1
|
Li WX, Lu YF, Wang F, Ai B, Jin SB, Li S, Xu GH, Jin CH. Application of 18β-glycyrrhetinic acid in the structural modification of natural products: a review. Mol Divers 2025; 29:739-781. [PMID: 38683490 DOI: 10.1007/s11030-024-10864-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/26/2024] [Indexed: 05/01/2024]
Abstract
18β-Glycyrrhetinic acid (GA) is an oleane-type pentacyclic triterpene saponin obtained from glycyrrhizic acid by removing 2 glucuronic acid groups. GA and its analogues are active substances of glycyrrhiza aicd, with similar structure and important pharmacological effects such as anti-inflammatory, anti-diabetes, anti-tumor and anti-fibrosis. Although GA combined compounds are in the clinical trial stages, its application potential is severely restricted by its low bioavailability, water solubility and membrane permeability. In this article, synthetic methods and structure-activity relationships (SARs) of GA derivatives from 2018 to present are reviewed based on pharmacological activity. It is hoped that this review can provide reference for the future development of potential GA preclinical candidate compounds, and furnish ideas for the development of pentacyclic triterpenoid lead compounds.
Collapse
Affiliation(s)
- Wan-Xin Li
- Key Laboratory of Natural Medicines of the Changbai Mountain Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Ye-Fang Lu
- Interdisciplinary Program of Biological Function Molecules, College of Integration Science, Yanbian University, Yanji, 133002, China
| | - Fei Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Bing Ai
- Key Laboratory of Natural Medicines of the Changbai Mountain Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Sheng-Bo Jin
- Interdisciplinary Program of Biological Function Molecules, College of Integration Science, Yanbian University, Yanji, 133002, China
| | - Siqi Li
- Key Laboratory of Natural Medicines of the Changbai Mountain Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China.
| | - Guang-Hua Xu
- Key Laboratory of Natural Medicines of the Changbai Mountain Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China.
| | - Cheng-Hua Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China.
- Interdisciplinary Program of Biological Function Molecules, College of Integration Science, Yanbian University, Yanji, 133002, China.
| |
Collapse
|
2
|
Xiang L, Sun W, Zhang S, Zhang H, Lv B, Qin L, Li C. Discovery, Biomanufacture, and Derivatization of Licorice Triterpenoids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4-29. [PMID: 39644261 DOI: 10.1021/acs.jafc.4c08110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Triterpenoids are the major active constituents of licorice, a well-known traditional medicinal herb. Licorice triterpenoids, represented by glycyrrhizin and glycyrrhetic acid, have a high structural diversity and are excellent lead compounds for the development of potent pharmaceuticals. However, their further application can be limited by insufficient activities, low bioavailability, and the presence of side effects, as well as the inefficiency of traditional plant extraction processes for compound production. To address these issues, researchers are focusing on rare triterpenoid components in the genus Glycyrrhiza and developing derivatives to preserve or enhance the original physiological activities with improved bioavailability and reduced side effects. At the same time, synthetic biology offers opportunities to shorten the production cycle, create eco-friendly manufacturing processes, and reduce the cost of producing licorice triterpenoids. Although much progress has been achieved in this field in recent years, there is still a lack of a comprehensive review to summarize the overall characteristics of licorice triterpenoids rather than glycyrrhizin and glycyrrhetinic acid. Based on this, our review comprehensively outlines the structures, origins, and pharmacological activities of licorice triterpenoids and predicts their pharmacological activities using the drugCIPHER algorithm. Furthermore, this paper reviews the advances and strategies for the biomanufacturing of licorice triterpenoids using synthetic biology methods and outlines the perspectives and structure-activity relationships for the derivatization of licorice triterpenoids. This review provides new insights into the discovery and synthesis of pharmaceuticals derived from natural triterpenes.
Collapse
Affiliation(s)
- Lin Xiang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Wentao Sun
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Siqin Zhang
- Department of Automation, Institute for TCM-X, MOE Key Laboratory of Bioinformatics/Bioinformatics Division, BNRIST, Tsinghua University, Beijing 100084, China
| | - Haocheng Zhang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Bo Lv
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Lei Qin
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Joos M, Vackier T, Mees MA, Coppola G, Alexandris S, Geunes R, Thielemans W, Steenackers HPL. Antimicrobial Activity of Glycyrrhizinic Acid Is pH-Dependent. ACS APPLIED BIO MATERIALS 2024; 7:8223-8235. [PMID: 39592134 DOI: 10.1021/acsabm.4c00942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
In recent years, antimicrobial hydrogels have attracted much attention in biomedical applications due to their biocompatibility and high water content. Glycyrrhizin (GA) is an antimicrobial that can form pH-dependent hydrogels due to the three carboxyl groups of GA that differ in pKa value. The influence of GA protonation on the antimicrobial activity, however, has never been studied before. Therefore, we investigated the effect of the pH on the antimicrobial activity of GA against Pseudomonas aeruginosa, Staphylococcus aureus, MRSA, Staphylococcus epidermidis, Acinetobacter baumannii, Klebsiella pneumoniae, Klebsiella aerogenes, and two strains of Escherichia coli. In general, the antimicrobial activity of GA increases as a function of decreasing pH (and thus increasing protonation of GA). More specifically, fully protonated GA hydrogels (pH = 3) are required for growth inhibition and killing of E. coli UTI89 and Klebsiella in the suspension above the hydrogel, while the staphylococci strains and A. baumannii are already inhibited by fully deprotonated GA (pH = 6.8). P. aeruginosa and E. coli DH5α showed moderate susceptibility, as they are completely inhibited by a hydrogel at pH 3.8, containing partly protonated GA, but not by fully deprotonated GA (pH = 6.8). The antimicrobial activity of the hydrogel cannot solely be attributed to the resulting pH decrease of the suspension, as the presence of GA significantly increases the activity. Instead, this increased activity is due to the release of GA from the hydrogel into the suspension, where it directly interacts with the bacteria. Moreover, we provide evidence indicating that the pH dependency of the antimicrobial activity is due to differences in GA protonation state by treating the pathogens with GA solutions differing in their GA protonation distribution. Finally, we show by LC-MS that there is no chemical or enzymatic breakdown of GA. Overall, our results demonstrate that the pH influences not only the physical but also the antimicrobial properties of the GA hydrogels.
