1
|
Davighi MG, Clemente F, Andreasen ES, Nielsen MB, Matassini C, Goti A, Morrone A, Paoli P, Cardona F, Cacciarini M. Iminosugar-Dihydroazulenes as Mutant L444P Glucocerebrosidase Enhancers. Chem Biodivers 2024; 21:e202401104. [PMID: 38847390 DOI: 10.1002/cbdv.202401104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/07/2024] [Indexed: 07/24/2024]
Abstract
A remarkable enhancer of human glucocerebrosidase enzyme (GCase) was identified among a set of dihydroazulene-tagged iminosugars. An unprecedented 3.9-fold increase in GCase activity was detected on fibroblasts bearing the homozygous L444P mutation, which is frequently associated with neuronopathic Gaucher forms, and which commonly results refractory to chaperone-induced refolding.
Collapse
Affiliation(s)
- Maria Giulia Davighi
- Department of Chemistry "U. Schiff", University of Florence, via della Lastruccia 3-13, 50019, Sesto F.no (FI), Italy
| | - Francesca Clemente
- Department of Chemistry "U. Schiff", University of Florence, via della Lastruccia 3-13, 50019, Sesto F.no (FI), Italy
| | - Emilie Sperling Andreasen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen Ø, Denmark
| | - Mogens Brøndsted Nielsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen Ø, Denmark
| | - Camilla Matassini
- Department of Chemistry "U. Schiff", University of Florence, via della Lastruccia 3-13, 50019, Sesto F.no (FI), Italy
| | - Andrea Goti
- Department of Chemistry "U. Schiff", University of Florence, via della Lastruccia 3-13, 50019, Sesto F.no (FI), Italy
| | - Amelia Morrone
- Laboratory of Molecular Genetics of Neurometabolic Diseases, Department of Neuroscience and Medical Genetics, Meyer Children's Hospital IRCCS, Viale Pieraccini 24, 50139, Firenze, Italy
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Viale Pieraccini 24, 50139, Firenze, Italy
| | - Paolo Paoli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134, Firenze, Italy
| | - Francesca Cardona
- Department of Chemistry "U. Schiff", University of Florence, via della Lastruccia 3-13, 50019, Sesto F.no (FI), Italy
| | - Martina Cacciarini
- Department of Chemistry "U. Schiff", University of Florence, via della Lastruccia 3-13, 50019, Sesto F.no (FI), Italy
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen Ø, Denmark
| |
Collapse
|
2
|
Davighi MG, Matassini C, Clemente F, Paoli P, Morrone A, Cacciarini M, Goti A, Cardona F. pH-Responsive Trihydroxylated Piperidines Rescue The Glucocerebrosidase Activity in Human Fibroblasts Bearing The Neuronopathic Gaucher-Related L444P/L444P Mutations in GBA1 Gene. Chembiochem 2024; 25:e202300730. [PMID: 37877519 DOI: 10.1002/cbic.202300730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 10/26/2023]
Abstract
Engineering bioactive iminosugars with pH-responsive groups is an emerging approach to develop pharmacological chaperones (PCs) able to improve lysosomal trafficking and enzymatic activity rescue of mutated enzymes. The use of inexpensive l-malic acid allowed introduction of orthoester units into the lipophilic chain of an enantiomerically pure iminosugar affording only two diastereoisomers contrary to previous related studies. The iminosugar was prepared stereoselectively from the chiral pool (d-mannose) and chosen as the lead bioactive compound, to develop novel candidates for restoring the lysosomal enzyme glucocerebrosidase (GCase) activity. The stability of orthoester-appended iminosugars was studied by 1 H NMR spectroscopy both in neutral and acidic environments, and the loss of inhibitory activity with time in acid medium was demonstrated on cell lysates. Moreover, the ability to rescue GCase activity in the lysosomes as the result of a chaperoning effect was explored. A remarkable pharmacological chaperone activity was measured in fibroblasts hosting the homozygous L444P/L444P mutation, a cell line resistant to most PCs, besides the more commonly responding N370S mutation.
