1
|
Li WX, Lu YF, Wang F, Ai B, Jin SB, Li S, Xu GH, Jin CH. Application of 18β-glycyrrhetinic acid in the structural modification of natural products: a review. Mol Divers 2025; 29:739-781. [PMID: 38683490 DOI: 10.1007/s11030-024-10864-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/26/2024] [Indexed: 05/01/2024]
Abstract
18β-Glycyrrhetinic acid (GA) is an oleane-type pentacyclic triterpene saponin obtained from glycyrrhizic acid by removing 2 glucuronic acid groups. GA and its analogues are active substances of glycyrrhiza aicd, with similar structure and important pharmacological effects such as anti-inflammatory, anti-diabetes, anti-tumor and anti-fibrosis. Although GA combined compounds are in the clinical trial stages, its application potential is severely restricted by its low bioavailability, water solubility and membrane permeability. In this article, synthetic methods and structure-activity relationships (SARs) of GA derivatives from 2018 to present are reviewed based on pharmacological activity. It is hoped that this review can provide reference for the future development of potential GA preclinical candidate compounds, and furnish ideas for the development of pentacyclic triterpenoid lead compounds.
Collapse
Affiliation(s)
- Wan-Xin Li
- Key Laboratory of Natural Medicines of the Changbai Mountain Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Ye-Fang Lu
- Interdisciplinary Program of Biological Function Molecules, College of Integration Science, Yanbian University, Yanji, 133002, China
| | - Fei Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Bing Ai
- Key Laboratory of Natural Medicines of the Changbai Mountain Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Sheng-Bo Jin
- Interdisciplinary Program of Biological Function Molecules, College of Integration Science, Yanbian University, Yanji, 133002, China
| | - Siqi Li
- Key Laboratory of Natural Medicines of the Changbai Mountain Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China.
| | - Guang-Hua Xu
- Key Laboratory of Natural Medicines of the Changbai Mountain Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China.
| | - Cheng-Hua Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China.
- Interdisciplinary Program of Biological Function Molecules, College of Integration Science, Yanbian University, Yanji, 133002, China.
| |
Collapse
|
2
|
Háznagy M, Girst G, Vágvölgyi M, Cholke K, Krishnan SR, Gertsch J, Hunyadi A. Semisynthetic Ecdysteroid Cinnamate Esters and tert-Butyl Oxime Ether Derivatives with Trypanocidal Activity. JOURNAL OF NATURAL PRODUCTS 2024; 87:2478-2486. [PMID: 39417525 PMCID: PMC11519910 DOI: 10.1021/acs.jnatprod.4c00811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024]
Abstract
The parasite Trypanosoma cruzi is the causative agent of Chagas disease, a neglected tropical disease that affects the lives of millions of indigenous people in Latin America. As medications to treat Chagas disease are limited to the application of benznidazole and nifurtimox, which are not ideal treatments for the chronic stage of the disease, the search for new antichagasic drug candidates is an important need. Ecdysone has previously been shown to interfere with the life cycle of T. cruzi. Here, we report the biological profiling and subsequent semisynthetic structure optimization of 47 ecdysteroids against T. cruzi with the aim of identifying selective trypanocidal ecdysteroids. Two moderately trypanocidal pharmacophores were identified: ecdysteroids containing a 6-tert-butyl oxime ether and a cinnamic ester moiety. These functional groups were combined into the structures of four new semisynthetic ecdysteroids (44-47), among which 44 exerted potent and selective trypanocidal activity (IC50 < 2 μM). Cellular infection assays showed that ecdysteroid 44 potently and efficiently inhibited amastigote replication as determined by trypomastigote release after cellular infection with an IC50 of 2.7 ± 0.1 μM. The compound was similarly potent to benznidazole (IC50 = 3.8 ± 0.7 μM) and more than 5-fold more cytotoxic toward T. cruzi over RAW264.7 host macrophages. Overall, the ecdysteroid cinnamate ester 44 is a novel trypanocidal lead structure that needs to be further characterized in follow-up studies.
