1
|
Harper CP, Day A, Tsingos M, Ding E, Zeng E, Stumpf SD, Qi Y, Robinson A, Greif J, Blodgett JAV. Critical analysis of polycyclic tetramate macrolactam biosynthetic gene cluster phylogeny and functional diversity. Appl Environ Microbiol 2024; 90:e0060024. [PMID: 38771054 PMCID: PMC11218653 DOI: 10.1128/aem.00600-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 04/25/2024] [Indexed: 05/22/2024] Open
Abstract
Polycyclic tetramate macrolactams (PTMs) are bioactive natural products commonly associated with certain actinobacterial and proteobacterial lineages. These molecules have been the subject of numerous structure-activity investigations since the 1970s. New members continue to be pursued in wild and engineered bacterial strains, and advances in PTM biosynthesis suggest their outwardly simplistic biosynthetic gene clusters (BGCs) belie unexpected product complexity. To address the origins of this complexity and understand its influence on PTM discovery, we engaged in a combination of bioinformatics to systematically classify PTM BGCs and PTM-targeted metabolomics to compare the products of select BGC types. By comparing groups of producers and BGC mutants, we exposed knowledge gaps that complicate bioinformatics-driven product predictions. In sum, we provide new insights into the evolution of PTM BGCs while systematically accounting for the PTMs discovered thus far. The combined computational and metabologenomic findings presented here should prove useful for guiding future discovery.IMPORTANCEPolycyclic tetramate macrolactam (PTM) pathways are frequently found within the genomes of biotechnologically important bacteria, including Streptomyces and Lysobacter spp. Their molecular products are typically bioactive, having substantial agricultural and therapeutic interest. Leveraging bacterial genomics for the discovery of new related molecules is thus desirable, but drawing accurate structural predictions from bioinformatics alone remains challenging. This difficulty stems from a combination of previously underappreciated biosynthetic complexity and remaining knowledge gaps, compounded by a stream of yet-uncharacterized PTM biosynthetic loci gleaned from recently sequenced bacterial genomes. We engaged in the following study to create a useful framework for cataloging historic PTM clusters, identifying new cluster variations, and tracing evolutionary paths for these molecules. Our data suggest new PTM chemistry remains discoverable in nature. However, our metabolomic and mutational analyses emphasize the practical limitations of genomics-based discovery by exposing hidden complexity.
Collapse
Affiliation(s)
| | - Anna Day
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Maya Tsingos
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Edward Ding
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Elizabeth Zeng
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Spencer D. Stumpf
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Yunci Qi
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Adam Robinson
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jennifer Greif
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | | |
Collapse
|
2
|
Elsbaey M, Samaru Y, Elekhnawy E, Oku N, Igarashi Y. A new polycyclic tetramate macrolactam from Allostreptomyces RD068384: stereochemistry and antifungal potential. J Antibiot (Tokyo) 2024; 77:393-396. [PMID: 38594387 DOI: 10.1038/s41429-024-00705-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 04/11/2024]
Abstract
A new polycyclic tetramate macrolactam designated allostreptamide (1), together with four known congeners, were isolated from the culture extract of Allostreptomyces RD068384. The planar structure of the new compound was elucidated through interpretation of NMR and MS data. The absolute configuration was determined through ROESY and ECD analyses. The isolated compounds revealed antifungal potential against fourteen Candida albicans isolates with minimum inhibitory concentrations (MICs) ranging from 64 to 2048 µg ml-1. Compound 3 showed antibiofilm action and considerably reduced the viability of five isolates (36%) in the formed biofilm. The qRT-PCR revealed that 3 downregulated the BCR1, PLB2, ALS1, and SAP5 biofilm related gene expression. Therefore, 3 could be a promising antifungal therapy for C. albicans infections.
Collapse
Affiliation(s)
- Marwa Elsbaey
- Pharmacognosy Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan.
| | - Yuki Samaru
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Naoya Oku
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Yasuhiro Igarashi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| |
Collapse
|
3
|
The Diversity of Deep-Sea Actinobacteria and Their Natural Products: An Epitome of Curiosity and Drug Discovery. DIVERSITY 2022. [DOI: 10.3390/d15010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Bioprospecting of novel antibiotics has been the conventional norm of research fostered by researchers worldwide to combat drug resistance. With the exhaustion of incessant leads, the search for new chemical entities moves into uncharted territories such as the deep sea. The deep sea is a furthermost ecosystem with much untapped biodiversity thriving under extreme conditions. Accordingly, it also encompasses a vast pool of ancient natural products. Actinobacteria are frequently regarded as the bacteria of research interest due to their inherent antibiotic-producing capabilities. These interesting groups of bacteria occupy diverse ecological habitats including a multitude of different deep-sea habitats. In this review, we provide a recent update on the novel species and compounds of actinomycetes from the deep-sea environments within a period of 2016–2022. Within this period, a total of 24 new species of actinomycetes were discovered and characterized as well as 101 new compounds of various biological activities. The microbial communities of various deep-sea ecosystems are the emerging frontiers of bioprospecting.
