1
|
Janeiro AM, González-Bakker A, Padrón JM, Marques CS. Accessing Promising Passerini Adducts in Anticancer Drug Design. Molecules 2024; 29:5538. [PMID: 39683703 DOI: 10.3390/molecules29235538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
The 3-component Passerini reaction (3CPR), discovered little more than 100 years ago, has been demonstrated in the last few decades to be a valuable tool for accessing structural diversity and complexity, essential topics to consider in drug discovery programs. Focusing on accessing a fine-tuned family of α-acyloxyamide-oxindole hybrids, we underline herein our latest insights regarding the use of this mild reaction approach to obtain promising anticancer agents. Cheap and commercially available isatin was used as starting material. The library of α-acyloxyamide-oxindole hybrids was tested against six human solid-tumor cell lines; among them, non-small cell lung carcinoma, cervical and colon adenocarcinoma, and breast and pancreas cancer. The most potent compound displayed GI50 values in the range of 1.3-21 µM.
Collapse
Affiliation(s)
- Ana Margarida Janeiro
- Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Aday González-Bakker
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO-AG), Universidad de La Laguna, P.O. Box 456, 38200 La Laguna, Spain
| | - José M Padrón
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO-AG), Universidad de La Laguna, P.O. Box 456, 38200 La Laguna, Spain
| | - Carolina S Marques
- LAQV-REQUIMTE, Institute for Research and Advanced Studies, University of Évora, Rua Romão Ramalho, 59, 7000-641 Évora, Portugal
| |
Collapse
|
2
|
Gastalho CM, Sena AM, López Ó, Fernández-Bolaños JG, García-Sosa AT, Pereira F, Antunes CM, Costa AR, Burke AJ, Carreiro EP. Assessing the Potential of 1,2,3-Triazole-Dihydropyrimidinone Hybrids Against Cholinesterases: In Silico, In Vitro, and In Vivo Studies. Int J Mol Sci 2024; 25:11153. [PMID: 39456935 PMCID: PMC11508620 DOI: 10.3390/ijms252011153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/08/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
Combining the pharmacological properties of the 1,2,3-triazole and dihydropyrimidinone classes of compounds, two small families of mono- and di(1,2,3-triazole)-dihydropyrimidinone hybrids, A and B, were previously synthesized. The main objective of this work was to investigate the potential anti-Alzheimer effects of these hybrids. The inhibitory activities of cholinesterases (AChE and BuChE), antioxidant activity, and the inhibitory mechanism through in silico (molecular docking) and in solution (STD-NMR) experiments were evaluated. The 1,2,3-triazole-dihydropyrimidinone hybrids (A and B) showed moderate in vitro inhibitory activity on eqBuChE (IC50 values between 1 and 58.4 μM). The best inhibitor was the hybrid B4, featuring two 1,2,3-triazole cores, which exhibited stronger inhibition than galantamine, with an IC50 of 1 ± 0.1 μM for eqBuChE, through a mixed inhibition mechanism. Among the hybrids A, the most promising inhibitor was A1, exhibiting an IC50 of 12 ± 2 µM, similar to that of galantamine. Molecular docking and STD-NMR experiments revealed the key binding interactions of these promising inhibitors with BuChE. Hybrids A and B did not display Artemia salina toxicity below 100 μM.
Collapse
Affiliation(s)
- Carlos M. Gastalho
- LAQV-REQUIMTE, Institute for Research and Advanced Training (IIFA), University of Évora, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal; (C.M.G.); (A.J.B.)
- Institute of Earth Sciences, Institute of Research and Advanced Training, University of Évora, 7000-671 Évora, Portugal; (C.M.A.); (A.R.C.)
- Academic Clinical Center of Alentejo, C-TRAIL, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal
| | - Ana M. Sena
- Department of Chemistry and Biochemistry, School of Sciences and Technologies, University of Évora, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal;
| | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain; (Ó.L.); (J.G.F.-B.)
| | - José G. Fernández-Bolaños
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain; (Ó.L.); (J.G.F.-B.)
| | | | - Florbela Pereira
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal;
| | - Célia M. Antunes
- Institute of Earth Sciences, Institute of Research and Advanced Training, University of Évora, 7000-671 Évora, Portugal; (C.M.A.); (A.R.C.)
- Academic Clinical Center of Alentejo, C-TRAIL, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal
- Department of Medical and Health Sciences, School of Health and Human Development, University of Évora, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal
| | - Ana R. Costa
- Institute of Earth Sciences, Institute of Research and Advanced Training, University of Évora, 7000-671 Évora, Portugal; (C.M.A.); (A.R.C.)
- Academic Clinical Center of Alentejo, C-TRAIL, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal
- Department of Medical and Health Sciences, School of Health and Human Development, University of Évora, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal
| | - Anthony J. Burke
- LAQV-REQUIMTE, Institute for Research and Advanced Training (IIFA), University of Évora, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal; (C.M.G.); (A.J.B.)