Collapse
Affiliation(s)
- Maria Giulia Davighi
- Department of Chemistry "Ugo Schiff" (DICUS), University of Florence, Via della Lastruccia 3-13, 50019, Sesto F.no (FI), Italy
- Current address: BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, New York, 10029, New York, USA
| | - Camilla Matassini
- Department of Chemistry "Ugo Schiff" (DICUS), University of Florence, Via della Lastruccia 3-13, 50019, Sesto F.no (FI), Italy
| | - Francesca Clemente
- Department of Chemistry "Ugo Schiff" (DICUS), University of Florence, Via della Lastruccia 3-13, 50019, Sesto F.no (FI), Italy
| | - Paolo Paoli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134, Firenze, Italy
| | - Amelia Morrone
- Laboratory of Molecular Biology of Neurometabolic Diseases, Meyer Children's Hospital, IRCCS, Viale Pieraccini 24, 50139, Firenze, Italy
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Viale Pieraccini 24, 50139, Firenze, Italy
| | - Martina Cacciarini
- Department of Chemistry "Ugo Schiff" (DICUS), University of Florence, Via della Lastruccia 3-13, 50019, Sesto F.no (FI), Italy
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen Ø, Denmark
| | - Andrea Goti
- Department of Chemistry "Ugo Schiff" (DICUS), University of Florence, Via della Lastruccia 3-13, 50019, Sesto F.no (FI), Italy
| | - Francesca Cardona
- Department of Chemistry "Ugo Schiff" (DICUS), University of Florence, Via della Lastruccia 3-13, 50019, Sesto F.no (FI), Italy
| |
Collapse
|
3
|
De Angelis M, Primitivo L, Sappino C, Centrella B, Lucarini C, Lanciotti L, Petti A, Odore D, D'Annibale A, Macchi B, Stefanizzi V, Cirigliano A, Rinaldi T, Righi G, Ricelli A. Stereocontrolled synthesis of new iminosugar lipophilic derivatives and evaluation of biological activities. Carbohydr Res 2023; 534:108984. [PMID: 37984279 DOI: 10.1016/j.carres.2023.108984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023]
Abstract
Iminosugars' similarity to carbohydrates determines the exceptional potential for this class of polyhydroxylated alkaloids to serve as potential drug candidates for a wide variety of diseases such as diabetes, lysosomal storage diseases, cancer, bacterial and viral infections. The presence of lipophilic substituents has a significant impact on their biological activities. This work reports the synthesis of three new pyrrolidine lipophilic derivatives O-alkylated in C-6 position. The biological activities of our iminosugars' collection were tested in two cancer cell lines and, due to the pharmaceutical potential, in the model yeast system Saccharomyces cerevisiae to assess their toxicity.
Collapse
Affiliation(s)
- Martina De Angelis
- Department of Chemistry, "Sapienza" University of Rome, P.le A. Moro 5, 00185, Rome, Italy.
| | - Ludovica Primitivo
- Department of Chemistry, "Sapienza" University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Carla Sappino
- Department of Chemistry, "Sapienza" University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Barbara Centrella
- Department of Chemistry, "Sapienza" University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Claudia Lucarini
- Department of Chemistry, "Sapienza" University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Lucrezia Lanciotti
- Department of Chemistry, "Sapienza" University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Alessia Petti
- Department of Chemistry, "Sapienza" University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Davide Odore
- Department of Chemistry, "Sapienza" University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Andrea D'Annibale
- Department of Chemistry, "Sapienza" University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Beatrice Macchi
- Department of Chemical Science and Technology, University of Rome "Tor Vergata", Via Cracovia, 50, 00133, Rome, Italy
| | - Valeria Stefanizzi
- Department of Chemical Science and Technology, University of Rome "Tor Vergata", Via Cracovia, 50, 00133, Rome, Italy
| | - Angela Cirigliano
- Institute of Molecular Biology and Pathology (IBPM)-CNR, P.le A. Moro 5, 00185, Rome, Italy
| | - Teresa Rinaldi
- Department of Biology and Biotechnology, "Sapienza" University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Giuliana Righi
- Institute of Molecular Biology and Pathology (IBPM)-CNR, P.le A. Moro 5, 00185, Rome, Italy
| | - Alessandra Ricelli