Collapse
Affiliation(s)
- Márton
B. Háznagy
- Institute
of Pharmacognosy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Gábor Girst
- Institute
of Pharmacognosy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Máté Vágvölgyi
- Institute
of Pharmacognosy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Kaushavi Cholke
- Institute
of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland
| | - Sandhya Radha Krishnan
- Institute
of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland
| | - Jürg Gertsch
- Institute
of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland
| | - Attila Hunyadi
- Institute
of Pharmacognosy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
- Interdisciplinary
Centre of Natural Products, University of
Szeged, Eötvös
u. 6, H-6720 Szeged, Hungary
- HUN-REN-SZTE
Biologically Active Natural Products Research Group, Eötvös u. 6, H-6720 Szeged, Hungary
- Graduate
Institute of Natural Products, Kaohsiung
Medical University, Shih-Chuan
1st Rd. 100, Kaohsiung 807, Taiwan
| |
Collapse
|
3
|
Chen L, Gong J, Yong X, Li Y, Wang S. A review of typical biological activities of glycyrrhetinic acid and its derivatives. RSC Adv 2024; 14:6557-6597. [PMID: 38390501 PMCID: PMC10882267 DOI: 10.1039/d3ra08025k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
Glycyrrhetinic acid, a triterpenoid compound primarily sourced from licorice root, exhibits noteworthy biological attributes, including anti-inflammatory, anti-tumor, antibacterial, antiviral, and antioxidant effects. Despite these commendable effects, its further advancement and application, especially in clinical use, have been hindered by its limited druggability, including challenges such as low solubility and bioavailability. To enhance its biological activity and pharmaceutical efficacy, numerous research studies focus on the structural modification, associated biological activity data, and underlying mechanisms of glycyrrhetinic acid and its derivatives. This review endeavors to systematically compile and organize glycyrrhetinic acid derivatives that have demonstrated outstanding biological activities over the preceding decade, delineating their molecular structures, biological effects, underlying mechanisms, and future prospects for assisting researchers in finding and designing novel glycyrrhetinic acid derivatives, foster the exploration of structure-activity relationships, and aid in the screening of potential candidate compounds.
Collapse
Affiliation(s)
- Liang Chen
- Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy Hainan Medical University No. 3, XueYuan Road, LongHua District Haikou City Hainan Province 571199 China
| | - Jingwen Gong
- Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy Hainan Medical University No. 3, XueYuan Road, LongHua District Haikou City Hainan Province 571199 China
| | - Xu Yong
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University Shanghai 200433 China
| | - Youbin Li
- Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy Hainan Medical University No. 3, XueYuan Road, LongHua District Haikou City Hainan Province 571199 China
| | - Shuojin Wang
- Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy Hainan Medical University No. 3, XueYuan Road, LongHua District Haikou City Hainan Province 571199 China
| |
Collapse
|
4
|
Chen J, Wang C, Pan X, Zhan Y, Zhou W, Peng S, Chen C, Zhang M, Lan R, Wu J, Huang F, Hong J. Glycyrrhetinic Acid Mitigates Radiation-Induced Pulmonary Fibrosis via Inhibiting the Secretion of TGF-β1 by Treg Cells. Int J Radiat Oncol Biol Phys 2024; 118:218-230. [PMID: 37586613 DOI: 10.1016/j.ijrobp.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/18/2023]
Abstract
PURPOSE Radiation-induced pulmonary fibrosis (RIPF) is a common side effect of radiation therapy for thoracic tumors without effective prevention and treatment methods at present. The aim of this study was to explore whether glycyrrhetinic acid (GA) has a protective effect on RIPF and the underlying mechanism. METHODS AND MATERIALS A RIPF mouse model administered GA was used to determine the effect of GA on RIPF. The cocultivation of regulatory T (Treg) cells with mouse lung epithelial-12 cells or mouse embryonic fibroblasts and intervention with GA or transforming growth factor-β1 (TGF-β1) inhibitor to block TGF-β1 was conducted to study the mechanism by which GA alleviates RIPF. Furthermore, injection of Treg cells into GA-treated RIPF mice to upregulate TGF-β1 levels was performed to verify the roles of TGF-β1 and Treg cells. RESULTS GA intervention improved the damage to lung tissue structure and collagen deposition and inhibited Treg cell infiltration, TGF-β1 levels, epithelial mesenchymal transition (EMT), and myofibroblast (MFB) transformation in mice after irradiation. Treg cell-induced EMT and MFB transformation in vitro were prevented by GA, as well as a TGF-β1 inhibitor, by decreasing TGF-β1. Furthermore, reinfusion of Treg cells upregulated TGF-β1 levels and exacerbated RIPF in GA-treated RIPF mice. CONCLUSIONS GA can improve RIPF in mice, and the corresponding mechanisms may be related to the inhibition of TGF-β1 secreted by Treg cells to induce EMT and MFB transformation. Therefore, GA may be a promising therapeutic candidate for the clinical treatment of RIPF.
