using XRD, HR-TEM, HR-SEM, FTIR, and VSM techniques. The structural and magnetic results showed that the nano-cubes magnetic-structures exhibited higher crystalline degrees and an increase in the total magnetization, enabling spinel nano-ferrite to possess potentials for excellent industry various applications. Likewise, the VSM results reveal that Ce2O3 had a significant influence on the magnetic behavior such as the coercivity (Hc; 69.226-133.15) saturation and magnetization (Ms; 24.562-52.174). The results revealed that all Magnetic nanoparticles (MNPs) had an outstanding inhibitory effect on microbes tested. The manufactured particles showed a remarkable ability to eliminate pathogenic bacteria in real sewage samples. The results obtained endorsed that the manufactured magnetic nanoparticles (MNPs) are powerful nano-weapons with an excellent anticipated output for the deactivation of pathogenic microbes during sewage treatment, with, nickel-zinc-cerium ferrite being more effective in inhibiting microbial growth than nickel-zinc-cerium ferrite.
Collapse
Affiliation(s)
- Ali B Abou Hammad
- Solid-State Physics Department, Physics Research Division, National Research Centre, 33 El-Bohouth St., Dokki, Giza, 12622, Egypt
| | - Bahaa A Hemdan
- Water Pollution Research Department, Environmental Research Division, National Research Centre, 33 El-Bohouth St., Dokki, Giza, 12622, Egypt; Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Amany M El Nahrawy
- Solid-State Physics Department, Physics Research Division, National Research Centre, 33 El-Bohouth St., Dokki, Giza, 12622, Egypt
| |
Collapse
|
45
|
Shishkina SV, Konovalova IS, Karpina VR, Kovalenko SS, Kovalenko SM, Bunyatyan ND. Concomitant polymorphic forms of 3-cyclopropyl-5-(2-hydrazinylpyridin-3-yl)-1,2,4-oxadiazole. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2020; 76:836-844. [DOI: 10.1107/s2053229620010414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/28/2020] [Indexed: 11/10/2022]
Abstract
The dipharmacophore compound 3-cyclopropyl-5-(2-hydrazinylpyridin-3-yl)-1,2,4-oxadiazole, C10H11N5O, was studied on the assumption of its potential biological activity. Two concomitant polymorphs were obtained on crystallization from isopropanol solution and these were thoroughly studied. Identical conformations of the molecules are found in both structures despite the low difference in energy between the four possible conformers. The two polymorphs differ crucially with respect to their crystal structures. A centrosymmetric dimer formed due to both stacking interactions of the `head-to-tail' type and N—H...N(π) hydrogen bonds is the building unit in the triclinic structure. The dimeric building units form an isotropic packing. In the orthorhombic polymorphic structure, the molecules form stacking interactions of the `head-to-head' type, which results in their organization in a column as the primary basic structural motif. The formation of N—H...N(lone pair) hydrogen bonds between two neighbouring columns allows the formation of a double column as the main structural motif. The correct packing motifs in the two polymorphs could not be identified without calculations of the pairwise interaction energies. The triclinic structure has a higher density and a lower (by 0.60 kcal mol−1) lattice energy according to periodic calculations compared to the orthorhombic structure. This allows us to presume that the triclinic form of 3-cyclopropyl-5-(2-hydrazinylpyridin-3-yl)-1,2,4-oxadiazole is the more stable.
Collapse
|
46
|
Al Shareef HF. Synthesis of some novel 2-(3-cyano -6-(thiophen- 2-yl)-4,4'- bipyridin-2- yloxy)acetohydrazide derivatives: assessment of their cytotoxic activity. BMC Chem 2020; 14:40. [PMID: 32514501 PMCID: PMC7268483 DOI: 10.1186/s13065-020-00692-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 05/20/2020] [Indexed: 11/10/2022] Open
Abstract
A new series of pyrazole, bipyridine, N-amide derivatives and Schiff bases was synthesized using compound 2-(3-cyano-6- (thiophen-2-yl)-4,4'- bipyridin-2-yloxy) acetohydrazide (3) as a starting material. The compounds structures were confirmed depending on the spectroscopic methods and elemental analysis. Also, the compounds were evaluated as anticancer agents by the compounds screened towards adenocarcinoma breast cancer cell line (MCF-7). The compounds showed a promising cytotoxic effect against human breast cancer cells. Compound 7c showed the most effective activity compared to other compounds with (IC50 = 0.6 ± 0.01 μg mL-1) in comparison with the reference drug doxorubicin (IC50 = 1.6 ± 0.02 μg mL-1). While compound 3 is closely active with doxorubicin. Also compounds 2, 4, 6, 7a, 7b and 7d showed noticeable cytotoxic effect. Early and late apoptotic cells were detected using Acridine orange/Ethidium bromide staining technique. The results of biologically screening of the tested compounds give an idea about the importance in the compounds acting against breast cancer and may lead to the discovery of a potent anticancer agent.
Collapse
Affiliation(s)
- Hossa F Al Shareef
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, P. O. Box 13401, Makkah, 21955 Saudi Arabia
| |
Collapse
|
47
|
Harikrishna S, Robert AR, Ganja H, Maddila S, Jonnalagadda SB. A green, efficient and recoverable CeO
2
/MWCNT nanocomposite catalyzed click synthesis of pyridine‐3‐carboxamides. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5796] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Singamsetty Harikrishna
- Department of Chemistry, GITAM Institute of SciencesGITAM University Visakhapatnam Andhra Pradesh India
| | - Alice R. Robert
- Department of Chemistry, GITAM Institute of SciencesGITAM University Visakhapatnam Andhra Pradesh India
| | - Himavathi Ganja
- Department of Chemistry, GITAM Institute of SciencesGITAM University Visakhapatnam Andhra Pradesh India
| | - Suresh Maddila
- Department of Chemistry, GITAM Institute of SciencesGITAM University Visakhapatnam Andhra Pradesh India
- School of Chemistry & PhysicsUniversity of KwaZulu‐Natal, Westville Campus Durban Chiltern Hills 4000 South Africa
| | - Sreekantha B. Jonnalagadda
- School of Chemistry & PhysicsUniversity of KwaZulu‐Natal, Westville Campus Durban Chiltern Hills 4000 South Africa
| |
Collapse
|
48
|
High performance of talented copper/magneso-zinc titanate nanostructures as biocidal agents for inactivation of pathogens during wastewater disinfection. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01454-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
49
|
Abdel-Latif E, Abdel-Galil E, A. Berghot M, I. Zaki A. Synthesis and Antibacterial Survey of Some New Pyridine-Based Heterocycles. HETEROCYCLES 2020. [DOI: 10.3987/com-20-14298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|