- Institute of Molecular Biology and Pathology (IBPM)-CNR, P.le A. Moro 5, 00185, Rome, Italy
| |
Collapse
|
4
|
Clemente F, Davighi MG, Matassini C, Cardona F, Goti A, Morrone A, Paoli P, Tejero T, Merino P, Cacciarini M. Light-Triggered Control of Glucocerebrosidase Inhibitors: Towards Photoswitchable Pharmacological Chaperones. Chemistry 2023; 29:e202203841. [PMID: 36598148 DOI: 10.1002/chem.202203841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/05/2023]
Abstract
Piperidine-based photoswitchable derivatives have been developed as putative pharmacological chaperones for glucocerebrosidase (GCase), the defective enzyme in Gaucher disease (GD). The structure-activity study revealed that both the iminosugar and the light-sensitive azobenzene are essential features to exert inhibitory activity towards human GCase and a system with the correct inhibition trend (IC50 of the light-activated form lower than IC50 of the dark form) was identified. Kinetic analyses showed that all compounds are non-competitive inhibitors (mixed or pure) of GCase and the enzyme allosteric site involved in the interaction was identified by means of MD simulations. A moderate activity enhancement of mutant GCase assessed in GD patients' fibroblasts (ex vivo experiments) carrying the most common mutation was recorded. This promising observation paves the way for further studies to improve the benefit of the light-to-dark thermal conversion for chaperoning activity.
Collapse
Affiliation(s)
- Francesca Clemente
- Department of Chemistry "U. Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto F.no, FI, Italy
| | - Maria Giulia Davighi
- Department of Chemistry "U. Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto F.no, FI, Italy
| | - Camilla Matassini
- Department of Chemistry "U. Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto F.no, FI, Italy
| | - Francesca Cardona
- Department of Chemistry "U. Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto F.no, FI, Italy.,Associated with LENS, Via N. Carrara 1, 50019, Sesto F.no, FI, Italy
| | - Andrea Goti
- Department of Chemistry "U. Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto F.no, FI, Italy.,Associated with LENS, Via N. Carrara 1, 50019, Sesto F.no, FI, Italy
| | - Amelia Morrone
- Laboratory of Molecular Biology of Neurometabolic Diseases, Neuroscience Department, Meyer Children's Hospital, Viale Pieraccini 24, 50139, Firenze, Italy.,Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Viale Pieraccini 24, 50139, Firenze, Italy
| | - Paolo Paoli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134, Firenze, Italy
| | - Tomás Tejero
- Institute of Chemical Synthesis and Homogeneous Catalysis. (ISQCH), University of Zaragoza, Campus San Francisco, Zaragoza, 50009, Spain
| | - Pedro Merino
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Campus San Francisco, Zaragoza, 50009, Spain
| | - Martina Cacciarini
- Department of Chemistry "U. Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto F.no, FI, Italy.,Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen Ø, Denmark
| |
Collapse
|
5
|
GCase Enhancers: A Potential Therapeutic Option for Gaucher Disease and Other Neurological Disorders. Pharmaceuticals (Basel) 2022; 15:ph15070823. [PMID: 35890122 PMCID: PMC9325019 DOI: 10.3390/ph15070823] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/07/2022] Open
Abstract
Pharmaceutical chaperones (PCs) are small compounds able to bind and stabilize misfolded proteins, allowing them to recover their native folding and thus their biological activity. In particular, lysosomal storage disorders (LSDs), a class of metabolic disorders due to genetic mutations that result in misfolded lysosomal enzymes, can strongly benefit from the use of PCs able to facilitate their translocation to the lysosomes. This results in a recovery of their catalytic activity. No PC for the GCase enzyme (lysosomal acid-β-glucosidase, or glucocerebrosidase) has reached the market yet, despite the importance of this enzyme not only for Gaucher disease, the most common LSD, but also for neurological disorders, such as Parkinson’s disease. This review aims to describe the efforts made by the scientific community in the last 7 years (since 2015) in order to identify new PCs for the GCase enzyme, which have been mainly identified among glycomimetic-based compounds.
