1
|
Mendoza-Jasso ME, Pérez-Villanueva J, Alvarado-Rodríguez JG, González-Andrade M, Cortés-Benítez F. 3-Benzylaminomethyl Lithocholic Acid Derivatives Exhibited Potent and Selective Uncompetitive Inhibitory Activity Against Protein Tyrosine Phosphatase 1B (PTP1B). ACS OMEGA 2024; 9:33224-33238. [PMID: 39100322 PMCID: PMC11292843 DOI: 10.1021/acsomega.4c04948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/21/2024] [Accepted: 07/09/2024] [Indexed: 08/06/2024]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a promising drug target for treating type 2 diabetes (T2DM) and obesity. As a result, developing new therapies that target PTP1B is an attractive strategy for treating these diseases. Herein, we detail the synthesis of 15 lithocholic acid (LA) derivatives, each containing different benzylaminomethyl groups attached to the C3 position of the steroid skeleton. The derivatives were assessed against two forms of PTP1B enzyme (hPTP1B1-400 and hPTP1B1-285), and the most potent compounds were then tested against T-cell protein tyrosine phosphatase (TCPTP) to determine their selectivity. The results showed that compounds 6m and 6n were more potent than the reference compounds (ursolic acid, chlorogenic acid, suramin, and TCS401). Additionally, both compounds exhibited greater potency over hPTP1B1-400. Furthermore, enzyme kinetic studies on hPTP1B1-400 revealed that these two lithocholic acid derivatives have an uncompetitive inhibition against hPTP1B1-400 with K i values of 2.5 and 3.4 μM, respectively. Interestingly, these compounds were around 75-fold more selective for PTP1B over TCPTP. Finally, docking studies and molecular dynamics simulations (MDS) were conducted to determine how these compounds interact with PTP1B. The docking studies revealed hydrophobic and H-bond interactions with amino acid residues in the unstructured region. MDS showed that these interactions persisted throughout the 200 ns simulation, indicating the crucial role of the unstructured zone in the biological activity and inhibition of PTP1B.
Collapse
Affiliation(s)
- María-Eugenia Mendoza-Jasso
- Doctorado
en Ciencias Farmacéuticas, División de Ciencias Biológicas
y de la Salud, Universidad Autónoma
Metropolitana − Unidad Xochimilco, Ciudad de México 04960, Mexico
- Laboratorio
de Síntesis y Aislamiento de Sustancias Bioactivas, Departamento
de Sistemas Biológicos, División de Ciencias Biológicas
y de la Salud, Universidad Autónoma
Metropolitana − Unidad Xochimilco, Ciudad de México 04960, Mexico
- Laboratorio
de Biosensores y Modelaje Molecular, Departamento de Bioquímica,
Facultad de Medicina, Universidad Nacional
Autónoma de México, Ciudad de México 04510, Mexico
| | - Jaime Pérez-Villanueva
- Laboratorio
de Síntesis y Aislamiento de Sustancias Bioactivas, Departamento
de Sistemas Biológicos, División de Ciencias Biológicas
y de la Salud, Universidad Autónoma
Metropolitana − Unidad Xochimilco, Ciudad de México 04960, Mexico
| | | | - Martin González-Andrade
- Laboratorio
de Biosensores y Modelaje Molecular, Departamento de Bioquímica,
Facultad de Medicina, Universidad Nacional
Autónoma de México, Ciudad de México 04510, Mexico
| | - Francisco Cortés-Benítez
- Laboratorio
de Síntesis y Aislamiento de Sustancias Bioactivas, Departamento
de Sistemas Biológicos, División de Ciencias Biológicas
y de la Salud, Universidad Autónoma
Metropolitana − Unidad Xochimilco, Ciudad de México 04960, Mexico
| |
Collapse
|
2
|
Cui E, Qian S, Li J, Jiang X, Wang H, Du S, Du L. Discovery of Coixol Derivatives as Potent Anti-inflammatory Agents. JOURNAL OF NATURAL PRODUCTS 2023; 86:1950-1959. [PMID: 37561816 DOI: 10.1021/acs.jnatprod.3c00309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Coixol, a derivative of 2-benzoxazolinone extracted from coix (Coix lachryma-jobi L. var. ma-yuen Stapf), has demonstrated promising anti-inflammatory activity and low cytotoxicity. In this study, 26 coixol derivatives were designed and synthesized by hybridization with cinnamic acid to identify new anti-inflammatory agents. The anti-inflammatory activities of the derivatives were screened using LPS-induced overexpression of nitric oxide (NO) in RAW264.7 macrophages. On the basis of the screening results, compounds containing furan (9c) or nitrofuran (9j) moieties displayed more pronounced activity than coixol and celecoxib. Mechanistic investigations revealed that 9c and 9j suppressed the expression of induced nitric oxide synthase (iNOS), tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β, which was associated with the inhibition of the nuclear factor (NF)-κB signaling pathway. In vivo studies confirmed the anti-inflammatory activity of 9c and 9j in a xylene-induced mice auricles edema model. The preliminary in vitro and in vivo research findings suggest that 9c and 9j have the potential to be developed as anti-inflammatory agents.
