1
|
Wickramasinghe NI, Corbin B, Kanakarathna DY, Pang Y, Abeywickrama CS, Wijesinghe KJ. Bright NIR-Emitting Styryl Pyridinium Dyes with Large Stokes' Shift for Sensing Applications. BIOSENSORS 2023; 13:799. [PMID: 37622885 PMCID: PMC10452306 DOI: 10.3390/bios13080799] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023]
Abstract
Two NIR-emitting donor-π-acceptor (D-π-A) type regioisomeric styryl pyridinium dyes (1a-1b) were synthesized and studied for their photophysical performance and environment sensitivity. The two regioisomers, 1a and 1b, exhibited interesting photophysical properties including, longer wavelength excitation (λex ≈ 530-560 nm), bright near-infrared emission (λem ≈ 690-720 nm), high-fluorescence quantum yields (ϕfl ≈ 0.24-0.72) large Stokes' shift (∆λ ≈ 150-240 nm) and high-environmental sensitivity. Probe's photophysical properties were studied in different environmental conditions such as polarity, viscosity, temperature, and concentration. Probes (1a-1b) exhibited noticeable changes in absorbance, emission and Stokes' shift while responding to the changes in physical environment. Probe 1b exhibited a significant bathochromic shift in optical spectra (∆λ ≈ 20-40 nm) compared to its isomer 1a, due to the regio-effect. Probes (1a-1b) exhibited an excellent ability to visualize bacteria (Bacillus megaterium, Escherichia coli), and yeast (Saccharomyces cerevisiae) via fluorescence microscopy.
Collapse
Affiliation(s)
| | - Brian Corbin
- Department of Chemistry, The University of Akron, Akron, OH 44325, USA
| | - Devni Y. Kanakarathna
- Department of Chemistry, Faculty of Science, University of Colombo, Colombo 00300, Sri Lanka
| | - Yi Pang
- Department of Chemistry, The University of Akron, Akron, OH 44325, USA
| | | | - Kaveesha J. Wijesinghe
- Department of Chemistry, Faculty of Science, University of Colombo, Colombo 00300, Sri Lanka
| |
Collapse
|
2
|
Wang BZ, Zhou YC, Lin YW, Chen XC, Yu ZY, Xu YH, Tan JH, Huang ZS, Chen SB. Fluorescent Quinolinium Derivative as Novel Mitochondria Probe and Function Modulator by Targeting Mitochondrial RNA. Molecules 2023; 28:molecules28062690. [PMID: 36985661 PMCID: PMC10053327 DOI: 10.3390/molecules28062690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Mitochondria have a crucial role in regulating energy metabolism and their dysfunction has been linked to tumorigenesis. Cancer diagnosis and intervention have a great interest in the development of new agents that target biomolecules within mitochondria. However, monitoring and modulating mitochondria RNA (mtRNA), an essential component in mitochondria, in cells is challenging due to limited functional research and the absence of targeting agents. In this study, we designed and synthesized a fluorescent quinolinium derivative, QUCO-1, which actively lit up with mtRNA in both normal and cancer cells in vitro. Additionally, we evaluated the function of QUCO-1 as an mtRNA ligand and found that it effectively induced severe mitochondrial dysfunction and OXPHOS inhibition in RKO colorectal cancer cells. Treatment with QUCO-1 resulted in apoptosis, cell cycle blockage at the G2/M phase, and the effective inhibition of cell proliferation. Our findings suggest that QUCO-1 has great potential as a promising probe and therapeutic agent for mtRNA, with the potential for treating colorectal cancer.