- Faculty Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Departamento de Química, Coimbra Chemistry Centre-Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal
- Center for Neurosciences and Cellular Biology (CNC), Polo I, Universidade de Coimbra Rua Larga Faculdade de Medicina, Polo I, 1ºandar, 3004-504 Coimbra, Portugal
| | - Elisabete P. Carreiro
- LAQV-REQUIMTE, Institute for Research and Advanced Training (IIFA), University of Évora, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal; (C.M.G.); (A.J.B.)
| |
Collapse
|
3
|
Sofela SO, Ibrahim A, Ogbodo UC, Bodun DS, Nwankwo DO, Mafimisebi M, Abdulrasheed B, Balogun T, Opeyemi I. Computational identification of potential acetylcholinesterase (AChE) and monoamine oxidase-B inhibitors from Vitis vinifera: a case study of Alzheimer's disease (AD). In Silico Pharmacol 2024; 12:49. [PMID: 38828442 PMCID: PMC11143168 DOI: 10.1007/s40203-024-00214-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 04/17/2024] [Indexed: 06/05/2024] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease that affects people aged 60 years and above. Yet, the discovery of potent therapeutic agents against this disease has no utmost progress and a number of drug candidates could not make it out of the clinical trials at varied stages. At the same time, the currently available anti-cholinesterase (AChE) and monoamine oxidase-B (MAO-B) for the treatment of AD can only improve the clinical symptoms while the recently approved immunotherapy agent "remains questionable. Thus, the need for novel therapeutic agents with the potential to treat the aetiology of the disease. Herein, this study sought to examine the potential of a number of bioactive compounds derived from Vitis vinifera as a promising agent against AChE and MAO-B. Using a computational approach via molecular docking 23 bioactive agents were screened against AChE and MAO-B, and the compounds with a binding score below that of the standard ligand were further subjected to drug-likeness and pharmacokinetic screening. Eight and thirteen of the studied agents optimally saturated the active pocket of the AChE and MAO-B respectively, forming principal interactions with a number of amino acids at the active pocket of the targets and among these compounds only rutin failed the drug-likeness test by violating four parameters while all showed moderate pharmacokinetics features. A number of Vitis vinifera-derived bioactive compounds show excellent inhibitory potential against AChE and MAO-B, and moderate pharmacokinetic features when compared to the reference ligand (tacrine). These compounds are therefore proposed as novel AChE and MAO-B inhibitors for the treatment of AD and wet-lab analysis is necessary to affirm their potency.
Collapse
Affiliation(s)
| | - Abdulwasiu Ibrahim
- Department of Biochemistry and Molecular Biology, Usmanu Danfodiyo University, Sokoto, Nigeria
- Kwara Emerging Scholars Forum, Ilorin, Kwara State Nigeria
| | - Uchechukwu C. Ogbodo
- Department of Applied Biochemistry, Faculty of Biosciences, Nnamadi Azikiwe University, Awka, Nigeria
| | - Damilola S. Bodun
- Department of Biochemistry, Adekunle Ajasin University Akungba Akoko, Akungba Akoko, Nigeria
| | - Daniel O. Nwankwo
- Department of Biochemistry, Adekunle Ajasin University Akungba Akoko, Akungba Akoko, Nigeria
| | - Mojirade Mafimisebi
- Department of Chemistry, Adekunle Ajasin University Akungba Akoko, Akungba Akoko, Nigeria
| | - Buhari Abdulrasheed
- Department of Veterinary Pharmacology, Faculty of Veterinary Medicine, University of Ilorin, Ilorin, Nigeria
| | - Toheeb Balogun
- Department of Biochemistry, Adekunle Ajasin University Akungba Akoko, Akungba Akoko, Nigeria
| | - Isaac Opeyemi
- Department of Chemistry, Adekunle Ajasin University Akungba Akoko, Akungba Akoko, Nigeria
| |
Collapse
|
4
|
Marques CS, González-Bakker A, Padrón JM. The Ugi4CR as effective tool to access promising anticancer isatin-based α-acetamide carboxamide oxindole hybrids. Beilstein J Org Chem 2024; 20:1213-1220. [PMID: 38887573 PMCID: PMC11181168 DOI: 10.3762/bjoc.20.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/13/2024] [Indexed: 06/20/2024] Open
Abstract
Considering early-stage drug discovery programs, the Ugi four-component reaction is a valuable, flexible, and pivotal tool, facilitating the creation of two new amide bonds in a one-pot fashion to effectively yield the desired α-aminoacylamides. Here, we highlight the reputation of this reaction approach to access number and scaffold diversity of a library of isatin-based α-acetamide carboxamide oxindole hybrids, promising anticancer agents, in a mild and fast sustainable reaction process. The library was tested against six human solid tumor cell lines, among them, non-small cell lung carcinoma, cervical adenocarcinoma, breast cancer and colon adenocarcinoma. The most potent compounds 8d, 8h and 8k showed GI50 values in the range of 1-10 μM.