Collapse
|
6
|
Clemente F, Martínez-Bailén M, Matassini C, Morrone A, Falliano S, Caciotti A, Paoli P, Goti A, Cardona F. Synthesis of a New β-Galactosidase Inhibitor Displaying Pharmacological Chaperone Properties for GM1 Gangliosidosis. Molecules 2022; 27:molecules27134008. [PMID: 35807262 PMCID: PMC9268699 DOI: 10.3390/molecules27134008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022] Open
Abstract
GM1 gangliosidosis is a rare lysosomal disease caused by the deficiency of the enzyme β-galactosidase (β-Gal; GLB1; E.C. 3.2.1.23), responsible for the hydrolysis of terminal β-galactosyl residues from GM1 ganglioside, glycoproteins, and glycosaminoglycans, such as keratan-sulfate. With the aim of identifying new pharmacological chaperones for GM1 gangliosidosis, the synthesis of five new trihydroxypiperidine iminosugars is reported in this work. The target compounds feature a pentyl alkyl chain in different positions of the piperidine ring and different absolute configurations of the alkyl chain at C-2 and the hydroxy group at C-3. The organometallic addition of a Grignard reagent onto a carbohydrate-derived nitrone in the presence or absence of a suitable Lewis Acid was exploited, providing structural diversity at C-2, followed by the ring-closure reductive amination step. An oxidation-reduction process allowed access to a different configuration at C-3. The N-pentyl trihydroxypiperidine iminosugar was also synthesized for the purpose of comparison. The biological evaluation of the newly synthesized compounds was performed on leucocyte extracts from healthy donors and identified two suitable β-Gal inhibitors, namely compounds 10 and 12. Among these, compound 12 showed chaperoning properties since it enhanced β-Gal activity by 40% when tested on GM1 patients bearing the p.Ile51Asn/p.Arg201His mutations.
Collapse
Affiliation(s)
- Francesca Clemente
- Dipartimento di Chimica “Ugo Schiff” (DICUS), Università di Firenze, Via Della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy; (M.M.-B.); (C.M.); (A.G.)
- Correspondence: (F.C.); (F.C.); Tel.: +39-055-4573453 (F.C.); +39-055-4573504 (F.C.)
| | - Macarena Martínez-Bailén
- Dipartimento di Chimica “Ugo Schiff” (DICUS), Università di Firenze, Via Della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy; (M.M.-B.); (C.M.); (A.G.)
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC—Universidad de Sevilla, Av. Américo Vespucio 49, 41092 Sevilla, Spain
| | - Camilla Matassini
- Dipartimento di Chimica “Ugo Schiff” (DICUS), Università di Firenze, Via Della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy; (M.M.-B.); (C.M.); (A.G.)
| | - Amelia Morrone
- Department of Neurosciences, Pharmacology and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini n. 24, 50139 Firenze, Italy;
- Laboratory of Molecular Biology of Neurometabolic Diseases, Neuroscience Department, Meyer Children’s Hospital, Viale Pieraccini n. 24, 50139 Firenze, Italy; (S.F.); (A.C.)
| | - Silvia Falliano
- Laboratory of Molecular Biology of Neurometabolic Diseases, Neuroscience Department, Meyer Children’s Hospital, Viale Pieraccini n. 24, 50139 Firenze, Italy; (S.F.); (A.C.)
| | - Anna Caciotti
- Laboratory of Molecular Biology of Neurometabolic Diseases, Neuroscience Department, Meyer Children’s Hospital, Viale Pieraccini n. 24, 50139 Firenze, Italy; (S.F.); (A.C.)
| | - Paolo Paoli
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche “Mario Serio” (DSBSC), University of Florence, Viale Morgagni 50, 50134 Florence, Italy;
| | - Andrea Goti
- Dipartimento di Chimica “Ugo Schiff” (DICUS), Università di Firenze, Via Della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy; (M.M.-B.); (C.M.); (A.G.)
| | - Francesca Cardona
- Dipartimento di Chimica “Ugo Schiff” (DICUS), Università di Firenze, Via Della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy; (M.M.-B.); (C.M.); (A.G.)