Collapse
|
4
|
Liu W, Wang J, Li S, Zhang H, Meng L, Liu L, Ping W, Du C. Genomic and Biocontrol Potential of the Crude Lipopeptide by Streptomyces bikiniensis HD-087 Against Magnaporthe oryzae. Front Microbiol 2022; 13:888645. [PMID: 35756060 PMCID: PMC9218715 DOI: 10.3389/fmicb.2022.888645] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/09/2022] [Indexed: 11/29/2022] Open
Abstract
Rice blast caused by Magnaporthe oryzae is one of the most destructive plant diseases. The secondary metabolites of Streptomyces have potential as biological control agents against M. oryzae. However, no commercial secondary antimicrobial products of Streptomyces have been found by gene prediction, and, particularly relevant for this study, a biocontrol agent obtained from Streptomyces bikiniensis has yet to be found. In this research, genomic analysis was used to predict the secondary metabolites of Streptomyces, and the ability to develop biocontrol pharmaceuticals rapidly was demonstrated. The complete genome of the S. bikiniensis HD-087 strain was sequenced and revealed a number of key functional gene clusters that contribute to the biosynthesis of active secondary metabolites. The crude extract of lipopeptides (CEL) predicted by NRPS gene clusters was extracted from the fermentation liquid of S. bikiniensis HD-087 by acid precipitation followed by methanol extraction, and surfactins, iturins, and fengycins were identified by liquid chromatography-mass spectrometry (LC–MS). In vitro, the CEL of this strain inhibited spore germination and appressorial formation of M. oryzae by destroying membrane integrity and through the leakage of cellular components. In vivo, this CEL reduced the disease index of rice blast by approximately 76.9% on detached leaves, whereas its control effect on leaf blast during pot experiments was approximately 60%. Thus, the S. bikiniensis CEL appears to be a highly suitable alternative to synthetic chemical fungicides for controlling M. oryzae.
Collapse
Affiliation(s)
- Wei Liu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Jiawen Wang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Shan Li
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Huaqian Zhang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Li Meng
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Liping Liu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Wenxiang Ping
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Chunmei Du
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, China
| |
Collapse
|
5
|
Lacey HJ, Rutledge PJ. Recently Discovered Secondary Metabolites from Streptomyces Species. Molecules 2022; 27:molecules27030887. [PMID: 35164153 PMCID: PMC8838263 DOI: 10.3390/molecules27030887] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 12/13/2022] Open
Abstract
The Streptomyces genus has been a rich source of bioactive natural products, medicinal chemicals, and novel drug leads for three-quarters of a century. Yet studies suggest that the genus is capable of making some 150,000 more bioactive compounds than all Streptomyces secondary metabolites reported to date. Researchers around the world continue to explore this enormous potential using a range of strategies including modification of culture conditions, bioinformatics and genome mining, heterologous expression, and other approaches to cryptic biosynthetic gene cluster activation. Our survey of the recent literature, with a particular focus on the year 2020, brings together more than 70 novel secondary metabolites from Streptomyces species, which are discussed in this review. This diverse array includes cyclic and linear peptides, peptide derivatives, polyketides, terpenoids, polyaromatics, macrocycles, and furans, the isolation, chemical structures, and bioactivity of which are appraised. The discovery of these many different compounds demonstrates the continued potential of Streptomyces as a source of new and interesting natural products and contributes further important pieces to the mostly unfinished puzzle of Earth’s myriad microbes and their multifaceted chemical output.
Collapse
Affiliation(s)
- Heather J. Lacey
- School of Chemistry, The University of Sydney, Camperdown, Sydney, NSW 2006, Australia
- Microbial Screening Technologies, Smithfield, Sydney, NSW 2164, Australia
- Correspondence: (H.J.L.); (P.J.R.); Tel.: +61-2-9351-5020 (P.J.R)
| | - Peter J. Rutledge
- School of Chemistry, The University of Sydney, Camperdown, Sydney, NSW 2006, Australia
- Correspondence: (H.J.L.); (P.J.R.); Tel.: +61-2-9351-5020 (P.J.R)
| |
Collapse
|
6
|
Yan Y, Wang H, Song Y, Zhu D, Shen Y, Li Y. Combinatorial Biosynthesis of Oxidized Combamides Using Cytochrome P450 Enzymes from Different Polycyclic Tetramate Macrolactam Pathways. ACS Synth Biol 2021; 10:2434-2439. [PMID: 34543003 DOI: 10.1021/acssynbio.1c00178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polycyclic tetramate macrolactams (PoTeMs) are a family of natural products containing a tetramic acid moiety and a polycyclic system. Due to the valuable biological activities of different PoTeMs and the genetic simplicity of their biosynthetic genes, it is highly desirable to manipulate the biosynthesis of PoTeMs by swapping modification genes between different pathways. Herein, by combining the cytochrome P450 (CYP) enzymes from different PoTeM pathways with the combamides' biosynthetic genes, the new combamides G (3), I (5), and J (6) along with the known combamides B (1), D (2), and H (4) were identified from the recombinant strains. Combamides G (3), H (4), and J (6) displayed cytotoxic activity against human cancer cell lines. Furthermore, our results demonstrated for the first time the substrate specificity of the PoTeM-related CYPs in vivo, which will facilitate the engineered biosynthesis of other PoTeMs in the future.
Collapse
Affiliation(s)
- Yaqian Yan
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Haoxin Wang
- State Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yuliang Song
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Deyu Zhu
- School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yuemao Shen
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yaoyao Li
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|