Collapse
Affiliation(s)
- Carolina S Marques
- LAQV-REQUIMTE, University of Évora, Institute for Research and Advanced Studies, Rua Romão Ramalho, 59, 7000-641, Évora, Portugal
| | - Aday González-Bakker
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO-AG), Universidad de La Laguna, PO Box 456, 38200, La Laguna, Spain
| | - José M Padrón
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO-AG), Universidad de La Laguna, PO Box 456, 38200, La Laguna, Spain
| |
Collapse
|
5
|
Rohila Y, Sebastian S, Ansari A, Kumar D, Mishra DK, Gupta MK. A Comprehensive Review of the Diverse Spectrum Activity of 1,2,3-Triazole-linked Isatin Hybrids. Chem Biodivers 2024; 21:e202301612. [PMID: 38332679 DOI: 10.1002/cbdv.202301612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/24/2024] [Accepted: 02/08/2024] [Indexed: 02/10/2024]
Abstract
Heterocyclic compounds containing 1,2,3-triazole and isatin as core structures have emerged as promising drug candidates due to their diverse biological activities such as anti-cancer, antifungal, antimicrobial, antitumor, anti-epileptic, antiviral, and more. The presence of 1,2,3-triazoles and isatin heterocycles in these hybrids, both individually known for their medicinal significance, has increasingly piqued the interest of drug discovery researchers, as they seek to delve deeper into their extensive pharmacological potential for enhancing therapeutic efficacy. Moreover, these hybrid compounds are synthetically accessible using readily available materials. Therefore, there is a pressing need to provide a comprehensive overview of the existing knowledge in this field, offering valuable insights to readers and paving the way for the discovery of novel 1,2,3-triazole-linked isatin hybrids with therapeutic potential.
Collapse
Affiliation(s)
- Yajat Rohila
- Department of Chemistry, School of Basic Sciences, Department of Chemistry, Central University of Haryana. Mahendergarh-123031, Haryana, India
| | - Sharol Sebastian
- Department of Chemistry, School of Basic Sciences, Department of Chemistry, Central University of Haryana. Mahendergarh-123031, Haryana, India
| | - Azaj Ansari
- Department of Chemistry, School of Basic Sciences, Department of Chemistry, Central University of Haryana. Mahendergarh-123031, Haryana, India
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, 173229, Himachal Pradesh, India
| | - D K Mishra
- Department of Chemistry, Shri Ramswaroop Memorial College of Engineering & Management, Lucknow, 226028, Uttar Pradesh, India
| | - Manoj K Gupta
- Department of Chemistry, School of Basic Sciences, Department of Chemistry, Central University of Haryana. Mahendergarh-123031, Haryana, India
| |
Collapse
|
6
|
Almaz Z. Investigation of biological activities of various 1,2,3-triazole compounds: Their effects on cholinesterase enzymes, determination of antioxidant capacity and antimicrobial activity. J Biochem Mol Toxicol 2023; 37:e23277. [PMID: 36514839 DOI: 10.1002/jbt.23277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 09/14/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022]
Abstract
1,2,3-triazoles are pharmaceutically significant compounds that have attracted recent interest from medicinal chemists because of their important biological activities. Addressed herein, some 1,2,3-triazoles were synthesized to investigate the inhibitory activities against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes, antioxidant capacity, and antimicrobial effect. The antioxidant profile of 1,2,3-triazoles determined by varied bioanalytical antioxidant methods, including 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS.+ ), 1,1-diphenyl-2-picrylhydrazil (DPPH·), cupric ion (Cu2+ ) and ferric ion (Fe3+ ) ascorbic acid, butylated hydroxyanisole (BHA), and butylated hydroxytoluene (BHT) were used as the standard compounds. In addition, the antibacterial and antifungal activities of these compounds were investigated against seven bacteria and three fungal species using the hollow agar method. As a result of these studies, it was determined that compound 4 showed the best antimicrobial activity and antioxidant activity close to the standards. Inhibitory effects and kinetic studies of these molecules on cholinesterase enzymes were performed. According to the results obtained, compound 4 showed stronger AChE inhibition and compound 3 stronger BChE inhibition compared to other compounds. In kinetic studies, it was found that AChE showed noncompetitive inhibition by compound 4, and BChE showed competitive inhibition by compound 3.
Collapse
Affiliation(s)
- Züleyha Almaz
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Mus Alparslan University, Mus, Turkey
| |
Collapse
|
7
|
Gulati HK, Kumar N, Sharma A, Jyoti, Khanna A, Sharma S, Salwan R, Bedi PMS. A comprehensive review on Triazole based Conjugates as Acetylcholinesterase Inhibitors: Design Strategies, Synthesis, Biological Activity, Structure Activity Relationships, Molecular Docking Studies. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
8
|
Khan SA, Akhtar MJ, Gogoi U, Meenakshi DU, Das A. An Overview of 1,2,3-triazole-Containing Hybrids and Their Potential Anticholinesterase Activities. Pharmaceuticals (Basel) 2023; 16:179. [PMID: 37259329 PMCID: PMC9961747 DOI: 10.3390/ph16020179] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/18/2023] [Accepted: 01/22/2023] [Indexed: 07/30/2023] Open
Abstract
Acetylcholine (ACh) neurotransmitter of the cholinergic system in the brain is involved in learning, memory, stress responses, and cognitive functioning. It is hydrolyzed into choline and acetic acid by two key cholinesterase enzymes, viz., acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). A loss or degeneration of cholinergic neurons that leads to a reduction in ACh levels is considered a significant contributing factor in the development of neurodegenerative diseases (NDs) such as Alzheimer's disease (AD). Numerous studies have shown that cholinesterase inhibitors can raise the level of ACh and, therefore, enhance people's quality of life, and, at the very least, it can temporarily lessen the symptoms of NDs. 1,2,3-triazole, a five-membered heterocyclic ring, is a privileged moiety, that is, a central scaffold, and is capable of interacting with a variety of receptors and enzymes to exhibit a broad range of important biological activities. Recently, it has been clubbed with other pharmacophoric fragments/molecules in hope of obtaining potent and selective AChE and/or BuChE inhibitors. The present updated review succinctly summarizes the different synthetic strategies used to synthesize the 1,2,3-triazole moiety. It also highlights the anticholinesterase potential of various 1,2,3-triazole di/trihybrids reported in the past seven years (2015-2022), including a rationale for hybridization and with an emphasis on their structural features for the development and optimization of cholinesterase inhibitors to treat NDs.