- Correspondence: (F.C.); (F.C.); Tel.: +39-055-4573453 (F.C.); +39-055-4573504 (F.C.)
| |
Collapse
|
7
|
Vanni C, Clemente F, Paoli P, Morrone A, Matassini C, Goti A, Cardona F. 3,4,5-Trihydroxypiperidine based multivalent glucocerebrosidase (GCase) enhancers. Chembiochem 2022; 23:e202200077. [PMID: 35322924 PMCID: PMC9400994 DOI: 10.1002/cbic.202200077] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/21/2022] [Indexed: 11/28/2022]
Abstract
The synthesis of five new multivalent derivatives of a trihydroxypiperidine iminosugar was accomplished through copper catalyzed alkyne‐azide cycloaddition (CuAAC) reaction of an azido ending piperidine and several propargylated scaffolds. The resulting multivalent architectures were assayed as inhibitors of lysosomal GCase, the defective enzyme in Gaucher disease. The multivalent compounds resulted in much more potent inhibitors than a parent monovalent reference compound, thus showing a good multivalent effect. Biological investigation of these compounds as pharmacological chaperones revealed that the trivalent derivative (12) gives a 2‐fold recovery of the GCase activity on Gaucher patient fibroblasts bearing the L444P/L444P mutations responsible for neuropathies. Additionally, a thermal denaturation experiment showed its ability to impart stability to the recombinant enzyme used in therapy.
Collapse
Affiliation(s)
- Costanza Vanni
- University of Florence: Universita degli Studi di Firenze, Department of Chemistry "Ugo Schiff", ITALY
| | - Francesca Clemente
- University of Florence: Universita degli Studi di Firenze, Department of Chemistry "Ugo Schiff", ITALY
| | - Paolo Paoli
- University of Florence: Universita degli Studi di Firenze, Department of Chemistry "Ugo Schiff", ITALY
| | - Amelia Morrone
- University of Florence: Universita degli Studi di Firenze, NEUROFARBA, ITALY
| | - Camilla Matassini
- University of Florence: Universita degli Studi di Firenze, Department of Chemistry "Ugo Schiff", ITALY
| | - Andrea Goti
- University of Florence: Universita degli Studi di Firenze, Department of Chemistry "Ugo Schiff", ITALY
| | - Francesca Cardona
- Università di Firenze, Dipartimento di Chimica, Via della Lastruccia 13, 50019, Sesto Fiorentino, ITALY
| |
Collapse
|
8
|
Davighi MG, Clemente F, Matassini C, Cardona F, Nielsen MB, Goti A, Morrone A, Paoli P, Cacciarini M. Photoswitchable inhibitors of human β-glucocerebrosidase. Org Biomol Chem 2022; 20:1637-1641. [PMID: 35107482 DOI: 10.1039/d1ob02159a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Light-switchable inhibitors of the enzyme β-glucocerebrosidase (GCase) have been developed by anchoring a specific azasugar to a dihydroazulene or an azobenzene responsive moiety. Their inhibitory effect towards human GCase, before and after irradiation are reported, and the effect on thermal denaturation of recombinant GCase and cytotoxicity were studied on selected candidates.
Collapse
Affiliation(s)
- Maria Giulia Davighi
- Department of Chemistry "U. Schiff", University of Florence, via della Lastruccia 3-13, 50019 Sesto F.no (FI), Italy.
| | - Francesca Clemente
- Department of Chemistry "U. Schiff", University of Florence, via della Lastruccia 3-13, 50019 Sesto F.no (FI), Italy.
| | - Camilla Matassini
- Department of Chemistry "U. Schiff", University of Florence, via della Lastruccia 3-13, 50019 Sesto F.no (FI), Italy.