Collapse
Affiliation(s)
- Enjing Cui
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Shihu Qian
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jiaming Li
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
- Deparment of Medicinal Chemistry, Anhui Academy of Chinese Medicine, Hefei 230012, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, China
| | - Xueyang Jiang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
- Deparment of Medicinal Chemistry, Anhui Academy of Chinese Medicine, Hefei 230012, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, China
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Hongwei Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Shuaishuai Du
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Le Du
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| |
Collapse
|
3
|
Chen S, Xi M, Gao F, Li M, Dong T, Geng Z, Liu C, Huang F, Wang J, Li X, Wei P, Miao F. Evaluation of mulberry leaves’ hypoglycemic properties and hypoglycemic mechanisms. Front Pharmacol 2023; 14:1045309. [PMID: 37089923 PMCID: PMC10117911 DOI: 10.3389/fphar.2023.1045309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
The effectiveness of herbal medicine in treating diabetes has grown in recent years, but the precise mechanism by which it does so is still unclear to both medical professionals and diabetics. In traditional Chinese medicine, mulberry leaf is used to treat inflammation, colds, and antiviral illnesses. Mulberry leaves are one of the herbs with many medicinal applications, and as mulberry leaf study grows, there is mounting evidence that these leaves also have potent anti-diabetic properties. The direct role of mulberry leaf as a natural remedy in the treatment of diabetes has been proven in several studies and clinical trials. However, because mulberry leaf is a more potent remedy for diabetes, a deeper understanding of how it works is required. The bioactive compounds flavonoids, alkaloids, polysaccharides, polyphenols, volatile oils, sterols, amino acids, and a variety of inorganic trace elements and vitamins, among others, have been found to be abundant in mulberry leaves. Among these compounds, flavonoids, alkaloids, polysaccharides, and polyphenols have a stronger link to diabetes. Of course, trace minerals and vitamins also contribute to blood sugar regulation. Inhibiting alpha glucosidase activity in the intestine, regulating lipid metabolism in the body, protecting pancreatic -cells, lowering insulin resistance, accelerating glucose uptake by target tissues, and improving oxidative stress levels in the body are some of the main therapeutic properties mentioned above. These mechanisms can effectively regulate blood glucose levels. The therapeutic effects of the bioactive compounds found in mulberry leaves on diabetes mellitus and their associated molecular mechanisms are the main topics of this paper’s overview of the state of the art in mulberry leaf research for the treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Sikai Chen
- Shaanxi University of Chinese Medicine, Xianyang, China
| | - Miaomiao Xi
- The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
- Xi’an TANK Medicinal Biology Institute, Xi’an, China
| | - Feng Gao
- Shaanxi University of Chinese Medicine, Xianyang, China
| | - Min Li
- Shaanxi University of Chinese Medicine, Xianyang, China
| | - TaiWei Dong
- Shaanxi University of Chinese Medicine, Xianyang, China
| | - Zhixin Geng
- Shaanxi University of Chinese Medicine, Xianyang, China
| | - Chunyu Liu
- Shaanxi University of Chinese Medicine, Xianyang, China
| | - Fengyu Huang
- Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jing Wang
- Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xingyu Li
- Shaanxi University of Chinese Medicine, Xianyang, China
| | - Peifeng Wei
- Shaanxi University of Chinese Medicine, Xianyang, China
- The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
- *Correspondence: Peifeng Wei, ; Feng Miao,
| | - Feng Miao
- The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
- *Correspondence: Peifeng Wei, ; Feng Miao,
| |
Collapse
|
4
|