Collapse
Affiliation(s)
- Jinmei Chen
- Department of Radiotherapy, Cancer Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Caihong Wang
- Department of Radiotherapy, Cancer Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xiaoxian Pan
- Department of Radiotherapy, Cancer Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yuping Zhan
- Department of Radiotherapy, Cancer Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Weitong Zhou
- Department of Radiotherapy, Cancer Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Shaoli Peng
- Department of Radiotherapy, Cancer Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Chun Chen
- School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Mingwei Zhang
- Department of Radiotherapy, Cancer Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Ruilong Lan
- Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Central Lab, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jiandong Wu
- Department of Radiotherapy, Cancer Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Fei Huang
- Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Central Lab, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China.
| | - Jinsheng Hong
- Department of Radiotherapy, Cancer Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Provincial Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
5
|
Liu C, Li S, Zhang C, Jin CH. Recent Advances in Research on Active Compounds Against Hepatic Fibrosis. Curr Med Chem 2024; 31:2571-2628. [PMID: 37497688 DOI: 10.2174/0929867331666230727102016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/14/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Almost all chronic liver diseases cause fibrosis, which can lead to cirrhosis and eventually liver cancer. Liver fibrosis is now considered to be a reversible pathophysiological process and suppression of fibrosis is necessary to prevent liver cancer. At present, no specific drugs have been found that have hepatic anti-fibrotic activity. OBJECTIVE The research progress of anti-hepatic fibrosis compounds in recent ten years was reviewed to provide a reference for the design and development of anti-hepatic fibrosis drugs. METHODS According to the structure of the compounds, they are divided into monocyclic compounds, fused-heterocyclic compounds, and acyclic compounds. RESULTS In this article, the natural products and synthetic compounds with anti-fibrotic activity in recent ten years were reviewed, with emphasis on their pharmacological activity and structure-activity relationship (SAR). CONCLUSION Most of these compounds are natural active products and their derivatives, and there are few researches on synthetic compounds and SAR studies on natural product.
Collapse
Affiliation(s)
- Chuang Liu
- Key Laboratory of Natural Resources of Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Siqi Li
- Key Laboratory of Natural Resources of Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Changhao Zhang
- Key Laboratory of Natural Resources of Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Cheng-Hua Jin
- Key Laboratory of Natural Resources of Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
- Interdisciplinary of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji, Jilin, 133002, China
| |
Collapse
|
6
|
Mechanisms of Xiaochaihu Decoction on Treating Hepatic Fibrosis Explored by Network Pharmacology. DISEASE MARKERS 2022; 2022:8925637. [PMID: 36246566 PMCID: PMC9553551 DOI: 10.1155/2022/8925637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022]
Abstract
Purpose. To explore the material basis and pharmacological mechanism of Xiaochaihu Decoction (XCHD), the classic Traditional Chinese Medicine (TCM) formula in inhibiting hepatic fibrosis (HF). Methods. The main components in XCHD were screened from the TCMSP database, ETCM database, and literature, and their potential targets were detected and predicted using the Swiss Target Prediction platform. The HF-related targets were retrieved and screened through GeneCard database and OMIM database, combined with GEO gene chips. The XCHD targets and HF targets were mapped to search common targets. The protein-protein interaction (PPI) network was acquired via the STRING11.0 database and analyzed visually using Cytoscape 3.8.0 software. The potential mechanisms of the common targets identified through GO and KEGG pathway enrichment analysis were analyzed by using Metascape database. The results were visualized through OmicShare Tools. The “XCHD compound-HF target” network was visually constructed by Cytoscape 3.8.0 software. AutoDockVina1.1.2 and PyMoL software were used to verify the molecular docking of XCHD main active compounds and HF key targets. Results. A total of 164 potential active compounds from XCHD were screened to act on 95 HF-related targets. Bioinformatics analysis revealed that quercetin, β-sitosterol, and kaempferol may be candidate agents, which acted on multiple targets like PTGS2, HSP90AA1, and PTGS1 and regulate multiple key biological pathways like IL-17 signaling pathway, TNF signaling pathway and PI3K-Akt signaling pathway to relieve HF. Moreover, molecular docking suggested that quercetin and PTGS2 could statically bind and interact with each other through amino acid residues val-349, LEU-352, PHE-381, etc. Conclusion. This work provides a systems perspective to study the relationship between Chinese medicines and diseases. The therapeutic efficacy of XCHD on HF was the sum of multitarget and multi-approach effects from the bioactive ingredients. This study could be one of the cornerstones for further research.