Collapse
Affiliation(s)
- Mathieu Joos
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven 3001, Belgium
| | - Thijs Vackier
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven 3001, Belgium
| | - Maarten A Mees
- Department of Chemical Engineering, KU Leuven, Sustainable Materials Lab (SusMat), Kortrijk 8500, Belgium
| | - Guglielmo Coppola
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven 3001, Belgium
- Department of Chemistry, KU Leuven - Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Leuven 3001, Belgium
| | - Stelios Alexandris
- Department of Chemical Engineering, KU Leuven - Laboratory for Soft Matter, Rheology and Technology (SMaRT), Leuven 3001, Belgium
| | - Robbe Geunes
- Department of Chemical Engineering, KU Leuven, Sustainable Materials Lab (SusMat), Kortrijk 8500, Belgium
| | - Wim Thielemans
- Department of Chemical Engineering, KU Leuven, Sustainable Materials Lab (SusMat), Kortrijk 8500, Belgium
| | - Hans P L Steenackers
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven 3001, Belgium
| |
Collapse
|
4
|
Marreddy RKR, Phelps GA, Churion K, Picker J, Powell R, Cherian PT, Bowling JJ, Stephan CC, Lee RE, Hurdle JG. Chemical genetic analysis of enoxolone inhibition of Clostridioides difficile toxin production reveals adenine deaminase and ATP synthase as antivirulence targets. J Biol Chem 2024; 300:107839. [PMID: 39343002 PMCID: PMC11566853 DOI: 10.1016/j.jbc.2024.107839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/06/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024] Open
Abstract
Toxins TcdA and TcdB are the main virulence factors of Clostridioides difficile, a leading cause of hospital-acquired diarrhea. Despite their importance, there is a significant knowledge gap of druggable targets for inhibiting toxin production. To address this, we screened nonantibiotic phytochemicals to identify potential chemical genetic probes to discover antivirulence drug targets. This led to the identification of 18β-glycyrrhetinic acid (enoxolone), a licorice metabolite, as an inhibitor of TcdA and TcdB biosynthesis. Using affinity-based proteomics, potential targets were identified as ATP synthase subunit alpha (AtpA) and adenine deaminase (Ade, which catalyzes conversion of adenine to hypoxanthine in the purine salvage pathway). To validate these targets, a multifaceted approach was adopted. Gene silencing of ade and atpA inhibited toxin biosynthesis, while surface plasmon resonance and isothermal titration calorimetry molecular interaction analyses revealed direct binding of enoxolone to Ade. Metabolomics demonstrated enoxolone induced the accumulation of adenosine, while depleting hypoxanthine and ATP in C. difficile. Transcriptomics further revealed enoxolone dysregulated phosphate uptake genes, which correlated with reduced cellular phosphate levels. These findings suggest that enoxolone's cellular action is multitargeted. Accordingly, supplementation with both hypoxanthine and triethyl phosphate, a phosphate source, was required to fully restore toxin production in the presence of enoxolone. In conclusion, through the characterization of enoxolone, we identified promising antivirulence targets that interfere with nucleotide salvage and ATP synthesis, which may also block toxin biosynthesis.
Collapse
Affiliation(s)
- Ravi K R Marreddy
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, USA
| | - Gregory A Phelps
- Department of Chemical Biology and Therapeutics, St Jude Children's Research Hospital, Memphis, Tennessee, USA; Graduate School of Biomedical Sciences, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Kelly Churion
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, USA
| | - Jonathan Picker
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, USA
| | - Reid Powell
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, USA
| | - Philip T Cherian
- Department of Chemical Biology and Therapeutics, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - John J Bowling
- Department of Chemical Biology and Therapeutics, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Clifford C Stephan
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, USA
| | - Richard E Lee
- Department of Chemical Biology and Therapeutics, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Julian G Hurdle
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, USA.
| |
Collapse
|
5
|
Yang Z, Li X, Liu W, Wang G, Ma J, Jiang L, Yu D, Ding Y, Li Y. One-Step Organic Synthesis of 18β-Glycyrrhetinic Acid-Anthraquinone Ester Products: Exploration of Antibacterial Activity and Structure-Activity Relationship, Toxicity Evaluation in Zebrafish. Chem Biol Drug Des 2024; 104:e14631. [PMID: 39317695 DOI: 10.1111/cbdd.14631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
To combine the activity characteristics of 18β-glycyrrhetinic acid (18β-GA) and anthraquinone compounds (rhein and emodin), reduce toxicity, and explore the structure-activity relationship (SAR) of anthraquinones, 18β-GA-anthraquinone ester compounds were synthesized by one-step organic synthesis. The products were separated and purified by HPLC and characterized by NMR and EI-MS. It was finally determined as di-18β-GA-3-rhein ester (1, New), GA dimer (2, known), 18β-GA-3-emodin ester (3, known), and di-18β-GA-1-emodin ester (4, new). The MIC of three reactants and four products against Escherichia coli and Staphylococcus aureus were detected in vitro. Its developmental toxicity and cardiotoxicity were assessed using zebrafish embryos. The experimental results showed that rhein had the best antibacterial activity against Staphylococcus aureus with MIC50 of 2.4 mM, and it was speculated that -COOH, -OH, and intramolecular hydrogen bonds in anthraquinone compounds would enhance the antibacterial effect, while the presence of-CH3 might weaken the antibacterial activity. Product 1 increased the hatching rate and survival rate of zebrafish embryos and reduced the malformation rate and cardiomyocyte apoptosis. This experiment lays the foundation for further studying the SAR of anthraquinones and providing new drug candidates.