Derkach KV, Zakharova IO, Bakhtyukov AA, Sorokoumov VN, Kuznetsova VS, Shpakov AO. [Characterization and biological activity of new 4-oxo-1,4-dihydrocinnoline-based inhibitors of the tyrosine phosphatase PTP1B and TCPTP]. BIOMEDITSINSKAIA KHIMIIA 2022; 68:427-436. [PMID: 36573409 DOI: 10.18097/pbmc20226806427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Functional disorders in obesity are largely due to a decrease in tissue sensitivity to insulin and leptin. One of the ways to restore it is inhibition of protein phosphotyrosine phosphatase 1B (PTP1B) and T-cell protein phosphotyrosine phosphatase (TCPTP), negative regulators of the insulin and leptin signaling. Despite progress in the development of inhibitors of these phosphatases, commercial preparations based on them have not been developed yet, and the mechanisms of action are poorly understood. The aim of the work was to study the effect of new derivatives of 4-oxo-1,4-dihydrocinnoline (PI04, PI06, PI07) on the activity of PTP1B and TCPTP, as well as to study the effect of their five-day administration (i.p., 10 mg/kg/day) to Wistar rats with diet-induced obesity on body weight and fat, metabolic and hormonal parameters, and gene expression of phosphatase and insulin and leptin receptors in the liver. It has been shown that PI04 is a mild, low selective inhibitor of both phosphatases (PTP1B, IC50=3.42(2.60-4.51) μM; TCPTP, IC50=4.16(3.49-4.95) μM), while PI06 and PI07 preferentially inhibit PTP1B (IC50=3.55 (2.63-4.78) μM) and TCPTP (IC50=1.45(1.18-1.78) μM), respectively. PI04 significantly reduced food intake, body weight and fat, attenuated hyperglycemia, normalized glucose tolerance, basal and glucose-stimulated levels of insulin and leptin, and insulin resistance index. Despite the anorexigenic effect, PI06 and PI07 were less effective, having little effect on glucose homeostasis and insulin sensitivity. PI04 significantly increased the expression of the PTP1B and TCPTP genes and decreased the expression of the insulin and leptin receptor genes. PI06 and PI07 had little effect on these indicators. Thus, PI04, the inhibitor of PTP1B and TCPTP phosphatases, restored metabolic and hormonal parameters in obese rats with greater efficiency than inhibitors of PTP1B (PI06) and TCPTP (PI07). This indicates the prospect of creating mixed PTP1B/TCPTP inhibitors for correction of metabolic disorders.
Collapse
Affiliation(s)
- K V Derkach
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - I O Zakharova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - A A Bakhtyukov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - V N Sorokoumov
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russia
| | - V S Kuznetsova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - A O Shpakov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia; Medical Faculty, St. Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
5
|
Behl T, Gupta A, Sehgal A, Albarrati A, Albratty M, Meraya AM, Najmi A, Bhatia S, Bungau S. Exploring protein tyrosine phosphatases (PTP) and PTP-1B inhibitors in management of diabetes mellitus. Biomed Pharmacother 2022; 153:113405. [DOI: 10.1016/j.biopha.2022.113405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/02/2022] Open
|
6
|
Computational Methods in Cooperation with Experimental Approaches to Design Protein Tyrosine Phosphatase 1B Inhibitors in Type 2 Diabetes Drug Design: A Review of the Achievements of This Century. Pharmaceuticals (Basel) 2022; 15:ph15070866. [PMID: 35890163 PMCID: PMC9322956 DOI: 10.3390/ph15070866] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B) dephosphorylates phosphotyrosine residues and is an important regulator of several signaling pathways, such as insulin, leptin, and the ErbB signaling network, among others. Therefore, this enzyme is considered an attractive target to design new drugs against type 2 diabetes, obesity, and cancer. To date, a wide variety of PTP1B inhibitors that have been developed by experimental and computational approaches. In this review, we summarize the achievements with respect to PTP1B inhibitors discovered by applying computer-assisted drug design methodologies (virtual screening, molecular docking, pharmacophore modeling, and quantitative structure–activity relationships (QSAR)) as the principal strategy, in cooperation with experimental approaches, covering articles published from the beginning of the century until the time this review was submitted, with a focus on studies conducted with the aim of discovering new drugs against type 2 diabetes. This review encourages the use of computational techniques and includes helpful information that increases the knowledge generated to date about PTP1B inhibition, with a positive impact on the route toward obtaining a new drug against type 2 diabetes with PTP1B as a molecular target.