Collapse
|
7
|
Salama S, Kue CS, Mohamad H, Omer F, Ibrahim MY, Abdulla M, Ali H, Mariod A, Jayash SN. Hepatoprotective potential of a novel quinazoline derivative in thioacetamide-induced liver toxicity. Front Pharmacol 2022; 13:943340. [PMID: 36204229 PMCID: PMC9531777 DOI: 10.3389/fphar.2022.943340] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose: The compound quinazoline Q-Br, 3-(5-bromo-2-hydroxybenzylideneamino)-2-(5-bromo-2 hydroxyphenyl) 2,3-dihydroquinazoline-4(1H)-one (Q-Br) was evaluated for its antioxidant capacity and potential hepatoprotectivity against sub-chronic liver toxicity induced by thioacetamide in rats. Materials and Methods: Rats were assigned into five groups; healthy (normal) and cirrhosis control groups were given 5% Tween 20 orally, the reference control group was given a Silymarin dose of 50 mg/kg, and low-dose Q-Br and high-dose Q-Br groups were given a daily dose of 25 mg/kg and 50 mg/g Q-Br, respectively. Liver status was detected via fluorescence imaging with intravenous injection of indocyanine green (ICG) and a plasma ICG clearance test. Liver malondialdehyde (MDA), catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) were also tested. The degree of fibrosis was determined histologically by hematoxylin and eosin and Masson’s Trichrome staining. The immunohistochemistry of liver tissue inhibitor of metalloproteinase (TIMP-1), matrix metalloproteinase (MMP-2), and alpha-smooth muscle actin (α-SMA) was performed. Results: Q-Br recorded mild antioxidant capacity, dose-dependent improvement in the liver status, and inhibition of oxidative stress compared to cirrhosis control. Histopathology notified a remarkable reduction in the degree of fibrosis. Immunohistochemistry revealed an obvious low expression of MMP-2 and α-SMA along with a higher expression of TIMP-1 in Q-Br- and Silymarin-treated livers. Conclusion: Q-Br treatment altered the course of toxicity induced by thioacetamide suggesting significant hepatoprotective potential of Q-Br treatment.
Collapse
Affiliation(s)
- Suzy Salama
- Indigenous Knowledge and Heritage Center, Ghibaish College of Science and Technology, Ghibaish, Sudan
- *Correspondence: Suzy Salama, ; Soher Nagi Jayash, ,
| | - Chin Siang Kue
- Faculty of Health and Life Sciences, Management and Science University, Shah Alam, Selangor, Malaysia
| | - Haryanti Mohamad
- Animal Experimental Unit, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Fatima Omer
- Department of Chemistry and Biology, Faculty of Education-Hantoub, University of Gezira, Gezira, Sudan
| | | | | | - Hapipah Ali
- Department of General Biology, College of Science, Cihan University-Erbil, Erbil, Kurdistan, Iraq
| | - Abdalbasit Mariod
- Indigenous Knowledge and Heritage Center, Ghibaish College of Science and Technology, Ghibaish, Sudan
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Soher Nagi Jayash
- Faculty of Science & Arts, University of Jeddah, Alkamil, Kingdom of Saudi Arabia
- *Correspondence: Suzy Salama, ; Soher Nagi Jayash, ,
| |
Collapse
|
8
|
Wu S, Cao Y, Lu H, Qi X, Sun J, Ye Y, Gong L. Aberrant peribiliary gland niche exacerbates fibrosis in primary sclerosing cholangitis and a potential therapeutic strategy. Biomed Pharmacother 2022; 153:113512. [DOI: 10.1016/j.biopha.2022.113512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 11/02/2022] Open
|
9
|
Mohammed EAH, Peng Y, Wang Z, Qiang X, Zhao Q. Synthesis, Antiviral, and Antibacterial Activity of the Glycyrrhizic Acid and Glycyrrhetinic Acid Derivatives. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022; 48:906-918. [PMID: 35919388 PMCID: PMC9333650 DOI: 10.1134/s1068162022050132] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/28/2021] [Accepted: 12/31/2021] [Indexed: 11/28/2022]
Abstract
Glycyrrhizic acid and its primary metabolite glycyrrhetinic acid, are the main active ingredients in the licorice roots (glycyrrhiza species), which are widely used in several countries of the world, especially in east asian countries (China, Japan). These ingredients and their derivatives play an important role in treating many diseases, especially infectious diseases such as COVID-19 and hepatic infections. This review aims to summarize the different ways of synthesising the amide derivatives of glycyrrhizic acid and the main ways to synthesize the glycyrrhitinic acid derivatives. Also, to determine the main biological and pharmacological activity for these compounds from the previous studies to provide essential data to researchers for future studies. Supplementary Information The online version contains supplementary material available at 10.1134/S1068162022050132.