| | - Francesca Cardona
- Department of Chemistry "U. Schiff", University of Florence, via della Lastruccia 3-13, 50019 Sesto F.no (FI), Italy. .,Associated with LENS, via N. Carrara 1, 50019 Sesto F.no (FI), Italy
| | - Mogens Brøndsted Nielsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Andrea Goti
- Department of Chemistry "U. Schiff", University of Florence, via della Lastruccia 3-13, 50019 Sesto F.no (FI), Italy. .,Associated with LENS, via N. Carrara 1, 50019 Sesto F.no (FI), Italy
| | - Amelia Morrone
- Paediatric Neurology Unit and Laboratories, Neuroscience Department, Meyer Children's Hospital, and Department of Neurosciences, Pharmacology and Child Health. University of Florence, Viale Pieraccini 24, 50139 Firenze, Italy
| | - Paolo Paoli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Firenze, Italy
| | - Martina Cacciarini
- Department of Chemistry "U. Schiff", University of Florence, via della Lastruccia 3-13, 50019 Sesto F.no (FI), Italy.
| |
Collapse
|
9
|
Clemente F, Matassini C, Giachetti S, Goti A, Morrone A, Martínez-Bailén M, Orta S, Merino P, Cardona F. Piperidine Azasugars Bearing Lipophilic Chains: Stereoselective Synthesis and Biological Activity as Inhibitors of Glucocerebrosidase (GCase). J Org Chem 2021; 86:12745-12761. [PMID: 34469155 PMCID: PMC8453635 DOI: 10.1021/acs.joc.1c01308] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
We report a straightforward
synthetic strategy for the preparation
of trihydroxypiperidine azasugars decorated with lipophilic chains
at both the nitrogen and the adjacent carbon as potential inhibitors
of the lysosomal enzyme glucocerebrosidase (GCase), which is involved
in Gaucher disease. The procedure relies on the preparation of C-erythrosyl N-alkylated nitrones 10 through reaction of aldehyde 8 and primary
amines 13 followed by oxidation of the imines formed in situ with the methyltrioxorhenium catalyst and urea hydrogen
peroxide. The addition of octylMgBr to nitrone 10e provided
access to both epimeric hydroxylamines 21 and 22 with opposite configuration at the newly created stereocenter in
a stereodivergent and completely stereoselective way, depending on
the absence or presence of BF3·Et2O. Final
reductive amination and acetonide deprotection provided compounds 14 and 15 from low-cost d-mannose in
remarkable 43 and 32% overall yields, respectively, over eight steps.
The C-2 R-configured bis-alkylated trihydroxypiperidine 15 was the best ligand for GCase (IC50 = 15 μM),
in agreement with MD simulations that allowed us to identify the chair
conformation corresponding to the best binding affinity.
Collapse
Affiliation(s)
- Francesca Clemente
- Dipartimento di Chimica "Ugo Schiff" (DICUS), University of Firenze, Via Della Lastruccia 3-13, 50019 Sesto Fiorentino (FI), Italy
| | - Camilla Matassini
- Dipartimento di Chimica "Ugo Schiff" (DICUS), University of Firenze, Via Della Lastruccia 3-13, 50019 Sesto Fiorentino (FI), Italy
| | - Sara Giachetti
- Dipartimento di Chimica "Ugo Schiff" (DICUS), University of Firenze, Via Della Lastruccia 3-13, 50019 Sesto Fiorentino (FI), Italy
| | - Andrea Goti
- Dipartimento di Chimica "Ugo Schiff" (DICUS), University of Firenze, Via Della Lastruccia 3-13, 50019 Sesto Fiorentino (FI), Italy
| | - Amelia Morrone
- Paediatric Neurology Unit and Laboratories, Neuroscience Department, Meyer Children's Hospital, and Department of Neurosciences, Pharmacology and Child Health, University of Florence, Viale Pieraccini n. 24, 50139 Firenze, Italy
| | - Macarena Martínez-Bailén
- Dipartimento di Chimica "Ugo Schiff" (DICUS), University of Firenze, Via Della Lastruccia 3-13, 50019 Sesto Fiorentino (FI), Italy.,Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, c/ Prof. García González 1, E-41012 Sevilla, Spain
| | - Sara Orta
- Unidad de Glicobiología, Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Pedro Merino
- Unidad de Glicobiología, Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Francesca Cardona
- Dipartimento di Chimica "Ugo Schiff" (DICUS), University of Firenze, Via Della Lastruccia 3-13, 50019 Sesto Fiorentino (FI), Italy
| |
Collapse
|
10
|