Collapse
|
7
|
Sun M, Ma X, Shao S, Jiang J, Li J, Tian J, Zhang J, Li L, Ye F, Li S. Atropisomeric 9,10-dihydrophenanthrene/bibenzyl trimers with anti-inflammatory and PTP1B inhibitory activities from Bletilla striata. Org Biomol Chem 2022; 20:4736-4745. [PMID: 35612380 DOI: 10.1039/d2ob00489e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two pairs of novel trimeric dihydrophenanthrene-bibenzyl-dihydrophenanthrene enantiomers (1 and2), the first examples of a dihydrophenanthrene dimer linked to a bibenzyl or dihydrophenanthrene through a C-O-C bond (3 and4), and a pair of rare polymers with a bibenzyl connected to C-8' of the dihydrophenanthro[b]furan moiety via a methylene (5), together with four known compounds (6-9) were isolated from the tubers of Bletilla striata. Their structures including the absolute configurations were determined using spectroscopic data analysis and ECD and NMR calculations, combined with the exciton chirality method or the reversed helicity rule. The atropisomerism of dihydrophenanthrenes and related polymers was considered based on their chiral optical properties, and QM torsion profile calculations, which revealed the racemic mixture form of the polymers. Compounds 4, 5b, 6a and 7b significantly inhibited the production of NO in LPS-induced BV-2 cells, with IC50 values ranging from 0.78 to 5.52 μM. Further mechanistic study revealed that 7b suppressed the expression of iNOS, and suppressed the phosphorylation of the p65 subunit to regulate the NF-κB signaling pathway. Furthermore, compounds 2b, 5a, 5b, 7a and 7b displayed significant protein tyrosine phosphatase 1B (PTP1B) inhibitory activities with IC50 values of 3.43-12.30 μM.
Collapse
Affiliation(s)
- Mohan Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Xianjie Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Siyuan Shao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Jianwei Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Jiaan Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Jinying Tian
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Jianjun Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Li Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Fei Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Shuai Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
8
|
Discovery of novel microtubule stabilizers targeting taxane binding site by applying molecular docking, molecular dynamics simulation, and anticancer activity testing. Bioorg Chem 2022; 122:105722. [PMID: 35303622 DOI: 10.1016/j.bioorg.2022.105722] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 02/08/2023]
Abstract
Disruption of the dynamic equilibrium of microtubules can induce cell cycle arrest in G2/M phase and apoptosis. Hence, discovery of novel tubulin polymerization inhibitors is very necessary and an important task in drug research and development for treatment of various tumors. In this investigation, 50 compounds were screened as microtubule stabilizers targeting the taxane site by combination of molecular docking methods. Among these hits, hits 19 and 38 with novel scaffolds exhibited the highest anti-proliferative activity with IC50 ranging from 9.50 to 13.81 μM in four cancer cell lines. The molecular dynamics simulations confirmed that tubulin and two hits could form stable systems. Meanwhile, the mechanism of the interactions between tubulin and two hits at simulated physiological conditions were probed. The in vitro tubulin polymerization assay revealed hits 19 and 38 were able to promote tubulin polymerization in a dose-dependent manner. Further, the immunofluorescence assay suggested that hits 19 and 38 could accelerate microtubule assembly in A549 and HeLa cells. Finally, studies on antitumor activity indicated that hits 19 and 38 induced G2/M phase cell cycle arrest and apoptosis, and inhibited cancer cell motility and migration in A549 and HeLa cells. Importantly, hit38 exhibited better anti-tubulin and anti-cancer activity than hit19 in A549 and HeLa cells. Therefore, these results suggest that hit38 represents a promising microtubule stabilizer for treating cancer and deserves further investigation.