Collapse
|
3
|
Wang ZR, Zhang TJ, Wang QY, Xu EY, Zhang X, Zhang ZH, Lu PF, Zhao HY, Wang L, Meng FH. (E)-2-styrylanthracene-9,10-dione derivatives as novel fluorescent probes: synthesis, photophysical properties and application in mitochondria imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 286:121988. [PMID: 36308828 DOI: 10.1016/j.saa.2022.121988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Our previous work firstly reported that (E)-2-styrylanthracene-9,10-dione is a novel fluorescent core (EK01) with the ability of specific mitochondria imaging. In this effort, we mainly focused our attention on the structure-photophysical property relationship and application in cells imaging of this new fluorescent chemotype. A series of the structural derivatives (TZ series) were designed and synthesized by introducing some substituents onto the 2-styryl moiety. The structure-photophysical property relationship analysis suggested that TZ03 is an excellent fluorescent molecular building block with the property of fluorescent "turn-on" effect after the modification of acylation, and TZ07 is an excellent fluorescent dye with a series of advantages such as high fluorescence intensity (Fmax = 4049.0 in CH2Cl2, 25.80 μM), moderate molar extinction coefficients (3.77 × 103-5.93 × 103 mol-1∙L∙cm-1), strong fluorescence quantum yield (Φmax = 0.739 in CH2Cl2), large Stokes shift (99.0 nm-161.8 nm) and well biological tolerance. As a classical D-π-A structure, the ICT characteristic of TZ07 was analyzed through spectroscopy verification and DFT calculations. Furthermore, optimized compound TZ07 was successfully applied in the living cells imaging with the excellent selectivity to mitochondria in a green fluorescent form. It was also suggested that the mechanism of TZ07 targeting mitochondria is independent of mitochondrial membrane potential, but probably related to the mitochondrial complex I. These findings may provide some insights into the development of novel mitochondria-targeted fluorescent probes.
Collapse
Affiliation(s)
- Zhao-Ran Wang
- School of Pharmacy, China Medical University, 77 Puhe Road, North New Area, Shenyang 110122, China
| | - Ting-Jian Zhang
- School of Pharmacy, China Medical University, 77 Puhe Road, North New Area, Shenyang 110122, China
| | - Qiu-Yin Wang
- School of Pharmacy, China Medical University, 77 Puhe Road, North New Area, Shenyang 110122, China
| | - En-Yu Xu
- School of Forensic Medicine, China Medical University, Shenyang 110122, China
| | - Xu Zhang
- School of Pharmacy, China Medical University, 77 Puhe Road, North New Area, Shenyang 110122, China
| | - Zhen-Hao Zhang
- School of Pharmacy, China Medical University, 77 Puhe Road, North New Area, Shenyang 110122, China
| | - Peng-Fei Lu
- School of Pharmacy, China Medical University, 77 Puhe Road, North New Area, Shenyang 110122, China
| | - Hai-Yang Zhao
- Teaching Center for Basic Medical Experiment, China Medical University, 77 Puhe Road, North New Area, Shenyang 110122, China
| | - Lin Wang
- School of Pharmacy, China Medical University, 77 Puhe Road, North New Area, Shenyang 110122, China.
| | - Fan-Hao Meng
- School of Pharmacy, China Medical University, 77 Puhe Road, North New Area, Shenyang 110122, China.
| |
Collapse
|
4
|
Crawford H, Dimitriadi M, Bassin J, Cook MT, Abelha TF, Calvo‐Castro J. Mitochondrial Targeting and Imaging with Small Organic Conjugated Fluorophores: A Review. Chemistry 2022; 28:e202202366. [PMID: 36121738 PMCID: PMC10092527 DOI: 10.1002/chem.202202366] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Indexed: 12/30/2022]
Abstract
The last decade has seen an increasingly large number of studies reporting on the development of novel small organic conjugated systems for mitochondrial imaging exploiting optical signal transduction pathways. Mitochondria are known to play a critical role in a number of key biological processes, including cellular metabolism. Importantly, irregularities on their working function are nowadays understood to be intimately linked to a range of clinical conditions, highlighting the importance of targeting mitochondria for therapeutic benefits. In this work we carry out an in-depth evaluation on the progress to date in the field to pave the way for the realization of superior alternatives to those currently existing. The manuscript is structured by commonly used chemical scaffolds and comprehensively covers key aspects factored in design strategies such as synthetic approaches as well as photophysical and biological characterization, to foster collaborative work among organic and physical chemists as well as cell biologists.