Ahuja-Casarín AI, Merino-Montiel P, Vega-Baez JL, Montiel-Smith S, Fernandes MX, Lagunes I, Maya I, Padrón JM, López Ó, Fernández-Bolaños JG. Tuning the activity of iminosugars: novel N-alkylated deoxynojirimycin derivatives as strong BuChE inhibitors. J Enzyme Inhib Med Chem 2021; 36:138-146. [PMID: 33228403 PMCID: PMC7717699 DOI: 10.1080/14756366.2020.1847101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We have designed unprecedented cholinesterase inhibitors based on 1-deoxynojirimycin as potential anti-Alzheimer’s agents. Compounds are comprised of three key structural motifs: the iminosugar, for interaction with cholinesterase catalytic anionic site (CAS); a hydrocarbon tether with variable lengths, and a fragment derived from 2-phenylethanol for promoting interactions with peripheral anionic site (PAS). Title compounds exhibited good selectivity towards BuChE, strongly depending on the substitution pattern and the length of the tether. The lead compounds were found to be strong mixed inhibitors of BuChE (IC50 = 1.8 and 1.9 µM). The presumptive binding mode of the lead compound was analysed using molecular docking simulations, revealing H-bond interactions with the catalytic subsite (His438) and CAS (Trp82 and Glu197) and van der Waals interactions with PAS (Thr284, Pro285, Asn289). They also lacked significant antiproliferative activity against tumour and non-tumour cells at 100 µM, making them promising new agents for tackling Alzheimer’s disease through the cholinergic approach.
Collapse
Affiliation(s)
- Ana I Ahuja-Casarín
- Facultad de Ciencias Químicas, Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Penélope Merino-Montiel
- Facultad de Ciencias Químicas, Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - José Luis Vega-Baez
- Facultad de Ciencias Químicas, Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Sara Montiel-Smith
- Facultad de Ciencias Químicas, Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Miguel X Fernandes
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Universidad de La Laguna, La Laguna, Spain
| | - Irene Lagunes
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Universidad de La Laguna, La Laguna, Spain
| | - Inés Maya
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Seville, Spain
| | - José M Padrón
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Universidad de La Laguna, La Laguna, Spain
| | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Seville, Spain
| | | |
Collapse
|
11
|
Pratesi D, Sodini A, Matassini C, Cardona F, Angeli A, Carta F, Ferraroni M, Supuran CT, Goti A. Synthesis of Azasugar–Sulfonamide conjugates and their Evaluation as Inhibitors of Carbonic Anhydrases: the Azasugar Approach to Selectivity. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Debora Pratesi
- Dipartimento di Chimica “Ugo Schiff” Università degli Studi di Firenze Via della Lastruccia 3–13 50019 Sesto Fiorentino FI Italy
| | - Andrea Sodini
- Dipartimento di Chimica “Ugo Schiff” Università degli Studi di Firenze Via della Lastruccia 3–13 50019 Sesto Fiorentino FI Italy
| | - Camilla Matassini
- Dipartimento di Chimica “Ugo Schiff” Università degli Studi di Firenze Via della Lastruccia 3–13 50019 Sesto Fiorentino FI Italy
- associated with LENS Via N. Carrara 1 50019 Sesto Fiorentino FI Italy
| | - Francesca Cardona
- Dipartimento di Chimica “Ugo Schiff” Università degli Studi di Firenze Via della Lastruccia 3–13 50019 Sesto Fiorentino FI Italy
- associated with LENS Via N. Carrara 1 50019 Sesto Fiorentino FI Italy
- associated with Consorzio Interuniversitario Nazionale di Ricerca in Metodologie e Processi Innovativi di Sintesi (CINMPIS) 70100 Bari Italy
| | - Andrea Angeli
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche Università degli Studi di Firenze Via U. Schiff 6 50019 Sesto Fiorentino FI Italy
| | - Fabrizio Carta
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche Università degli Studi di Firenze Via U. Schiff 6 50019 Sesto Fiorentino FI Italy
| | - Marta Ferraroni
- Dipartimento di Chimica “Ugo Schiff” Università degli Studi di Firenze Via della Lastruccia 3–13 50019 Sesto Fiorentino FI Italy