Collapse
|
9
|
Recent Updates on Development of Protein-Tyrosine Phosphatase 1B Inhibitors for Treatment of Diabetes, Obesity and Related Disorders. Bioorg Chem 2022; 121:105626. [DOI: 10.1016/j.bioorg.2022.105626] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/19/2021] [Accepted: 01/13/2022] [Indexed: 01/30/2023]
|
10
|
Phong NV, Oanh VT, Yang SY, Choi JS, Min BS, Kim JA. PTP1B inhibition studies of biological active phloroglucinols from the rhizomes of Dryopteris crassirhizoma: Kinetic properties and molecular docking simulation. Int J Biol Macromol 2021; 188:719-728. [PMID: 34416263 DOI: 10.1016/j.ijbiomac.2021.08.091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
By various chromatographic methods, 30 phloroglucinols (1-30) were isolated from a methanol extract of Dryopteris crassirhizoma, including two new dimeric phloroglucinols (13 and 25). The structures of the isolates were confirmed by HR-MS, 1D, and 2D NMR as well as by comparison with the literature. The protein tyrosine phosphatase 1B (PTP1B) effects of the isolated compounds (1-30) were evaluated using sodium orthovanadate and ursolic acid as a positive control. Among them, trimeric phloroglucinols 26-28 significantly exhibited the PTP1B inhibitory effects with the IC50 values of 1.19 ± 0.13, 1.00 ± 0.04, 1.23 ± 0.05 μM, respectively. In addition, the kinetic analysis revealed compounds 26-28 acted as competitive inhibitors against PTP1B enzyme with Ki values of 0.63, 0.61, 1.57 μM, respectively. Molecular docking simulations were performed to demonstrate that these active compounds can bind with the catalytic sites of PTP1B with negative binding energies and the results are in accordance with that of the kinetic studies. In vitro and in silico results suggest that D. crassirhizoma rhizomes together with compounds 26-28 are potential candidates for treating type 2 diabetes.
Collapse
Affiliation(s)
- Nguyen Viet Phong
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; Vessel-Organ Interaction Research Center, VOICE (MRC), College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Vu Thi Oanh
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; Vessel-Organ Interaction Research Center, VOICE (MRC), College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Seo Young Yang
- Department of Pharmaceutical Engineering, Sangji University, Wonju 26339, Republic of Korea
| | - Jae Sue Choi
- Department of Food and Life Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Byung Sun Min
- College of Pharmacy, Drug Research and Development Center, Catholic University of Daegu, Gyeongbuk, Republic of Korea
| | - Jeong Ah Kim
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; Vessel-Organ Interaction Research Center, VOICE (MRC), College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
11
|
Yang Y, Zhang L, Tian J, Ye F, Xiao Z. Integrated Approach to Identify Selective PTP1B Inhibitors Targeting the Allosteric Site. J Chem Inf Model 2021; 61:4720-4732. [PMID: 34521197 DOI: 10.1021/acs.jcim.1c00357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is an intractable target for drug discovery due to its conservative and cationic catalytic site. Targeting alternative allosteric sites of PTP1B is a promising strategy to achieve specificity and bioavailability. A hierarchical virtual screening based on a previously identified allosteric site was applied to search for potential PTP1B inhibitors with better pharmacological profiles. Four potent PTP1B inhibitors (H1, H3, H7, and H9) with structures distinct from known inhibitors were identified. Among them, H3 and H9 demonstrated evident selectivity to PTP1B over homologous T-cell protein tyrosine phosphatase (TCPTP) and SHP2. Molecular dynamics simulations and molecular mechanics-generalized Born surface area (MM-GBSA) calculations recognized Phe280, Phe196, Leu192, and Asn193 as key residues responsible for potent allosteric inhibition and excellent PTP selectivity. The results not only expand the structural diversity but also aid the future molecular design of PTP1B allosteric inhibitors.