Collapse
Affiliation(s)
- Hannah Crawford
- School of Life and Medical SciencesUniversity of HertfordshireAL109ABHatfieldUK
| | - Maria Dimitriadi
- School of Life and Medical SciencesUniversity of HertfordshireAL109ABHatfieldUK
| | - Jatinder Bassin
- School of Life and Medical SciencesUniversity of HertfordshireAL109ABHatfieldUK
| | - Michael T. Cook
- School of Life and Medical SciencesUniversity of HertfordshireAL109ABHatfieldUK
| | - Thais Fedatto Abelha
- Department of Pharmacology, Toxicology and Therapeutic ChemistryFaculty of Pharmacy and Food ScienceUniversity of Barcelona08028BarcelonaSpain
- Institute of Nanoscience and NanotechnologyUniversity of Barcelona (IN2UB)08028BarcelonaSpain
| | - Jesus Calvo‐Castro
- School of Life and Medical SciencesUniversity of HertfordshireAL109ABHatfieldUK
| |
Collapse
|
5
|
Bifari EN, El-Shishtawy RM, Bouzzine SM, Fadili D, Hamidi M. Synthesis, photophysical, electrochemical and computational investigation of dimethine and trimethine cyanine-based dyes. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
6
|
Abeywickrama CS. Large Stokes shift benzothiazolium cyanine dyes with improved intramolecular charge transfer (ICT) for cell imaging applications. Chem Commun (Camb) 2022; 58:9855-9869. [PMID: 35983738 DOI: 10.1039/d2cc03880c] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Intramolecular Charge Transfer (ICT) is a crucial photophysical phenomenon that can be used to improve the Stokes' shift in fluorescent dyes. The introduction of molecular asymmetry is a promising approach to mitigate significant drawbacks of the symmetric cyanine dyes due to their narrow Stokes' shifts (Δλ < 20 nm). In this feature article, we discuss recent progress towards improving the Stokes' shift (Δλ > 100 nm) in benzothiazolium-based fluorophore systems via efficient ICT and recent discoveries related to potentially useful live cell imaging applications of these asymmetric cyanine dyes. This article explores three interesting asymmetric benzothiazolium dye designs (D-π-A, π-A and D-π-2A) in detail while discussing their optical properties. The key advantage of these probes is the synthetic tunability of the probe's photophysical properties and cellular selectivity by simply modifying the donor (D) or the acceptor (A) group in the structure. These new asymmetric ICT fluorophore systems exhibit large Stokes' shifts, high biocompatibility, wash-free staining, red to NIR emission and facile excitation with commercially available laser wavelengths.
Collapse
Affiliation(s)
- Chathura S Abeywickrama
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
7
|
Wang L, He M, Sun Y, Liu L, Ye Y, Liu L, Shen XC, Chen H. Rational engineering of biomimetic flavylium fluorophores for regulating the lysosomal and mitochondrial localization behavior by pH-induced structure switch and application to fluorescence imaging. J Mater Chem B 2022; 10:3841-3848. [PMID: 35470364 DOI: 10.1039/d2tb00181k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Mitochondria and lysosomes, as the important subcellular organelles, play vital roles in cell metabolism and physiopathology. However, there is still no general method to precisely regulate the lysosomal and mitochondrial localization behavior of fluorescent probes except by selecting specific targeting groups. Herein, we proposed a pH-induced structure switch (pHISS) strategy to solve this tricky puzzle. For the proof-of-concept, we have rationally designed and synthesized a series of cationic flavylium derivatives FL-1-9 with tunable pH-induced structure switch through adjusting the electron-donating ability of the substituents. As expected, the co-localization imaging experiments revealed that the lysosomal and mitochondrial localization behavior of FL-1-9 dyes is closely related to their pHISS ability. It is noteworthy that FL cationic dyes with strong electron-donors are not prone to pHISS and can be well enriched in mitochondria, while FL cationic dyes with weak electron-donors are highly susceptible to pHISS and display an unusual lysosome-targeting capability. This also provided a feasible strategy for lysosomal localization without basic groups and presented new application options for some flavylium dyes previously thought to be less stable. Furthermore, FL cationic dyes with medium electron-donor exhibit certain localization abilities both in mitochondria and lysosomes. Finally, through a detailed study of pH-induced structure switch and exploiting the pH inertia brought by the strong electron-donors, a novel NIR ratiometric fluorescent probe with large wavelength-shift was constructed for monitoring mitochondrial H2S in living cells, tumor tissues and living mice, highlighting the value of the pHISS strategy in precisely regulating organelle targeting and constructing corresponding organelle targeting probes.