Collapse
Affiliation(s)
- Shah Alam Khan
- College of Pharmacy, National University of Science and Technology, Muscat 130, Oman
| | | | - Urvashee Gogoi
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh 786004, India
| | | | - Aparoop Das
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh 786004, India
| |
Collapse
|
9
|
Reiland KM, Eckroat TJ. Selective butyrylcholinesterase inhibition by isatin dimers and 3-indolyl-3-hydroxy-2-oxindole dimers. Bioorg Med Chem Lett 2022; 77:129037. [DOI: 10.1016/j.bmcl.2022.129037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/06/2022] [Accepted: 10/19/2022] [Indexed: 11/30/2022]
|
10
|
A series of 1,2,3-triazole compounds: Synthesis, characterization, and investigation of the cholinesterase inhibitory properties via in vitro and in silico studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
El-Qaliei MI, Mousa SA, Mahross M, Hassane A, Gad-Elkareem MA, Anouar EH, Snoussi M, Aouadi K, Kadri A. Novel (2-Oxoindolin-3-ylidene)methyl)-1H-pyrazole and their fused derivatives: Design, synthesis, antimicrobial evaluation, DFT, chemical approach, in silico ADME and molecular docking studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
12
|
Busto N, Leitão-Castro J, García-Sosa AT, Cadete F, Marques CS, Freitas R, Burke AJ. N-1,2,3-Triazole-isatin derivatives: anti-proliferation effects and target identification in solid tumour cell lines. RSC Med Chem 2022; 13:970-977. [PMID: 36092141 PMCID: PMC9384811 DOI: 10.1039/d2md00044j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/30/2022] [Indexed: 09/01/2023] Open
Abstract
Molecular hybridization approaches have become an important strategy in medicinal chemistry, and to this end, we have developed a series of novel N-1,2,3-triazole-isatin hybrids that are promising as tumour anti-proliferative agents. Our isatin hybrids presented high cytotoxic activity against colon cancer cell line SW480, lung adenocarcinoma cell line A549, as well as breast cancer cell lines MCF7 and MDA-MB-231. All tested compounds demonstrated better anti-proliferation (to 1-order of magnitude) than the cis-platin (CDDP) benchmark. In order to explore potential biological targets for these compounds, we used information from previous screenings and identified as putative targets the histone acetyltransferase P-300 (EP300) and the acyl-protein thioesterase 2 (LYPLA2), both known to be involved in epigenetic regulation. Advantageous pharmacological properties were predicted for these compounds such as good total surface area of binding to aromatic and hydrophobic units in the enzyme active site. In addition, we found down-regulation of LYPLA2 and EP300 in both the MCF7 and MDA-MB-231 breast cancer cells treated with our inhibitors, but no significant effect was detected in normal breast cells MCF10A. We also observed upregulation of EP300 mRNA expression in the MCF10A cell line for some of these compounds and the same effect for LYPLA2 mRNA in MCF7 for one of our compounds. These results suggest an effect at the transcriptional regulation level and associated with oncological contexts.