Collapse
Affiliation(s)
- Zhaoyi Yang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xueyan Li
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Wei Liu
- School of Health and Welfare, Changchun Humanities and Sciences College, Changchun, Jilin, China
| | - Guangyue Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Jiahui Ma
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Lulu Jiang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Denghui Yu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yuling Ding
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yong Li
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
6
|
Li M, Chen B, Xu M, Li F, Geng Y, Chen D, Ouyang P, Huang X, Deng Y. Identification of TonB-dependent siderophore receptor inhibitors against Flavobacterium columnare using a structure-based high-throughput virtual screening method. Front Microbiol 2024; 15:1392178. [PMID: 38835482 PMCID: PMC11148330 DOI: 10.3389/fmicb.2024.1392178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/07/2024] [Indexed: 06/06/2024] Open
Abstract
TonB-dependent siderophore receptors play a critical transport role for Flavobacterium columnare virulence formation and growth, and have become valuable targets for the development of novel antimicrobial agents. Traditional Chinese medicine has demonstrated notable efficacy in the treatment of fish diseases and includes potential antibacterial agents. Herein, we performed molecular docking-based virtual screening to discover novel TonB-dependent siderophore receptor inhibitors from traditional Chinese medicine and provide information for developing novel antibacterial agents. Firstly, we efficiently obtained 11 potential inhibitors with desirable drug-like characteristics from thousands of compounds in the TCM library based on virtual screening and property prediction. The antibacterial activity of Enoxolone, along with its interaction characteristics, were determined via an MIC assay and molecular dynamic simulation. Transcriptional profiling, along with validation experiments, subsequently revealed that an insufficient uptake of iron ions by bacteria upon binding to the TonB-dependent siderophore receptors is the antibacterial mechanism of Enoxolone. Finally, Enoxolone's acceptable toxicity was illustrated through immersion experiments. In summary, we have used virtual screening techniques for the first time in the development of antimicrobial agents in aquaculture. Through this process, we have identified Enoxolone as a promising compound targeting the TonB-dependent siderophore receptor of F. columnare. In addition, our findings will provide new ideas for the advancement of innovative antimicrobial medications in aquaculture.
Collapse
Affiliation(s)
- Minghao Li
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Baipeng Chen
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ming Xu
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Fulong Li
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yi Geng
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ping Ouyang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaoli Huang
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yongqiang Deng
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Baltina L, Karimova E, Nugumanov T, Petrova S, Gabdrakhmanova S, Khisamutdinova R. Synthesis, modification and biological activity of 2,3-indoles of Glycyrrhetinic acid. Nat Prod Res 2024:1-6. [PMID: 38454327 DOI: 10.1080/14786419.2024.2326844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
The synthesis of 2,3-indoles of Glycyrrhetinic acid (GLA) and its methyl ester was carried out by the Fischer reaction. Reductive transformations of GLA methyl ester 2,3-indole 3a were carried out to obtain 11-deoxo- and 9,12-diene analogs. N-methylation of 2,3-indole 3a gave N-methyl-indole-11-oxo-18β-olean-12-en-30-oic acid. The antiulcer and anti-inflammatory activity of 2,3-indole 3a was studied in rats and mice. It was found, compound 3a exhibied a pronounced antiulcer activity in the indomethacin model of ulcers in rats and anti-inflammatory activity in the carrageenan model of acute edoema in mice, at a dose of 50 mg/kg. This is the first report of anti-ulcer and anti-inflammatory activities of 2,3-indolo-GLA derivatives.
Collapse
Affiliation(s)
- Lidia Baltina
- Ufa Institute of Chemistry, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russian Federation
| | - Elza Karimova
- Ufa Institute of Chemistry, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russian Federation
| | - Timur Nugumanov
- Ufa Institute of Chemistry, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russian Federation
| | - Svetlana Petrova
- Ufa Institute of Chemistry, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russian Federation
| | - Svetlana Gabdrakhmanova
- Ufa Institute of Chemistry, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russian Federation
| | - Regina Khisamutdinova
- Ufa Institute of Chemistry, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russian Federation
| |
Collapse
|
8
|
Chen L, Gong J, Yong X, Li Y, Wang S. A review of typical biological activities of glycyrrhetinic acid and its derivatives. RSC Adv 2024; 14:6557-6597. [PMID: 38390501 PMCID: PMC10882267 DOI: 10.1039/d3ra08025k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
Glycyrrhetinic acid, a triterpenoid compound primarily sourced from licorice root, exhibits noteworthy biological attributes, including anti-inflammatory, anti-tumor, antibacterial, antiviral, and antioxidant effects. Despite these commendable effects, its further advancement and application, especially in clinical use, have been hindered by its limited druggability, including challenges such as low solubility and bioavailability. To enhance its biological activity and pharmaceutical efficacy, numerous research studies focus on the structural modification, associated biological activity data, and underlying mechanisms of glycyrrhetinic acid and its derivatives. This review endeavors to systematically compile and organize glycyrrhetinic acid derivatives that have demonstrated outstanding biological activities over the preceding decade, delineating their molecular structures, biological effects, underlying mechanisms, and future prospects for assisting researchers in finding and designing novel glycyrrhetinic acid derivatives, foster the exploration of structure-activity relationships, and aid in the screening of potential candidate compounds.