Collapse
Affiliation(s)
- Ying Yang
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
| | - Lei Zhang
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
| | - Jinying Tian
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Fei Ye
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Zhiyan Xiao
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
| |
Collapse
|
12
|
Szilágyi K, Flachner B, Hajdú I, Szaszkó M, Dobi K, Lőrincz Z, Cseh S, Dormán G. Rapid Identification of Potential Drug Candidates from Multi-Million Compounds' Repositories. Combination of 2D Similarity Search with 3D Ligand/Structure Based Methods and In Vitro Screening. Molecules 2021; 26:5593. [PMID: 34577064 PMCID: PMC8468386 DOI: 10.3390/molecules26185593] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 12/23/2022] Open
Abstract
Rapid in silico selection of target focused libraries from commercial repositories is an attractive and cost-effective approach in early drug discovery. If structures of active compounds are available, rapid 2D similarity search can be performed on multimillion compounds' databases. This approach can be combined with physico-chemical parameter and diversity filtering, bioisosteric replacements, and fragment-based approaches for performing a first round biological screening. Our objectives were to investigate the combination of 2D similarity search with various 3D ligand and structure-based methods for hit expansion and validation, in order to increase the hit rate and novelty. In the present account, six case studies are described and the efficiency of mixing is evaluated. While sequentially combined 2D/3D similarity approach increases the hit rate significantly, sequential combination of 2D similarity with pharmacophore model or 3D docking enriched the resulting focused library with novel chemotypes. Parallel integrated approaches allowed the comparison of the various 2D and 3D methods and revealed that 2D similarity-based and 3D ligand and structure-based techniques are often complementary, and their combinations represent a powerful synergy. Finally, the lessons we learnt including the advantages and pitfalls of the described approaches are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - György Dormán
- TargetEx Ltd., Madách I. u. 31/2, 2120 Dunakeszi, Hungary; (K.S.); (B.F.); (I.H.); (M.S.); (K.D.); (Z.L.); (S.C.)
| |
Collapse
|
13
|
Balaramnavar VM, Srivastava R, Varshney S, Kumar S, Rawat AK, Chandasana H, Chhonker YS, Bhatta RS, Srivastava AK, Gaikwad AN, Lakshmi V, Saxena AK. Synthesis, biological evaluation, and molecular docking study of some new rohitukine analogs as protein tyrosine phosphatase 1B inhibitors. Bioorg Chem 2021; 110:104829. [PMID: 33773222 DOI: 10.1016/j.bioorg.2021.104829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 02/06/2023]
Abstract
Rohitukine (RH) was extracted from the stem bark of Dysoxylum binectariferum Hook. It was derivatized to different arylsulphanmides by treating with the corresponding aryl sulphonyl chlorides. These derivatives were tested in-vitro on protein tyrosine phosphatase 1B (PTP1B) inhibition. Among these the active compounds K2, K3, K5, and K8 significantly inhibited the PTP1B by 51.3%, 65.6%, 71.9%, and 55.9% respectively at 10 µg/ml, the results were also supported by in-silico docking experiments. The most potent compound K5 was analyzed for antidiabetic and antidyslipidemic activity in vivo. It showed a marked reduction in blood glucose level (random and fasting) and serum insulin level in db/db mice. It improved glucose intolerance as ascertained by the oral glucose tolerance test (OGTT). These NCEs (New Chemical Entities) also lowered cholesterol and triglyceride profiles while improved high-density lipoprotein cholesterol in db/db mice. The K5 was further evaluated for antiadipogenic activity on MDI (Methylisobutylxanthine, dexamethasone, and insulin)-induced adipogenesis. where it significantly inhibited MDI-induced adipogenesis in 3 T3-L1 preadipocytes, at 10 µM and 20 µM concentration. These results were compared with the parent compound RH which inhibited 35% and 45% lipid accumulation while the RH analog K5 inhibited the lipid accumulation by 41% and 51% at 10 and 20 µM concentration, respectively. These results well corroborated with in-silico studies.