Collapse
Affiliation(s)
- E. A. H. Mohammed
- Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, 730000 Lanzhou, China
| | - Y. Peng
- Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, 730000 Lanzhou, China
| | - Z. Wang
- Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, 730000 Lanzhou, China
| | - X. Qiang
- Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, 730000 Lanzhou, China
| | - Q. Zhao
- Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, 730000 Lanzhou, China
| |
Collapse
|
10
|
Grapentine S, Singh RK, Basu P, Sivanesan S, Mattos G, Oresajo O, Cheema J, Demeke W, Dolinsky VW, Bakovic M. Pcyt2 deficiency causes age-dependant development of nonalcoholic steatohepatitis and insulin resistance that could be attenuated with phosphoethanolamine. Sci Rep 2022; 12:1048. [PMID: 35058529 PMCID: PMC8776951 DOI: 10.1038/s41598-022-05140-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 01/06/2022] [Indexed: 12/19/2022] Open
Abstract
The mechanisms of NASH development in the context of age and genetics are not fully elucidated. This study investigates the age-dependent liver defects during NASH development in mice with heterozygous deletion of Pcyt2 (Pcyt2+/−), the rate limiting enzyme in phosphatidylethanolamine (PE) synthesis. Further, the therapeutic potential of Pcyt2 substrate, phosphoethanolamine (PEtn), is examined. Pcyt2+/− were investigated at 2 and 6–8 months (mo) of age and in addition, 6-mo old Pcyt2+/− with developed NASH were supplemented with PEtn for 8 weeks and glucose and fatty acid metabolism, insulin signaling, and inflammation were examined. Heterozygous ablation of Pcyt2 causes changes in liver metabolic regulators from young age, prior to the development of liver disease which does not occur until adulthood. Only older Pcyt2+/− experiences perturbed glucose and fatty acid metabolism. Older Pcyt2+/− liver develops NASH characterized by increased glucose production, accumulation of TAG and glycogen, and increased inflammation. Supplementation with PEtn reverses Pcyt2+/− steatosis, inflammation, and other aspects of NASH, showing that was directly caused by Pcyt2 deficiency. Pcyt2 deficiency is a novel mechanism of metabolic dysregulation due to reduced membrane ethanolamine phospholipid synthesis, and the metabolite PEtn offers therapeutic potential for NASH reversion.
Collapse
|
11
|
Zhang Q, Wang Y, Wang Z, Mohammed EAH, Zhao Q, He D, Wang Z. Synthesis and anti-inflammatory activities of glycyrrhetinic acid derivatives containing disulfide bond. Bioorg Chem 2021; 119:105542. [PMID: 34902645 DOI: 10.1016/j.bioorg.2021.105542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 11/28/2021] [Accepted: 12/02/2021] [Indexed: 11/02/2022]
Abstract
A series of glycyrrhetinic acid (GA, aglycone of glycyrrhizic acid) derivatives containing disulfide bond were synthesized and their anti-inflammatory and anti-fibrosis activities were evaluated in vivo and in vitro. Among them, compound 7 displayed the highest toxicity to all the tested cell lines including macrophages. Compounds 3 and 4 showed higher activities than GA in the cell and animal model. In the anti-inflammatory tests, compounds 3 and 4 down-regulated the expressions of several inflammatory factors, such as HMGB1, TLR4, IL-1β, TNF-α and TGF-β1 in LPS-treated RAW264.7 cells in a dose-dependent manner. Compounds 3 and 4 at 30 µM respectively reduced the levels of HMGB1 in the LPS group to 42.7% and 38.2%. In addition, the level of TLR4 decreased to close to that of control group when treated by compound 4 at the concentration of 30 µM. In the process of anti-fibrosis tests using TGF-β1-induced A549 cell line as the model, compounds 3 and 4 also decreased the expression levels of Col1 and α-SMA in a dose-dependent manner. Compound 3 and 4 at 30 µM respectively reduced the expression of α-SMA level by 2.2-fold and 2.6-fold compared to the TGF-β1-treated control group. Moreover, they influenced the ROS level and mitochondrial membrane potential (MMP) in A549 cells. In the paraquat-induced pulmonary fibrosis mice model, the symptoms of inflammation and fibrosis of mice were alleviated after administration of compound 3 or 4. The above results suggest that compounds 3 and 4 may be promising candidates for inflammation and lung fibrosis treatment.