| | - Claudiu T. Supuran
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche Università degli Studi di Firenze Via U. Schiff 6 50019 Sesto Fiorentino FI Italy
| | - Andrea Goti
- Dipartimento di Chimica “Ugo Schiff” Università degli Studi di Firenze Via della Lastruccia 3–13 50019 Sesto Fiorentino FI Italy
- associated with LENS Via N. Carrara 1 50019 Sesto Fiorentino FI Italy
- associated with Consorzio Interuniversitario Nazionale di Ricerca in Metodologie e Processi Innovativi di Sintesi (CINMPIS) 70100 Bari Italy
| |
Collapse
|
12
|
Mirabella S, Petrucci G, Faggi C, Matassini C, Cardona F, Goti A. Allyl Cyanate/Isocyanate Rearrangement in Glycals: Stereoselective Synthesis of 1-Amino and Diamino Sugar Derivatives. Org Lett 2020; 22:9041-9046. [PMID: 33147974 PMCID: PMC7735751 DOI: 10.1021/acs.orglett.0c03438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The [3,3]-sigmatropic allyl cyanate/isocyanate rearrangement of glycals in the presence of O-, N-, and C-nucleophiles afforded β-N-glucosyl and galactosyl carbamates, ureas, and amides in good yields. The unsaturated products were elaborated to N-glycosides by dihydroxylation, to 1,3-diaminosugars by tethered aminohydroxylation, or to 1,2-diaminosugars by iteration of the sigmatropic rearrangement. This metal-free methodology represents an excellent and general method for the stereoselective synthesis of N-glycosides and diamino sugars with complete transmission of stereochemical information.
Collapse
Affiliation(s)
- Stefania Mirabella
- Dipartimento di Chimica "Ugo Schiff", Università di Firenze, via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy
| | - Giulia Petrucci
- Dipartimento di Chimica "Ugo Schiff", Università di Firenze, via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy
| | - Cristina Faggi
- Dipartimento di Chimica "Ugo Schiff", Università di Firenze, via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy
| | - Camilla Matassini
- Dipartimento di Chimica "Ugo Schiff", Università di Firenze, via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy
| | - Francesca Cardona
- Dipartimento di Chimica "Ugo Schiff", Università di Firenze, via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy
| | - Andrea Goti
- Dipartimento di Chimica "Ugo Schiff", Università di Firenze, via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy
| |
Collapse
|
13
|
Synthesis of " All-Cis" Trihydroxypiperidines from a Carbohydrate-Derived Ketone: Hints for the Design of New β-Gal and GCase Inhibitors. Molecules 2020; 25:molecules25194526. [PMID: 33023214 PMCID: PMC7582770 DOI: 10.3390/molecules25194526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/18/2020] [Accepted: 09/30/2020] [Indexed: 12/02/2022] Open
Abstract
Pharmacological chaperones (PCs) are small compounds able to rescue the activity of mutated lysosomal enzymes when used at subinhibitory concentrations. Nitrogen-containing glycomimetics such as aza- or iminosugars are known to behave as PCs for lysosomal storage disorders (LSDs). As part of our research into lysosomal sphingolipidoses inhibitors and looking in particular for new β-galactosidase inhibitors, we report the synthesis of a series of alkylated azasugars with a relative “all-cis” configuration at the hydroxy/amine-substituted stereocenters. The novel compounds were synthesized from a common carbohydrate-derived piperidinone intermediate 8, through reductive amination or alkylation of the derived alcohol. In addition, the reaction of ketone 8 with several lithium acetylides allowed the stereoselective synthesis of new azasugars alkylated at C-3. The activity of the new compounds towards lysosomal β-galactosidase was negligible, showing that the presence of an alkyl chain in this position is detrimental to inhibitory activity. Interestingly, 9, 10, and 12 behave as good inhibitors of lysosomal β-glucosidase (GCase) (IC50 = 12, 6.4, and 60 µM, respectively). When tested on cell lines bearing the Gaucher mutation, they did not impart any enzyme rescue. However, altogether, the data included in this work give interesting hints for the design of novel inhibitors.
Collapse
|