Collapse
Affiliation(s)
- Natalia Busto
- Departamento de Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad de Burgos Paseo de los Comendadores, s/n 09001 Burgos Spain
| | - Joana Leitão-Castro
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto Rua Alfredo Allen, 208 4200-135 Porto Portugal
| | | | - Francisco Cadete
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto Rua Alfredo Allen, 208 4200-135 Porto Portugal
| | - Carolina S Marques
- LAQV-REQUIMTE, Institute for Research and Advanced Studies, University of Évora Rua Romão Ramalho, 59 7000-671 Évora Portugal
| | - Renata Freitas
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto Rua Alfredo Allen, 208 4200-135 Porto Portugal
| | - Anthony J Burke
- LAQV-REQUIMTE, Institute for Research and Advanced Studies, University of Évora Rua Romão Ramalho, 59 7000-671 Évora Portugal
- Chemistry and Biochemistry Department, School of Science and Technology, University of Évora Rua Romão Ramalho 59 7000-671 Évora Portugal
| |
Collapse
|
13
|
Kumar S, Nair AS, Abdelgawad MA, Mathew B. Exploration of the Detailed Structure-Activity Relationships of Isatin and Their Isomers As Monoamine Oxidase Inhibitors. ACS OMEGA 2022; 7:16244-16259. [PMID: 35601305 PMCID: PMC9118264 DOI: 10.1021/acsomega.2c01470] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/19/2022] [Indexed: 05/14/2023]
Abstract
Monoamine oxidase (MAO) is a protein with a key function in the catabolism of neuroamines in both central and peripheral parts of the body. MAO-A and -B are two isozymes of this enzyme which have emerged to be considered as a drug target for the treatment of neurodenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD). Isatin is an endogenous small fragment, reversible inhibitor for MAO enzymes and is more selective for MAO-B than -A. Isatin is responsible for increasing the dopamine level in the brain by the inhibition of an MAO enzyme. The very few selective and reversible inhibitors existing for MAO proteins and the intensity of neurological diseases in humanity have opened a new door for researchers. Isatin has a polypharmacological profile in medicinal chemistry, is a reversible inhibitor for both the MAOs, and shows high selectivity potent inhibition for MAO-B. In this review, we discuss isatins and their analogues phthalide and phthalimide with structure-activity relationships (SARs), and this comprehensive information accelerates the ideas for design and development of a new class of MAO inhibitors for neurodegenerative diseases.
Collapse
Affiliation(s)
- Sunil Kumar
- Department
of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa
Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, India
| | - Aathira Sujathan Nair
- Department
of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa
Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, India
| | - Mohamed A. Abdelgawad
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf 72341, Saudi Arabia
| | - Bijo Mathew
- Department
of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa
Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, India
| |
Collapse
|
14
|
Advancements in the development of multi-target directed ligands for the treatment of Alzheimer's disease. Bioorg Med Chem 2022; 61:116742. [PMID: 35398739 DOI: 10.1016/j.bmc.2022.116742] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/01/2022] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is a multifactorial irreversible neurological disorder which results in cognitive impairment, loss of cholinergic neurons in synapses of the basal forebrain and neuronal death. Exact pathology of the disease is not yet known however, many hypotheses have been proposed for its treatment. The available treatments including monotherapies and combination therapies are not able to combat the disease effectively because of its complex pathological mechanism. A multipotent drug for AD has the potential to bind or inhibit multiple targets responsible for the progression of the disease like aggregated Aβ, hyperphosphorylated tau proteins, cholinergic and adrenergic receptors, MAO enzymes, overactivated N-methyl-d-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor etc. The traditional approach of one disease-one target-one drug has been rationalized to one drug-multi targets for the chronic diseases like AD and cancer. Thus, over the last decade research focus has been shifted towards the development of multi target directed ligands (MTDLs) which can simultaneously inhibit multiple targets and stop or slow the progression of the disease. The MTDLs can be more effective against AD and eliminate any possibility of drug-drug interactions. Many important active pharmacophore units have been fused, merged or incorporated into different scaffolds to synthesize new potent drugs. In the current article, we have described various hypothesis for AD and effectiveness of the MTDLs treatment strategy is discussed in detail. Different chemical scaffolds and their synthetic strategies have been described and important functionalities are identified in the chemical scaffold that have the potential to bind to the multiple targets. The important leads identified in this study with MTDL characteristics have the potential to be developed as drug candidates for the effective treatment of AD.
Collapse
|
15
|
Dorababu A. Promising heterocycle-based scaffolds in recent (2019-2021) anti-Alzheimer's drug design and discovery. Eur J Pharmacol 2022; 920:174847. [PMID: 35218718 DOI: 10.1016/j.ejphar.2022.174847] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/06/2022] [Accepted: 02/18/2022] [Indexed: 12/28/2022]
Abstract
Alzheimer's disease (AD) is one of the neurodegenerative diseases that led to morbidity and mortality world-wide. It is a complex disease whose etiology is not completely known that leads to difficulty in prevent or cure of the AD. Also, there are only few approved drugs for AD treatment. Apart from deaths due to AD, expenditure of treatment and care of AD patients is higher than that of treatment of HIV and cancer diseases combined. Hence, it leads to an economic burden also. Although research is being carried out on designing drugs for AD, most of them have ended up in poor inhibitors with high toxicity. Hence, researchers should shoulder a great responsibility of discovery of efficient drugs for AD treatment. In the field of drug discovery, heterocycles played an important role. Also, most of the heterocyclic scaffolds have been used in design of potent anti-AD agents. In view of this, heterocyclic molecules reported recently are compiled and evaluated comprehensively. Especially, the molecules which exhibited pronounced activity are emphasized and described with respect to structure-activity relationship (SAR) in brief.