Collapse
Affiliation(s)
- V M Balaramnavar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Jankipuram, Extention Sector 10, Sitapur Road, Lucknow 226031, UP, India; Global Institute of Pharmaceutical Education and Research, Jaspur Road, Kashipur, Uttarakhand, India
| | - R Srivastava
- Department of Biochemistry, CSIR-Central Drug Research Institute, Jankipuram Extention, Sector 10, Sitapur Road, Lucknow 226031, UP, India
| | - S Varshney
- Department of Pharmacology, CSIR-Central Drug Research Institute, Jankipuram Extention Sector 10, Sitapur Road, Lucknow 226031, UP, India
| | - S Kumar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Jankipuram, Extention Sector 10, Sitapur Road, Lucknow 226031, UP, India
| | - A K Rawat
- Department of Biochemistry, CSIR-Central Drug Research Institute, Jankipuram Extention, Sector 10, Sitapur Road, Lucknow 226031, UP, India
| | - H Chandasana
- Pharmacokinetics and Metabolism Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Y S Chhonker
- Pharmacokinetics and Metabolism Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - R S Bhatta
- Pharmacokinetics and Metabolism Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - A K Srivastava
- Department of Biochemistry, CSIR-Central Drug Research Institute, Jankipuram Extention, Sector 10, Sitapur Road, Lucknow 226031, UP, India
| | - A N Gaikwad
- Department of Pharmacology, CSIR-Central Drug Research Institute, Jankipuram Extention Sector 10, Sitapur Road, Lucknow 226031, UP, India
| | - V Lakshmi
- Department of Biochemistry, King George's Medical University, Lucknow 226003, UP, India
| | - A K Saxena
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Jankipuram, Extention Sector 10, Sitapur Road, Lucknow 226031, UP, India.
| |
Collapse
|
14
|
Feng YX, Wang ZC, Chen JX, Li HR, Wang YB, Ren DF, Lu J. Separation, identification, and molecular docking of tyrosinase inhibitory peptides from the hydrolysates of defatted walnut (Juglans regia L.) meal. Food Chem 2021; 353:129471. [PMID: 33730668 DOI: 10.1016/j.foodchem.2021.129471] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 12/29/2022]
Abstract
Defatted walnut meal protein was hydrolyzed using alcalase to yield tyrosinase inhibitory peptides. After separation by ultrafiltration and Sephadex G-25, the fraction with the highest tyrosinase inhibitory activity was identified using liquid chromatography-tandem mass spectrometry and 606 peptides were obtained. Then, molecular docking was used to screen for tyrosinase inhibitory peptides and to clarify the theoretical interaction mechanism between the peptides and tyrosinase. A peptide with the sequence Phe-Pro-Tyr (FPY, MW: 425.2 Da) was identified and the synthesized peptide inhibited tyrosine monophenolase and diphenolase with IC50 values of 1.11 ± 0.05 and 3.22 ± 0.09 mM, respectively. The inhibition of tyrosinase by FPY was competitive and reversible. Good stability of FPY toward digestion was observed in an in vitro gastrointestinal digestion simulation experiment. These results indicated that FPY can be used as a potential tyrosinase inhibitor in the food, medicine, and cosmetics industries.
Collapse
Affiliation(s)
- Yan-Xia Feng
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Zi-Chun Wang
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Jia-Xin Chen
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Hai-Rong Li
- Hebei Huang Jin Long Agricultural Technology Co. LTD, (Heibei province, She County), People's Republic of China
| | - Yan-Bing Wang
- Hebei Huang Jin Long Agricultural Technology Co. LTD, (Heibei province, She County), People's Republic of China
| | - Di-Feng Ren
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, People's Republic of China.
| | - Jun Lu
- Beijing Engineering Research Center of Protein & Functional Peptides, China National Research Institute of Food & Fermentation Industries, Beijing 100015, People's Republic of China.