Collapse
Affiliation(s)
- Liang Chen
- Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy Hainan Medical University No. 3, XueYuan Road, LongHua District Haikou City Hainan Province 571199 China
| | - Jingwen Gong
- Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy Hainan Medical University No. 3, XueYuan Road, LongHua District Haikou City Hainan Province 571199 China
| | - Xu Yong
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University Shanghai 200433 China
| | - Youbin Li
- Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy Hainan Medical University No. 3, XueYuan Road, LongHua District Haikou City Hainan Province 571199 China
| | - Shuojin Wang
- Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy Hainan Medical University No. 3, XueYuan Road, LongHua District Haikou City Hainan Province 571199 China
| |
Collapse
|
9
|
Baccari W, Saidi I, Filali I, Znati M, Lazrag H, Tounsi M, Marchal A, Waffo-Teguo P, Ben Jannet H. Semi-synthesis, α-amylase inhibition, and kinetic and molecular docking studies of arylidene-based sesquiterpene coumarins isolated from Ferula tunetana Pomel ex Batt. RSC Adv 2024; 14:4654-4665. [PMID: 38318626 PMCID: PMC10840089 DOI: 10.1039/d3ra07540k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/13/2024] [Indexed: 02/07/2024] Open
Abstract
Despite all the significant progresses made to enhance the efficacy of the existing bank of drugs used to manage and cure type II diabetes mellitus, there is still a need to search and develop novel bioactive compounds with superior efficacy and minimal adverse effects. This study describes the valorization of the natural bioactive sesquiterpene coumarin via the semi-synthesis of new analogs and the study of their α-amylase inhibition activity. The sesquiterpene coumarin named coladonin (1) was quantitatively isolated from the chloroform extract of endemic Ferula tunetana roots. Subsequently, the oxidation of 1via the Jones oxidation reaction, used as a key reaction, afforded precursor 2. The condensation of oxidized coladonin (2) with various aryl aldehydes provided a series of new arylidene-based sesquiterpene coumarin derivatives (3a-m), which were characterized by NMR and ESI-HRMS experiments. All derivatives evaluated in vitro for their α-amylase inhibitory potential showed interesting α-amylase inhibition with IC50 values ranging from 7.24 to 28.98 μM. Notably, compounds 3k and 3m exhibited lower IC50 values (7.24 μM and 8.38 μM, respectively) compared to the standard (acarbose: IC50 = 9.83 μM). In addition, the structure-activity relationship (SAR) for all the compounds was studied. The most active compounds were found to be mixed-type inhibitors, which was revealed by kinetic studies. Furthermore, molecular in silico docking studies were established for all synthesized analogs with the binding site for the α-amylase enzyme.
Collapse
Affiliation(s)
- Wiem Baccari
- University of Monastir, Faculty of Science of Monastir, Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Team: Medicinal Chemistry and Natural Products, Avenue of Environment 5019 Monastir Tunisia
| | - Ilyes Saidi
- University of Monastir, Faculty of Science of Monastir, Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Team: Medicinal Chemistry and Natural Products, Avenue of Environment 5019 Monastir Tunisia
| | - Insaf Filali
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University Al-Kharj 11942 Saudi Arabia
| | - Mansour Znati
- University of Monastir, Faculty of Science of Monastir, Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Team: Medicinal Chemistry and Natural Products, Avenue of Environment 5019 Monastir Tunisia
| | - Houda Lazrag
- University of Monastir, Higher Institute of Biotechnology of Monastir, Laboratory of Genetics, Biodiversity and Bioresources Valuation LR11S41 5019 Monastir Tunisia
| | - Moncef Tounsi
- Preparatory Year Deanship, Basic Science Department, Prince Sattam Bin Abdulaziz University Alkharj 11942 Saudi Arabia
| | - Axel Marchal
- Université de Bordeaux, Institut des Sciences de la Vigne et du Vin, EA 4577, Unité de Recherche Œnologie 210 Chemin de Leysotte, CS50008 33882 Villenave d'Ornon France
- Université de Bordeaux, Bordeaux INP, Bordeaux Sciences Agro, UMR 1366 OENOLOGIE, ISVV 33140 Villenave d'Ornon France
| | - Pierre Waffo-Teguo
- Université de Bordeaux, Institut des Sciences de la Vigne et du Vin, EA 4577, Unité de Recherche Œnologie 210 Chemin de Leysotte, CS50008 33882 Villenave d'Ornon France
- Université de Bordeaux, Bordeaux INP, Bordeaux Sciences Agro, UMR 1366 OENOLOGIE, ISVV 33140 Villenave d'Ornon France
| | - Hichem Ben Jannet
- University of Monastir, Faculty of Science of Monastir, Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Team: Medicinal Chemistry and Natural Products, Avenue of Environment 5019 Monastir Tunisia
| |
Collapse
|
10
|
Li H, Xie W, Gao X, Geng Z, Gao J, Ma G, Liu X, Han S, Chen Y, Wen X, Bi Y, Zhang L. Design and synthesis of novel hederagonic acid analogs as potent anti-inflammatory compounds capable of protecting against LPS-induced acute lung injury. Eur J Med Chem 2024; 263:115941. [PMID: 38000214 DOI: 10.1016/j.ejmech.2023.115941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/05/2023] [Accepted: 11/05/2023] [Indexed: 11/26/2023]
Abstract
Acute lung injury (ALI) presents a significant clinical challenge due to its high mortality rates and the lack of effective treatment strategies. The most effective approaches to treating ALI include disrupting inflammatory cascades and associated inflammatory damage within the lung. Hederagenin was utilized as a core skeleton to design and synthesize 33 hederagonic acid derivatives. Among these derivatives, compound 29 demonstrated potent anti-inflammatory activity without inducing cytotoxicity, inhibiting nitric oxide (NO) release by 78-86 %. Detailed structure-activity relationship studies and the reverse virtual screening of ALI-related targets revealed that compound 29 exhibits a high affinity for the STING protein. Mechanistic studies revealed that compound 29 suppresses macrophage activation, inhibits the nuclear translocation of IRF3 and p65, and disrupts the STING/IRF3/NF-κB signaling pathway, thereby attenuating the inflammatory response. The in vivo administration of compound 29 was sufficient to protect against lipopolysaccharide (LPS)-induced ALI by suppressing the production of inflammatory mediators, including IL-6, TNF-α, and IFN-β, thereby preserving lung tissue integrity. These results substantiate the anti-inflammatory efficacy of compound 29, both in vitro and in vivo, indicating its potential as a promising lead compound in ALI treatment strategies.