Collapse
Affiliation(s)
- Atukuri Dorababu
- SRMPP Government First Grade College, Huvinahadagali, 583219, India.
| |
Collapse
|
16
|
Burke A, Moutayakine A. Accessing medicinally relevant O‐benzofused heterocycles through C‐X activation: Recent trends. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Anthony Burke
- University of Evora Chemistry Rua Romão Ramalho, 59 7000 Evora PORTUGAL
| | - Amina Moutayakine
- University of Evora Institute for Advanced Studies and Research: Universidade de Evora Instituto de Investigacao e Formacao Avancada LAQV-Requimte PORTUGAL
| |
Collapse
|
17
|
Liu T, Chen S, Du J, Xing S, Li R, Li Z. Design, synthesis, and biological evaluation of novel (4-(1,2,4-oxadiazol-5-yl)phenyl)-2-aminoacetamide derivatives as multifunctional agents for the treatment of Alzheimer's disease. Eur J Med Chem 2022; 227:113973. [PMID: 34752955 DOI: 10.1016/j.ejmech.2021.113973] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 12/14/2022]
Abstract
On the basis of our previous work, a novel series of (4-(1,2,4-oxadiazol-5-yl)phenyl)-2-aminoacetamide derivatives were synthesized and evaluated as multifunctional ligands for the treatment of Alzheimer's disease (AD). Biological evaluations indicated that the derivatives can be used as anti-AD drugs that have multifunctional properties, inhibit the activity of butyrylcholinesterase (BuChE), inhibit neuroinflammation, have neuroprotective properties, and inhibit the self-aggregation of Aβ. Compound f9 showed good potency in BuChE inhibition (IC50: 1.28 ± 0.18 μM), anti-neuroinflammatory potency (NO, IL-1β, TNF-α; IC50: 0.67 ± 0.14, 1.61 ± 0.21, 4.15 ± 0.44 μM, respectively), and inhibited of Aβ self-aggregation (51.91 ± 3.90%). Preliminary anti-inflammatory mechanism studies indicated that the representative compound f9 blocked the activation of the NF-κB signaling pathway. Moreover, f9 exhibited 1,1-Diphenyl-2-picrylhydrazyl (DPPH) radical scavenging effect, and an inhibitory effect on the production of intracellular reactive oxygen species (ROS). In the bi-directional transport assay, f9 displayed proper blood-brain barrier (BBB) permeability. In addition, the title compound improved memory and cognitive functions in a mouse model induced by scopolamine. Hence, the compound f9 can be considered as a promising lead compound for further investigation in the treatment of AD.
Collapse
Affiliation(s)
- Tongtong Liu
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Shiming Chen
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Jiyu Du
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Siqi Xing
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Rong Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China.
| | - Zeng Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China.
| |
Collapse
|
18
|
Pingaew R, Choomuenwai V, Leechaisit R, Prachayasittikul V, Prachayasittikul S, Prachayasittikul V. 1,2,3-Triazole Scaffold in Recent Medicinal Applications: Synthesis and Anticancer Potentials. HETEROCYCLES 2022. [DOI: 10.3987/rev-22-sr(r)4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Ru3+, Mn2+, Co2+, Ni2+, Cu2+, and Zn2+ uni-metallic complexes of 3-(-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl) methylene) hydrazono)indolin-2-one, preparation, structure elucidation and antibacterial activity. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Davis SM, Eckroat TJ. Isatin-linked 4,4-dimethyl-5-methylene-4,5-dihydrothiazole-2-thiols for inhibition of acetylcholinesterase. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02800-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
21
|
Abbasi I, Nadeem H, Saeed A, Kharl HAA, Tahir MN, Naseer MM. Isatin-hydrazide conjugates as potent α-amylase and α-glucosidase inhibitors: Synthesis, structure and invitro evaluations. Bioorg Chem 2021; 116:105385. [PMID: 34600331 DOI: 10.1016/j.bioorg.2021.105385] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 01/18/2023]
Abstract
Managing diabetes that is a global life-threatening problem, remains a challenge for the scientific community. The inhibition of α-amylase and α-glucosidase enzymes which are responsible for the digestion of dietary carbohydrates is an effective strategy to control postprandial hyperglycemia. Herein, we report the novel and highly potent inhibitors of α-amylase and α-glucosidase, namely isatin-hydrazide conjugates 1a - 1j that are easily accessed in two steps from simple and inexpensive commercially available isatin. The in vitro bio-evaluations of these compounds revealed that conjugates 1a, 1h and 1f are highly potent inhibitors of α-amylase with IC50 values of 19.6, 12.1 and 18.3 µg/ml, respectively as compared to the standard, acarbose (IC50 = 36.2 µg/ml). Similarly, the conjugates 1a, 1b, 1d, 1f and 1i showed significant activity against α-glucosidase with IC50 values of 14.8, 25.6, 13.2, 14.5 and 16.5 µg/ml, respectively as compared to the acarbose (IC50 = 34.5 µg/ml). Notably, the compounds 1a and 1f were found to be highly potent against both α-amylase and α-glucosidase enzymes, demonstrating about two-fold better inhibitory activity than the reference inhibitor. Molecular docking studies were performed to recognize the possible binding modes of the compounds with the active pocket of the enzymes. The results of this study divulge the potential of these compounds as powerful and inexpensive lead molecules for future investigations.