| |
Collapse
|
15
|
Faria AVS, Fonseca EMB, Cordeiro HG, Clerici SP, Ferreira-Halder CV. Low molecular weight protein tyrosine phosphatase as signaling hub of cancer hallmarks. Cell Mol Life Sci 2021; 78:1263-1273. [PMID: 33052434 PMCID: PMC11073135 DOI: 10.1007/s00018-020-03657-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/21/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022]
Abstract
In the past decade, significant progress has been made in understanding the role of protein tyrosine phosphatase as a positive regulator of tumor progression. In this scenario, our group was one of the first to report the involvement of the low molecular weight protein tyrosine phosphatase (LMWPTP or ACP1) in the process of resistance and migration of tumor cells. Later, we and others demonstrated a positive correlation between the amount of this enzyme in human tumors and the poor prognosis. With this information in mind, we asked if LMWPTP contribution to metastasis, would it have an action beyond the primary tumor site. We know that the amount of this enzyme in the tumor cell correlates positively with the ability of cancer cells to interact with platelets, an indication that this enzyme is also important for the survival of these cells in the bloodstream. Here, we discuss several molecular aspects that support the idea of LMWPTP as a signaling hub of cancer hallmarks. Chemical and genetic modulation of LMWPTP proved to shut down signaling pathways associated with cancer aggressiveness. Therefore, advances in the development of LMWPTP inhibitors have great applicability in human diseases such as cancer.
Collapse
Affiliation(s)
- Alessandra V S Faria
- Department of Biochemistry and Tissue Biology, University of Campinas, Campinas, São Paulo, Brazil
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Emanuella Maria Barreto Fonseca
- Department of Biochemistry and Tissue Biology, University of Campinas, Campinas, São Paulo, Brazil
- Federal Institute of São Paulo, São Roque, São Paulo, Brazil
| | - Helon Guimarães Cordeiro
- Department of Biochemistry and Tissue Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Stefano Piatto Clerici
- Department of Biochemistry and Tissue Biology, University of Campinas, Campinas, São Paulo, Brazil
| | | |
Collapse
|
16
|
Niu SL, Tong ZF, Zhang Y, Liu TL, Tian CL, Zhang DX, Liu MC, Li B, Tian JL. Novel Protein Tyrosine Phosphatase 1B Inhibitor-Geranylated Flavonoid from Mulberry Leaves Ameliorates Insulin Resistance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8223-8231. [PMID: 32650643 DOI: 10.1021/acs.jafc.0c02720] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Mulberry leaf is a common vegetable with a variety of beneficial effects, such as hypoglycemic activity. However, the underlying mechanism of its hypoglycemic effect have not been fully revealed. In this study, two flavonoid derivatives were isolated from mulberry leaves, a new geranylated flavonoid compound (1) and its structural analogue (2). The structures of compounds 1 and 2 were elucidated using spectroscopic analysis. To study the potential hypoglycemic properties of these compounds, their regulatory effects on protein tyrosine phosphatase 1B (PTP1B) were investigated. In comparison to oleanolic acid, compounds 1 and 2 showed significant inhibitory activities (IC50 = 4.53 ± 0.31 and 10.53 ± 1.76 μM) against PTP1B, the positive control (IC50 = 7.94 ± 0.76 μM). Molecular docking predicted the binding sites of compound 1 to PTP1B. In insulin-resistance HepG2 cell, compound 1 promoted glucose consumption in a dose-dependent manner. Furthermore, western blot and polymerase chain reaction analyses indicated that compound 1 might regulate glucose consumption through the PTP1B/IRS/PI3K/AKT pathway. In conclusion, geranylated flavonoids in mulberry leaves inhibite PTP1B and increase the glucose consumption in insulin-resistant cells. These findings provide an important basis for the use of mulberry leaf flavonoids as a dietary supplement to regulate glucose metabolism.
Collapse
Affiliation(s)
- Sheng-Li Niu
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Aninal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning 110866, People's Republic of China
| | - Zhi-Fan Tong
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Aninal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning 110866, People's Republic of China
| | - Yu Zhang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Aninal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning 110866, People's Republic of China
| | - Tian-Lin Liu
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Aninal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning 110866, People's Republic of China
| | - Chun-Lian Tian
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Aninal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning 110866, People's Republic of China
| | - De-Xian Zhang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Aninal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning 110866, People's Republic of China
| | - Ming-Chun Liu
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Aninal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning 110866, People's Republic of China
| | - Bin Li
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, People's Republic of China
| | - Jin-Long Tian
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, People's Republic of China
| |
Collapse
|