Collapse
Affiliation(s)
- Liping Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China.
| | - Mengye He
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China.
| | - Yu Sun
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China.
| | - Li Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China.
| | - Yuan Ye
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China.
| | - Lingrong Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China.
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China.
| | - Hua Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China.
| |
Collapse
|
8
|
Ma X, Shi L, Zhang B, Liu L, Fu Y, Zhang X. Recent advances in bioprobes and biolabels based on cyanine dyes. Anal Bioanal Chem 2022; 414:4551-4573. [PMID: 35359180 DOI: 10.1007/s00216-022-03995-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/19/2022] [Accepted: 02/28/2022] [Indexed: 11/30/2022]
Abstract
As a functional dye, cyanine dye promotes the widespread application of bioprobes in the fields of medicine, genetics and environment, owing to its advantages of good photophysical properties, excellent biocompatibility and low toxicity to biological systems. Nowadays, it is mainly used in the fields of life sciences such as fluorescent labeling of biological macromolecules, disease diagnosis, immunoassay and DNA detection, all of which lie at the core of this review. First, we briefly introduced the characteristics and principles of the cyanine dye bioprobe. Afterward, we paid attention to the recent progress of cyanine dye bioprobes widely used in the 10 years from 2010 to 2020. The application of cyanine dyes as bioprobes with different identification elements, including enzymes, organelles, immunity and DNAs, was mainly summarized. Finally, this review gave an outlook on the future development trend of cyanine dye bioprobes. This facilitates the construction of a new type of multifunctional fluorescent probe and promotes its clinical application.
Collapse
Affiliation(s)
- Xiaoying Ma
- College of Chemical Engineering, Hebei and Tangshan Key Laboratory of Medical-Industrial Integration Precision Medicine, North China University of Science and Technology, 063210, Tangshan, China
| | - Lei Shi
- College of Chemical Engineering, Hebei and Tangshan Key Laboratory of Medical-Industrial Integration Precision Medicine, North China University of Science and Technology, 063210, Tangshan, China.
| | - Buyue Zhang
- College of Chemical Engineering, Hebei and Tangshan Key Laboratory of Medical-Industrial Integration Precision Medicine, North China University of Science and Technology, 063210, Tangshan, China
| | - Lu Liu
- College of Chemical Engineering, Hebei and Tangshan Key Laboratory of Medical-Industrial Integration Precision Medicine, North China University of Science and Technology, 063210, Tangshan, China
| | - Yao Fu
- College of Chemical Engineering, Hebei and Tangshan Key Laboratory of Medical-Industrial Integration Precision Medicine, North China University of Science and Technology, 063210, Tangshan, China
| | - Xiufeng Zhang
- College of Chemical Engineering, Hebei and Tangshan Key Laboratory of Medical-Industrial Integration Precision Medicine, North China University of Science and Technology, 063210, Tangshan, China.
| |
Collapse
|
9
|
Cai Y, Liu C, Lei Z, Wang Z, Bian Y, He S, Zeng X. Novel lysosome-targeted fluorescent molecular rotors based on a cyanine-like modular system and their application in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 265:120404. [PMID: 34562859 DOI: 10.1016/j.saa.2021.120404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Two novel fluorescence molecular rotors DpIn and NaIn were designed and synthesized involving of indolium units linked with meta-diphenol or ortha-naphthalenediol moiety, respectively. They underwent intramolecular charge transfer to form a cyanine-like modular system at a physiological pH. In glycerol aqueous solutions, the probe DpIn exhibited NIR strong emission (3-fold) at ca. 700 nm, while the probe NaIn displayed a turn-on emission (8-fold) with a larger Stokes shift (⊿λ ≈ 97 nm). The HeLa cell imaging experiments indicated probe DpIn and NaIn both exhibited excellent selectivity for staining intracellular lysosomes instead of mitochondria. 1H NMR spectra revealed that more electrons were accumulated around benzene ring of indolium groups, which could be the evidence for its basic character leading to the lysosomes targeted staining. Furthermore, the probe NaIn proved to be an ideal lysosome-targeting tracer for monitor the changes of viscosity caused by stimuli in living cells.