Collapse
Affiliation(s)
- Qiuping Zhang
- Materia Medica Development Group, Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, Lanzhou 730000, China
| | - Yanni Wang
- Materia Medica Development Group, Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, Lanzhou 730000, China
| | - Zongyuan Wang
- Materia Medica Development Group, Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, Lanzhou 730000, China
| | - Eyad Abdulwhab Hamoud Mohammed
- Materia Medica Development Group, Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, Lanzhou 730000, China
| | - Quanyi Zhao
- Materia Medica Development Group, Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, Lanzhou 730000, China.
| | - Dian He
- Materia Medica Development Group, Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, Lanzhou 730000, China.
| | - Zhen Wang
- Materia Medica Development Group, Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
12
|
Wu J, Zhang Y, Li M. Identification of genes and miRNAs in paclitaxel treatment for breast cancer. Gynecol Endocrinol 2021; 37:65-71. [PMID: 32988253 DOI: 10.1080/09513590.2020.1822801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
AIM Paclitaxel is a microtubule-stabilizing drug that has therapeutic effect on breast cancer. However, the molecular mechanism of paclitaxel on breast cancer has not been elucidated. MATERIALS AND METHODS Microarray data of GSE114403, including 50 pretreatment and 50 posttreatment samples, were downloaded from public database. The differentially expressed genes (DEGs) between pretreatment and posttreatment were identified, followed by functional enrichment analysis. Then, protein-protein interaction (PPI) network and transcription factor (TF)-miRNA-mRNA network were constructed. Finally, the survival analysis of hub genes was performed. RESULTS A total of 107 DEGs were screened from pretreatment versus posttreatment. Genes were significantly enriched in GO terms such as inflammatory response, and pathways like cytokine-cytokine receptor interaction pathway. CXCL2, PTGS2, and ATF3 were considered as hub genes in PPI network. TFs such as FOXA2, NFE2L2, as well as miRNAs like has-miR-508-3p and has-miR-584 also played role in the paclitaxel treatment. Additionally, survival analysis revealed that breast cancer patients with high expression level of CXCL2, PTGS2, and ATF3 had longer survival time. CONCLUSION In summary, we demonstrated that CXCL2, PTGS2, and ATF3 might be diagnostic and therapeutic molecular biomarkers for breast cancer. These findings might provide further insights into the pathophysiology of breast cancer, as well as enhance our understanding of the anticancer effects of paclitaxel.
Collapse
Affiliation(s)
- Jie Wu
- Key Laboratory of Hydrodynamics (Ministry of Education), School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yijian Zhang
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Maolan Li
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
| |
Collapse
|
13
|
Pawełczyk A, Olender D, Sowa-Kasprzak K, Zaprutko L. Linked drug-drug conjugates based on triterpene and phenol structures. Rational synthesis, molecular properties, toxicity and bioactivity prediction. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
14
|
Pawełczyk A, Zaprutko L. Anti-COVID drugs: repurposing existing drugs or search for new complex entities, strategies and perspectives. Future Med Chem 2020; 12:1743-1757. [PMID: 32698626 PMCID: PMC7377048 DOI: 10.4155/fmc-2020-0204] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/14/2020] [Indexed: 12/15/2022] Open
Abstract
At the end of 2019, a novel virus causing severe acute respiratory syndrome to spread globally. There are currently no effective drugs targeting SARS-CoV-2. In this study, based on the analysis of numerous references and selected methods of computational chemistry, the strategy of integrative structural modification of small molecules with antiviral activity into potential active complex molecules has been presented. Proposed molecules have been designed based on the structure of triterpene oleanolic acid and complemented by structures characteristic of selected anti-COVID therapy assisted drugs. Their pharmaceutical molecular parameters and the preliminary bioactivity were calculated and predicted. The results of the above analyses show that among the designed complex substances there are potential antiviral agents directed mainly on SARS-CoV-2.
Collapse
Affiliation(s)
- Anna Pawełczyk
- Poznan University of Medical Sciences, Department of Organic Chemistry, Grunwaldzka 6, Poznań 60-780, Poland
| | - Lucjusz Zaprutko
- Poznan University of Medical Sciences, Department of Organic Chemistry, Grunwaldzka 6, Poznań 60-780, Poland
| |
Collapse
|