Collapse
Affiliation(s)
- Haixia Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Wenbin Xie
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Xiaojin Gao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Zhiyuan Geng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Jing Gao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Gongshan Ma
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Xuanyu Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Song Han
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Yinchao Chen
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Xiaomei Wen
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Yi Bi
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China.
| | - Leiming Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China; School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, PR China.
| |
Collapse
|
11
|
Usmani K, Jain SK, Yadav S. Mechanism of action of certain medicinal plants for the treatment of asthma. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116828. [PMID: 37369335 DOI: 10.1016/j.jep.2023.116828] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/06/2023] [Accepted: 06/20/2023] [Indexed: 06/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Asthma is often treated and prevented using the pharmacological properties of traditional medicinal plants. These healthcare systems are among the most well-known, conveniently accessible, and economically priced in India and several other Asian countries. Traditional Indian Ayurvedic plants have the potential to be used as phyto-therapeutics, to create novel anti-asthmatic drugs, and as a cost-effective source of pharmaceuticals. Current conventional therapies have drawbacks, including serious side effects and expensive costs that interfere with treatment compliance and affect the patient's quality of life. The primary objective of the article is to comprehensively evaluate the advancement of research on the protective phytochemicals of traditional plants that target immune responses and signaling cascades in inflammatory experimental asthma models. The study would assist in paving the way for the creation of natural phytomedicines that are protective, anti-inflammatory, and immunomodulatory against asthma, which may then be used in individualized asthma therapy. AIM OF THE STUDY The study demonstrates the mechanisms of action of phytochemicals present in traditional medicinal plants, diminish pulmonary disorder in both in vivo and in vitro models of asthma. MATERIALS AND METHODS A comprehensive review of the literature on conventional plant-based asthma therapies was performed from 2006 to 2022. The study uses authoritative scientific sources such as PubMed, PubChem Compound, Wiley Online Library, Science Direct, Springer Link, and Google Scholar to collect information on potential phytochemicals and their mechanisms of action. World Flora Online (http://www.worldfloraonline.org) and Plants of the World Online (https://wcsp.science.kew.org) databases were used for the scientific names of medicinal plants. RESULTS The study outlines the phytochemical mechanisms of some traditional Ayurveda botanicals used to treat asthma. Active phytochemicals including curcumin, withaferin-A, piperine, glabridin, glycyrrhizin, 18β-glycyrrhetinic acid, trans-cinnamaldehyde, α-hederin, thymoquinone, eugenol, [6]-shogoal, and gingerol may treat asthma by controlling inflammation and airway remodeling. The study concluded that certain Ayurvedic plants' phytochemicals have the ability to reduce inflammation and modulate the immune system, that can effectively cure asthma. CONCLUSION Plants used in traditional Ayurvedic medicine have been utilized for millennia, advocating phyto-therapy as a treatment for a variety of illnesses. A theoretical foundation for the use of cutting-edge asthma treatments has been built with the growth of experimental research on traditional phytochemicals. In-depth phytochemical research for the treatment of asthma using Indian Traditional Ayurvedic herbs is compiled in the study. The approach for preventative therapeutics and cutting-edge alternatives to battle the molecular pathways in the pathophysiology of asthma are the key themes of the study. The phytochemical mechanism of action of traditional Ayurvedic herbs is explained to get the attention of the pharmaceutical industry so they can make future anti-asthma drugs for personalized asthma care in the community. The study develops strategies for customized phyto-therapeutics, concentrating on low-cost, side-effect-free approaches that employ bioactive phytochemicals from plants as the major source of effective anti-asthmatic therapy.
Collapse
Affiliation(s)
- Kainat Usmani
- Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, 470003, MP, India.
| | - Subodh Kumar Jain
- Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, 470003, MP, India.
| | - Shweta Yadav
- Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, 470003, MP, India.
| |
Collapse
|
12
|
Chen GQ, Guo HY, Quan ZS, Shen QK, Li X, Luan T. Natural Products-Pyrazine Hybrids: A Review of Developments in Medicinal Chemistry. Molecules 2023; 28:7440. [PMID: 37959859 PMCID: PMC10649211 DOI: 10.3390/molecules28217440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
Pyrazine is a six-membered heterocyclic ring containing nitrogen, and many of its derivatives are biologically active compounds. References have been downloaded through Web of Science, PubMed, Science Direct, and SciFinder Scholar. The structure, biological activity, and mechanism of natural product derivatives containing pyrazine fragments reported from 2000 to September 2023 were reviewed. Publications reporting only the chemistry of pyrazine derivatives are beyond the scope of this review and have not been included. The results of research work show that pyrazine-modified natural product derivatives have a wide range of biological activities, including anti-inflammatory, anticancer, antibacterial, antiparasitic, and antioxidant activities. Many of these derivatives exhibit stronger pharmacodynamic activity and less toxicity than their parent compounds. This review has a certain reference value for the development of heterocyclic compounds, especially pyrazine natural product derivatives.
Collapse
Affiliation(s)
- Guo-Qing Chen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China; (G.-Q.C.); (H.-Y.G.); (Z.-S.Q.); (Q.-K.S.)
| | - Hong-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China; (G.-Q.C.); (H.-Y.G.); (Z.-S.Q.); (Q.-K.S.)