Collapse
Affiliation(s)
- Yiping Cai
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Chang Liu
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Zhaoxia Lei
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Zhiming Wang
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yaye Bian
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Song He
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Xianshun Zeng
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China.
| |
Collapse
|
10
|
Bertman KA, Abeywickrama CS, Pang Y. A NIR Emitting Cyanine with Large Stokes' Shift for Mitochondria and Identification of their Membrane Potential Disruption. Chembiochem 2021; 23:e202100516. [PMID: 34783144 DOI: 10.1002/cbic.202100516] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/12/2021] [Indexed: 12/11/2022]
Abstract
An NIR emitting (λem ≈730 nm) cyanine probe ExCy was synthesized in good yields by extending the π-conjugation length (i. e., with furan moiety) to the donor-accepter system. ExCy exhibited a large Stokes' shift (Δλ≈100 nm) due to strong intramolecular charge transfer (ICT), and high fluorescence quantum yield (Φfl ≈0.47 in DCM). Due to its low fluorescence in an aqueous environment (Φfl ≈0.007 in H2 O), the probe exhibited the potential of achieving a large fluorescence turn-on upon entering a hydrophobic cellular environment. Fluorescence confocal microscopy studies revealed that ExCy was readily excitable with a far-red laser line (i. e., 640 nm) while the corresponding emission was collected in the NIR region. ExCy exhibited excellent selectivity towards live cell mitochondria according to the co-localization studies. The probe also exhibited high photostability, long-term imaging ability and wash-free staining ability, when being applied to live cells. Our studies indicated that the mitochondrial localization of ExCy was dependent on the membrane potential of the mitochondria. ExCy was successfully utilized as a mitochondrial membrane potential dysfunction indicator to visually identify cells with mitochondrial dysfunction via fluorescence confocal microscopy. ExCy was further examined for potential in vivo imaging of zebrafish.
Collapse
Affiliation(s)
- Keti A Bertman
- Department of Chemistry, University of Akron, Akron, Ohio, 44325, USA
| | | | - Yi Pang
- Department of Chemistry, University of Akron, Akron, Ohio, 44325, USA.,Maurice Morton Institute of Polymer Science, University of Akron, Akron, Ohio, 44325, USA
| |
Collapse
|
11
|
Wang SS, Du SY, He X, Qi YM, Li XL, Rong RX, Cao ZR, Wang KR. Nucleus-targeting imaging and enhanced cytotoxicity based on naphthalimide derivatives. Bioorg Chem 2021; 115:105188. [PMID: 34314915 DOI: 10.1016/j.bioorg.2021.105188] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 12/13/2022]
Abstract
Organelles possess critical biological effects in cellular processes. However, the relationship between organelle targeting and antitumour activity is a challenging issue. In this paper, a number of amide/acylhydrazine modified naphthalimide derivatives were designed and synthesized. Interestingly, amide modified naphthalimide derivatives NI-A-NH and NI-C-NH with (R)-piperdine and (S)-pyrrolidine functionalization exhibited enhanced cytotoxicity compared with acylhydrazine modified derivatives NI-A-2NH and NI-C-2NH. However, acylhydrazine modified derivatives NI-B-2NH and NI-D-2NH with (S)-piperdine and achiral piperdine conjugates possessed better cytotoxicity than NI-B-NH and NI-D-NH with amide modifications. Fluorescence imaging, DNA binding interactions and cell cycle analyses were further completed to clarify that the nucleus-targeting effects showed enhanced cytotoxic activity, strong DNA binding and the blocking of cells in S phase. These results provide a preliminary theoretical basis for the further design of organelle-targeting antitumour drugs.