Collapse
Affiliation(s)
- Inzamam Abbasi
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Humaira Nadeem
- Department of Pharmaceutical Chemistry, Riphah Institute of Pharmaceutical Sciences, Riphah International University, G-7/4, Islamabad, Pakistan
| | - Adil Saeed
- Department of Pharmaceutical Chemistry, Riphah Institute of Pharmaceutical Sciences, Riphah International University, G-7/4, Islamabad, Pakistan
| | - Hafiz Aamir Ali Kharl
- Department of Pharmaceutical Chemistry, Riphah Institute of Pharmaceutical Sciences, Riphah International University, G-7/4, Islamabad, Pakistan
| | | | | |
Collapse
|
22
|
Barrulas P, Carreiro EP, Veiros LF, Amorim AC, Gut G, Rosenthal PJ, López Ó, Puerta A, Padrón JM, Fernández-Bolaños JG, Burke AJ. Novel 1,2,3-triazole epicinchonas: Transitioning from organocatalysis to biological activities. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1948575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Pedro Barrulas
- LAQV-REQUIMTE (formerly the Evora Chemistry Centre), Institute for Research and Advanced Studies, Universidade de Évora, Évora, Portugal
| | - Elisabete P. Carreiro
- LAQV-REQUIMTE (formerly the Evora Chemistry Centre), Institute for Research and Advanced Studies, Universidade de Évora, Évora, Portugal
| | - Luis F. Veiros
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Ana C. Amorim
- Chiratecnics, LDA, Rossio, Évora, Portugal
- Mitra Campus, University of Évora, Évora, Portugal
| | - Giri Gut
- Department of Medicine, University of California, San Francisco, CA, USA
| | | | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Seville, Spain
| | - Adrián Puerta
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO-AG), Universidad de la Laguna, La Laguna, Spain
| | - José M. Padrón
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO-AG), Universidad de la Laguna, La Laguna, Spain
| | | | - Anthony J. Burke
- LAQV-REQUIMTE (formerly the Evora Chemistry Centre), Institute for Research and Advanced Studies, Universidade de Évora, Évora, Portugal
- Departamento de química, School of Science and Technology, Universidade de Évora, Évora, Portugal
| |
Collapse
|
23
|
de Silva NH, Pyreddy S, Blanch EW, Hügel HM, Maniam S. Microwave-assisted rapid synthesis of spirooxindole-pyrrolizidine analogues and their activity as anti-amyloidogenic agents. Bioorg Chem 2021; 114:105128. [PMID: 34225163 DOI: 10.1016/j.bioorg.2021.105128] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/16/2021] [Accepted: 06/23/2021] [Indexed: 10/21/2022]
Abstract
A library of Sox-pyrrolizidines was rapidly prepared by microwave-assisted, one-pot, three-component, 1,3-dipolar cycloaddition of azomethine ylides from l-proline and isatin, with various β-nitrostyrenes. Nitro-Sox compounds, 4b, 4d and 4e inhibit HEWL amyloid fibril formation by ThT studies with percentages of fluorescence intensity of 55.4, 42.9 and 40.3%, respectively. Further studies with MTT assay, Raman spectroscopy, TEM and molecular docking supported these promising candidates for activity against amyloid misfolding, a phenomenon leading to Alzheimer's disease pathology.
Collapse
Affiliation(s)
- Nilamuni H de Silva
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC 3001, Australia
| | - Suneela Pyreddy
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC 3001, Australia
| | - Ewan W Blanch
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC 3001, Australia
| | - Helmut M Hügel
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC 3001, Australia.
| | - Subashani Maniam
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC 3001, Australia.
| |
Collapse
|
24
|
Khatoon S, Aroosh A, Islam A, Kalsoom S, Ahmad F, Hameed S, Abbasi SW, Yasinzai M, Naseer MM. Novel coumarin-isatin hybrids as potent antileishmanial agents: Synthesis, in silico and in vitro evaluations. Bioorg Chem 2021; 110:104816. [PMID: 33799180 DOI: 10.1016/j.bioorg.2021.104816] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/01/2021] [Accepted: 03/07/2021] [Indexed: 11/29/2022]
Abstract
Leishmaniasis being one of the six major tropical diseases that affects nearly 0.7-1.3 million people annually, has so far limited and high toxic therapeutic options. Herein, we report the synthesis, in silico, and in vitro evaluations of novel coumarin-incorporated isatin hydrazones (Spf-1 - Spf-10) as highly potent and safe antileishmanial agents. Molecular docking was initially carried out to decipher the binding confirmation of lead molecules towards the active cavity of the target protein (Leishmanolysin gp63) of Leishmania tropica. Among all the docked compounds, only Spf-6, Spf-8, and Spf-10 showed high binding affinities due to a pattern of strong conventional hydrogen bonds and hydrophobic π-interactions. The molecular dynamics simulations showed the stable pattern of such bonding and structure-based confirmation with a time scale of 50 ns towards the top compound (Spf-10) and protein. These analyses affirmed the high stability of the system. Three out of ten compounds evaluated for their antileishmanial activity against Leishmania tropica promastigotes and amastigotes were found to be active at micromolar concentrations (IC50 range 0.1-4.13 μmol/L), and most importantly, they were also found to be highly biocompatible when screened for their toxicity in human erythrocytes.