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China; (G.-Q.C.); (H.-Y.G.); (Z.-S.Q.); (Q.-K.S.)
| | - Qing-Kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China; (G.-Q.C.); (H.-Y.G.); (Z.-S.Q.); (Q.-K.S.)
| | - Xiaoting Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China; (G.-Q.C.); (H.-Y.G.); (Z.-S.Q.); (Q.-K.S.)
| | - Tian Luan
- Department of Pharmacy, Shenyang Medical College, Shenyang 110034, China
| |
Collapse
|
13
|
Zou L, Hou Y, Zhang J, Chen M, Wu P, Feng C, Li Q, Xu X, Sun Z, Ma G. Degradable carrier-free spray hydrogel based on self-assembly of natural small molecule for prevention of postoperative adhesion. Mater Today Bio 2023; 22:100755. [PMID: 37593217 PMCID: PMC10430199 DOI: 10.1016/j.mtbio.2023.100755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/27/2023] [Accepted: 07/29/2023] [Indexed: 08/19/2023] Open
Abstract
Postoperative peritoneal adhesion (PPA) is frequent and extremely dangerous complication after surgery. Different tactics have been developed to reduce it. However, creating a postoperative adhesion method that is multifunctional, biodegradable, biocompatible, low-toxic but highly effective, and therapeutically applicable is still a challenge. Herein, we have prepared a degradable spray glycyrrhetinic acid hydrogel (GAG) based on natural glycyrrhetinic acid (GA) by straightforward heating and cooling without the use of any additional chemical cross-linking agents to prevent postoperative adhesion. The resultant hydrogel was demonstrated to possess various superior anti-inflammatory activity, and multiple functions, such as excellent degradability and biocompatibility. Specifically, spraying characteristic and excellent antibacterial activities essentially eliminated secondary infections during the administration of drugs in surgical wounds. In the rat models, the carrier-free spray GAG could not only slow-release GA to inhibit inflammatory response, but also serve as physical anti-adhesion barrier to reduce collagen deposition and fibrosis. The sprayed GAG would shed a new light on the prevention of postoperative adhesion and broaden the application of the hydrogels based on natural products in biomedical fields.
Collapse
Affiliation(s)
- Linjun Zou
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Yong Hou
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Jiawen Zhang
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Meiying Chen
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Peiying Wu
- School of Pharmacy; Guangxi Medical University, Nanning, 530021, China
| | - Changcun Feng
- School of Pharmacy; Guangxi Medical University, Nanning, 530021, China
| | - Qinglong Li
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Xudong Xu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Zhaocui Sun
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Guoxu Ma
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| |
Collapse
|
14
|
Yang H, Ma D, Li Q, Zhou W, Chen H, Shan X, Zheng H, Luo C, Ou Z, Xu J, Wang C, Zhao L, Su R, Chen Y, Liu Q, Tan X, Lin L, Jiang T, Zhang F. Real-World Study on Chai-Shi-Jie-Du Granules for the Treatment of Dengue Fever and the Possible Mechanisms Based on Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:9942842. [PMID: 37680700 PMCID: PMC10482559 DOI: 10.1155/2023/9942842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/25/2023] [Accepted: 08/11/2023] [Indexed: 09/09/2023]
Abstract
Objectives Traditional Chinese medicine (TCM) is a widely used method for treating dengue fever in China. TCM improves the symptoms of patients with dengue, but there is no standard TCM prescription for dengue fever. This real-world study aimed to evaluate the effects of Chai-Shi-Jie-Du (CSJD) granules for the treatment of dengue fever and the underlying mechanisms. Methods We implemented a multicenter real-world study, an in vitro assay and network pharmacology analysis. Patients from 5 hospitals in mainland China who received supportive western treatment in the absence or presence of CSJD were assigned to the control and CSJD groups between 1 August and 31 December 2019. Propensity score matching (PSM) was performed to correct for biases between groups. The clinical data were compared and analyzed. The antidengue virus activity of CSJD was tested in Syrian baby hamster kidney (BHK) cells using the DENV2-NGC strain. Network pharmacological approaches along with active compound screening, target prediction, and GO and KEGG enrichment analyses were used to explore the underlying molecular mechanisms. Results 137 pairs of patients were successfully matched according to age, sex, and the time from onset to presentation. The time to defervescence (1.7 days vs. 2.5 days, P < 0.05) and the disease course (4.1 days vs. 6.1 days, P < 0.05) were significantly shorter in the CSJD group than those in the control group. CSJD showed no anti-DENV2-NGC virus activity in BHK cells. Network pharmacology analysis revealed 108 potential therapeutic targets, and the top GO and KEGG terms were related to immunity, oxidative stress response, and the response to lipopolysaccharide. Conclusions CSJD granules exhibit high potential for the treatment of dengue fever, and the therapeutic mechanisms involved could be related to regulating immunity, moderating the oxidative stress response, and the response to lipopolysaccharide.