Collapse
Affiliation(s)
- Shan-Shan Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Baoding 071002, PR China; Department of Immunology, School of Basic Medical Science, Hebei University, Baoding 071002, PR China
| | - Shao-Ying Du
- Nursing School, Hebei University, Baoding 071002, PR China
| | - Xu He
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Baoding 071002, PR China
| | - Yu-Ming Qi
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Baoding 071002, PR China
| | - Xiao-Liu Li
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Baoding 071002, PR China.
| | - Rui-Xue Rong
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Baoding 071002, PR China; Department of Immunology, School of Basic Medical Science, Hebei University, Baoding 071002, PR China.
| | - Zhi-Ran Cao
- Department of Immunology, School of Basic Medical Science, Hebei University, Baoding 071002, PR China.
| | - Ke-Rang Wang
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Baoding 071002, PR China.
| |
Collapse
|
12
|
Novel (Phenothiazinyl)Vinyl-Pyridinium Dyes and Their Potential Applications as Cellular Staining Agents. Int J Mol Sci 2021; 22:ijms22062985. [PMID: 33804193 PMCID: PMC7999001 DOI: 10.3390/ijms22062985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 11/24/2022] Open
Abstract
We report here the synthesis and structural characterization of novel cationic (phenothiazinyl)vinyl-pyridinium (PVP) dyes, together with optical (absorption/emission) properties and their potential applicability as fluorescent labels. Convective heating, ultrasound irradiation and mechanochemical synthesis were considered as alternative synthetic methodologies proficient for overcoming drawbacks such as long reaction time, nonsatisfactory yields or solvent requirements in the synthesis of novel dye (E)-1-(3-chloropropyl)-4-(2-(10-methyl-10H-phenothiazin-3-yl)vinyl)pyridin-1-ium bromide 3d and its N-alkyl-2-methylpyridinium precursor 1c. The trans geometry of the newly synthesized (E)-4-(2-(7-bromo-10-ethyl-10H-phenothiazin-3-yl)vinyl)-1-methylpyridin-1-ium iodide 3b and (E)-1-methyl-4-(2-(10-methyl-10H-phenothiazin-3-yl)vinyl)pyridin-1-ium tetrafluoroborate 3a′ was confirmed by single crystal X-ray diffraction. A negative solvatochromism of the dyes in polar solvents was highlighted by UV-Vis spectroscopy and explanatory insights were supported by molecular modeling which suggested a better stabilization of the lowest unoccupied molecular orbitals (LUMO). The photostability of the dye 3b was investigated by irradiation at 365 nm in different solvents, while the steady-state and time-resolved fluorescence properties of dye 3b and 3a′ in solid state were evaluated under one-photon excitation at 485 nm. The in vitro cytotoxicity of the new PVP dyes on B16-F10 melanoma cells was evaluated by WST-1 assay, while their intracellular localization was assessed by epi-fluorescence conventional microscopy imaging as well as one- and two-photon excited confocal fluorescence lifetime imaging microscopy (FLIM). PVP dyes displayed low cytotoxicity, good internalization inside melanoma cells and intense fluorescence emission inside the B16-F10 murine melanoma cells, making them suitable staining agents for imaging applications.
Collapse
|
13
|
Tao Y, Zheng Y, Zhai Q, Wei D. Recent advances in the development of small molecules targeting RNA G-quadruplexes for drug discovery. Bioorg Chem 2021; 110:104804. [PMID: 33740677 DOI: 10.1016/j.bioorg.2021.104804] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/27/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022]
Abstract
Extensive evidence indicates that RNA G-quadruplexes have associated with some important cellular events. Investigation of RNA G-quadruplexes is thus vital to revealing their biofunctions. Several small molecules have been developed to target RNA G-quadruplexes to date. Some of the small molecules showed significantly light-up fluorescence signals upon binding to RNA G-quadruplexes, while some of them regulated the biofunctions of RNA G-quadruplexes. In this mini-review, the small molecules divided into four kinds are expounded which focused mainly on their structural features and biological activities. Moreover, we raised the current challenges and promising prospects. This mini-review might contribute to exploiting more sophisticated small molecules targeting RNA G-quadruplexes with high specificity based on the reported chemical structural features.
Collapse
Affiliation(s)
- Yanfei Tao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingge Zheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Qianqian Zhai
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Department of Chemistry, College of Science, Huazhong Agricultural University, Wuhan 430070, China.
| | - Dengguo Wei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|