Collapse
Affiliation(s)
- Saira Khatoon
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Aiman Aroosh
- Suleiman Bin Abdullah Aba Akhail - Centre for Interdisciplinary Research in Basic Science (SA-CIRBS), Faculty of Basic & Applied Sciences, International Islamic University, Islamabad 44000, Pakistan
| | - Arshad Islam
- Suleiman Bin Abdullah Aba Akhail - Centre for Interdisciplinary Research in Basic Science (SA-CIRBS), Faculty of Basic & Applied Sciences, International Islamic University, Islamabad 44000, Pakistan; Department of Pathology, Government Lady Reading Hospital Medical Teaching Institution, Peshawar, KPK, Pakistan
| | - Saima Kalsoom
- Suleiman Bin Abdullah Aba Akhail - Centre for Interdisciplinary Research in Basic Science (SA-CIRBS), Faculty of Basic & Applied Sciences, International Islamic University, Islamabad 44000, Pakistan
| | - Faisal Ahmad
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Shahid Hameed
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Sumra Wajid Abbasi
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Masoom Yasinzai
- Suleiman Bin Abdullah Aba Akhail - Centre for Interdisciplinary Research in Basic Science (SA-CIRBS), Faculty of Basic & Applied Sciences, International Islamic University, Islamabad 44000, Pakistan
| | - Muhammad Moazzam Naseer
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan.
| |
Collapse
|
25
|
Ferraz de Paiva RE, Vieira EG, Rodrigues da Silva D, Wegermann CA, Costa Ferreira AM. Anticancer Compounds Based on Isatin-Derivatives: Strategies to Ameliorate Selectivity and Efficiency. Front Mol Biosci 2021; 7:627272. [PMID: 33614708 PMCID: PMC7889591 DOI: 10.3389/fmolb.2020.627272] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 12/28/2020] [Indexed: 01/10/2023] Open
Abstract
In this review we compare and discuss results of compounds already reported as anticancer agents based on isatin-derivatives, metalated as well as non-metallated. Isatin compounds can be obtained from plants, marine animals, and is also found in human fluids as a metabolite of amino acids. Its derivatives include imines, hydrazones, thiosemicarbazones, among others, already focused on numerous anticancer studies. Some of them have entered in pre-clinical and clinical tests as antiangiogenic compounds or inhibitors of crucial proteins. As free ligands or coordinated to metal ions, such isatin derivatives showed promising antiproliferative properties against different cancer cells, targeting different biomolecules or organelles. Binding to metal ions usually improves its biological properties, indicating a modulation by the metal and by the ligand in a synergistic process. They also reveal diverse mechanisms of action, being able of binding DNA, generating reactive species that cause oxidative damage, and inhibiting selected proteins. Strategies used to improve the efficiency and selectivity of these compounds comprise structural modification of the ligands, metalation with different ions, syntheses of mononuclear and dinuclear species, and use of inserted or anchored compounds in selected drug delivery systems.
Collapse
Affiliation(s)
| | - Eduardo Guimarães Vieira
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Daniel Rodrigues da Silva
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Camila Anchau Wegermann
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Ana Maria Costa Ferreira
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
26
|
The application of isatin-based multicomponent-reactions in the quest for new bioactive and druglike molecules. Eur J Med Chem 2020; 211:113102. [PMID: 33421712 DOI: 10.1016/j.ejmech.2020.113102] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/16/2022]
Abstract
Oxindole derivatives are known for their great interest in the field of Medicinal Chemistry, as they display vast biological activities. Recent efforts concerning the preparation of oxindole derivatives using isatin-based multicomponent reactions (MCRs) constitute a great advance in generating druglike libraries fast and with wide scaffold diversity. In this review, we address those recent developments, exploring the synthetic pathways and biological activities described for these compounds, namely antitumor, antibacterial, antifungal, antiparasitic, antiviral, antioxidant, anti-inflammatory and central nervous system (CNS) pathologies. To add new depth to this work, we used a well-established web-based free tool (SwissADME) to evaluate the most promising scaffolds in what concerns their druglike properties, namely by evaluating their compliance with some of the most valuable rules applied by medicinal chemists in both academia and industrial settings (Lipinski, Ghose, Veber, Egan, Muegge). The aim of this review is to endorse isatin-based MCRs as a valuable synthetic approach to attain new hit compounds bearing the oxindole privileged structure, while critically exploring these scaffolds' druglike properties.
Collapse
|
27
|
Marques CS, McArdle P, Erxleben A, Burke AJ. Accessing New 5‐α‐(3,3‐Disubstituted Oxindole)‐Benzylamine Derivatives from Isatin: Stereoselective Organocatalytic Three Component Petasis Reaction. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Carolina S. Marques
- LAQV‐REQUIMTE University of Évora Institute for Research and Advanced Studies Rua Romão Ramalho, 59 7000‐671 Évora Portugal
| | - Patrick McArdle
- School of Chemistry National University of Ireland Galway Ireland
| | - Andrea Erxleben
- School of Chemistry National University of Ireland Galway Ireland
| | - Anthony J. Burke
- LAQV‐REQUIMTE University of Évora Institute for Research and Advanced Studies Rua Romão Ramalho, 59 7000‐671 Évora Portugal
- Chemistry Department School of Science and Technology University of Évora Rua Romão Ramalho 59 7000‐671 Évora Portugal
| |
Collapse
|