Collapse
Affiliation(s)
- Huiqin Yang
- Infectious Disease Center, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510440, Guangdong, China
| | - Dehong Ma
- Department of Infectious Diseases, The People's Hospital of Xishuangbanna Dai Nationality Autonomous Prefecture, Xishuangbanna 666100, Yunnan, China
| | - Qin Li
- Department of Infectious Diseases, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, Fujian, China
| | - Wen Zhou
- Department of Infectious Diseases, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, Fujian, China
| | - Hongyi Chen
- Department of Infectious Diseases, The Ninth Hospital of Nanchang, Nanchang 330002, Jiangxi, China
| | - Xiyun Shan
- Department of Infectious Diseases, The People's Hospital of Xishuangbanna Dai Nationality Autonomous Prefecture, Xishuangbanna 666100, Yunnan, China
| | - Haipeng Zheng
- Infectious Disease Center, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510440, Guangdong, China
| | - Chun Luo
- Department of Traditional Chinese Medicine, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510440, Guangdong, China
| | - Zhiyue Ou
- Infectious Diseases Institute, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510440, Guangdong, China
| | - Jielan Xu
- Infectious Diseases Institute, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510440, Guangdong, China
| | - Changtai Wang
- Infectious Diseases Institute, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510440, Guangdong, China
| | - Lingzhai Zhao
- Department of Clinical Laboratory, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510440, Guangdong, China
| | - Rui Su
- Scientific Research Department, Capital Medical University Beijing Hospital of Traditional Chinese Medicine, Beijing 100010, China
| | - Yuehong Chen
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing100071, China
| | - Qingquan Liu
- Scientific Research Department, Capital Medical University Beijing Hospital of Traditional Chinese Medicine, Beijing 100010, China
| | - Xinghua Tan
- Department of Traditional Chinese Medicine, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510440, Guangdong, China
| | - Luping Lin
- Department of Traditional Chinese Medicine, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510440, Guangdong, China
| | - Tao Jiang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing100071, China
| | - Fuchun Zhang
- Infectious Disease Center, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510440, Guangdong, China
| |
Collapse
|
15
|
Yang Y, Chen K, Wang G, Liu H, Shao L, Zhou X, Liu L, Yang S. Discovery of Novel Pentacyclic Triterpene Acid Amide Derivatives as Excellent Antimicrobial Agents Dependent on Generation of Reactive Oxygen Species. Int J Mol Sci 2023; 24:10566. [PMID: 37445744 DOI: 10.3390/ijms241310566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Developing new agricultural bactericides is a feasible strategy for stopping the increase in the resistance of plant pathogenic bacteria. Some pentacyclic triterpene acid derivatives were elaborately designed and synthesized. In particular, compound A22 exhibited the best antimicrobial activity against Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas axonopodis pv. citri (Xac) with EC50 values of 3.34 and 3.30 mg L-1, respectively. The antimicrobial mechanism showed that the compound A22 induced excessive production and accumulation of reactive oxygen species (ROS) in Xoo cells, leading to a decrease in superoxide dismutase and catalase enzyme activities and an increase in malondialdehyde content. A22 also produced increases in Xoo cell membrane permeability and eventual cell death. In addition, in vivo experiments showed that A22 at 200 mg L-1 exhibited protective activity against rice bacterial blight (50.44%) and citrus canker disease (84.37%). Therefore, this study provides a paradigm for the agricultural application of pentacyclic triterpene acid.
Collapse
Affiliation(s)
- Yihong Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Kunlun Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Guangdi Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Hongwu Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Lihui Shao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xiang Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Liwei Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Song Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
16
|
Li X, Ma XL, Nan Y, Du YH, Yang Y, Lu DD, Zhang JF, Chen Y, Zhang L, Niu Y, Yuan L. 18β-glycyrrhetinic acid inhibits proliferation of gastric cancer cells through regulating the miR-345-5p/TGM2 signaling pathway. World J Gastroenterol 2023; 29:3622-3644. [PMID: 37398884 PMCID: PMC10311615 DOI: 10.3748/wjg.v29.i23.3622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/24/2023] [Accepted: 05/17/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is a common gastrointestinal malignancy worldwide. Based on cancer-related mortality, the current prevention and treatment strategies for GC still show poor clinical results. Therefore, it is important to find effective drug treatment targets.
AIM To explore the molecular mechanism of 18β-glycyrrhetinic acid (18β-GRA) regulating the miR-345-5p/TGM2 signaling pathway to inhibit the proliferation of GC cells.
METHODS CCK-8 assay was used to determine the effect of 18β-GRA on the survival rate of GES-1 cells and AGS and HGC-27 cells. Cell cycle and apoptosis were detected by flow cytometry, cell migration was detected by a wound healing assay, the effect of 18β-GRA on subcutaneous tumor growth in BALB/c nude mice was investigated, and the cell autophagy level was determined by MDC staining. TMT proteomic analysis was used to detect the differentially expressed autophagy-related proteins in GC cells after 18β-GRA intervention, and then the protein-protein interaction was predicted using STRING (https://string-db.org/). MicroRNAs (miRNAs) transcriptome analysis was used to detect the miRNA differential expression profile, and use miRBase (https://www.mirbase/) and TargetScan (https://www.targetscan.org/) to predict the miRNA and complementary binding sites. Quantitative real-time polymerase chain reaction was used to detect the expression level of miRNA in 18β-GRA treated cells, and western blot was used to detect the expression of autophagy related proteins. Finally, the effect of miR-345-5p on GC cells was verified by mir-345-5p overexpression.
RESULTS 18β-GRA could inhibit GC cells viability, promote cell apoptosis, block cell cycle, reduce cell wound healing ability, and inhibit the GC cells growth in vivo. MDC staining results showed that 18β-GRA could promote autophagy in GC cells. By TMT proteomic analysis and miRNAs transcriptome analysis, it was concluded that 18β-GRA could down-regulate TGM2 expression and up-regulate miR-345-5p expression in GC cells. Subsequently, we verified that TGM2 is the target of miR-345-5p, and that overexpression of miR-345-5p significantly inhibited the protein expression level of TGM2. Western blot showed that the expression of autophagy-related proteins of TGM2 and p62 was significantly reduced, and LC3II, ULK1 and AMPK expression was significantly increased in GC cells treated with 18β-GRA. Overexpression of miR-345-5p not only inhibited the expression of TGM2, but also inhibited the proliferation of GC cells by promoting cell apoptosis and arresting cell cycle.
CONCLUSION 18β-GRA inhibits the proliferation of GC cells and promotes autophagy by regulating the miR-345-5p/TGM2 signaling pathway.
Collapse
Affiliation(s)
- Xia Li
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Xiao-Ling Ma
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yi Nan
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
- Key Laboratory of Hui Ethnic Medicine Modernization of Ministry of Education, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yu-Hua Du
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yi Yang
- College of Basic Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Dou-Dou Lu
- College of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Jun-Fei Zhang
- College of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yan Chen
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Lei Zhang
- Key Laboratory of Hui Ethnic Medicine Modernization of Ministry of Education, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yang Niu
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
- Key Laboratory of Hui Ethnic Medicine Modernization of Ministry of Education, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| |
Collapse
|
17
|
O’Boyle NM, Helesbeux JJ, Meegan MJ, Sasse A, O’Shaughnessy E, Qaisar A, Clancy A, McCarthy F, Marchand P. 30th Annual GP 2A Medicinal Chemistry Conference. Pharmaceuticals (Basel) 2023; 16:432. [PMID: 36986531 PMCID: PMC10056312 DOI: 10.3390/ph16030432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/16/2023] [Indexed: 03/14/2023] Open
Abstract
The Group for the Promotion of Pharmaceutical Chemistry in Academia (GP2A) held their 30th annual conference in August 2022 in Trinity College Dublin, Ireland. There were 9 keynote presentations, 10 early career researcher presentations and 41 poster presentations.
Collapse
Affiliation(s)
- Niamh M. O’Boyle
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | | | - Mary J. Meegan
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Astrid Sasse
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Elizabeth O’Shaughnessy
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Alina Qaisar
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Aoife Clancy
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Florence McCarthy
- School of Chemistry and ABCRF, University College Cork, T12 K8AF Cork, Ireland
| | - Pascal Marchand
- Cibles et Médicaments des Infections et de l’Immunité, IICiMed, Nantes Université, UR 1155, F-44000 Nantes, France
| |
Collapse
|
18
|
He JJ, Li T, Liu HW, Yang LL, Yang YH, Tao QQ, Zhou X, Wang PY, Yang S. Ion exchange pattern-based 18β-glycyrrhetinic acid containing pyridinium salts derivatives as novel antibacterial agents with low toxicity. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
|
19
|
Cai DS, Yang XY, Yang YQ, Gao F, Cheng XH, Zhao YJ, Qi R, Zhang YZ, Lu JH, Lin XY, Liu YJ, Xu B, Wang PL, Lei HM. Design and synthesis of novel anti-multidrug-resistant staphylococcus aureus derivatives of glycyrrhetinic acid by blocking arginine biosynthesis, metabolic and H 2S biogenesis. Bioorg Chem 2023; 131:106337. [PMID: 36603244 DOI: 10.1016/j.bioorg.2022.106337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/12/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022]
Abstract
With the soaring number of multidrug-resistant bacteria, it is imperative to develop novel efficient antibacterial agents and discovery new antibacterial pathways. Herein, we designed and synthesized a series of structurally novel glycyrrhetinic acid (GA) derivatives against multidrug-resistant Staphylococcus aureus (MRSA). The in vitro antibacterial activity of these compounds was evaluated using the microbroth dilution method, agar plate coating experiments and real-time growth curves, respectively. Most of the target derivatives showed moderate antibacterial activity against Staphylococcus aureus (S. aureus) and MRSA (MIC = 3.125-25 μM), but inactivity against Escherichia coli (E. Coli) and Pseudomonas aeruginosa (P. aeruginosa) (MIC > 200 μM). Among them, compound 11 had the strongest antibacterial activity against MRSA, with an MIC value of 3.125 μM, which was 32 times and 64 times than the first-line antibiotics penicillin and norfloxacin, respectively. Additionally, transcriptomic (RNA-seq) and quantitative polymerase chain reaction (qPCR) analysis revealed that the antibacterial mechanism of compound 11 was through blocking the arginine biosynthesis and metabolic and the H2S biogenesis. Importantly, compound 11 was confirmed to have good biocompatibility through the in vitro hemolysis tests, cytotoxicity assays and the in vivo quail chicken chorioallantoic membrane (qCAM) experiments. Current study provided new potential antibacterial candidates from glycyrrhetinic acid derivatives for clinical treatment of MRSA infections.
Collapse
Affiliation(s)
- De-Sheng Cai
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Xiao-Yun Yang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Yu-Qin Yang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Feng Gao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Xue-Hao Cheng
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Ya-Juan Zhao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Rui Qi
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Yao-Zhi Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Ji-Hui Lu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Xiao-Yu Lin
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Yi-Jing Liu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Bing Xu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China.
| | - Peng-Long Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China.
| | - Hai-Min Lei
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China.
| |
Collapse
|
20
|
Zou L, Li Q, Hou Y, Chen M, Xu X, Wu H, Sun Z, Ma G. Self-assembled glycyrrhetinic acid derivatives for functional applications: a review. Food Funct 2022; 13:12487-12509. [PMID: 36413139 DOI: 10.1039/d2fo02472a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Glycyrrhetinic acid (GA), a famous natural product, has been attracting more attention recently because of its remarkable biological activity, natural sweetness, and good biocompatibility. In the past few years, a considerable amount of literature has grown up around the theme of GA-based chemical modification to broaden its functional applications. Promising structures including gels, micelles, nanoparticles, liposomes, and so forth have been constantly reported. On the one hand, the assembly mechanisms of various materials based on GA derivatives have been elucidated via modern analytical techniques. On the other hand, their potential application prospects in edible additives, intelligent drug delivery, and other fields have been investigated fully due to availability, biocompatibility, and controllable degradability. Inspired by these findings, a systematic summary and classification of the materials formed by GA derivatives seems necessary and meaningful. This review sums up the new functional applications of GA derivatives for the first time and provides better prospects for their application and development.
Collapse
Affiliation(s)
- Linjun Zou
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Qinglong Li
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Yong Hou
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Meiying Chen
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Xudong Xu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Haifeng Wu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Zhaocui Sun
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Guoxu Ma
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| |
Collapse
|
21
|
Gao F, Dai Z, Zhang T, Gu Y, Cai D, Lu M, Zhang Z, Zeng Q, Shang B, Xu B, Lei H. Synthesis and biological evaluation of novel sinomenine derivatives as anti-inflammatory and analgesic agent. RSC Adv 2022; 12:30001-30007. [PMID: 36321084 PMCID: PMC9582731 DOI: 10.1039/d2ra05558a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
Abstract
Sinomenine (SIN) has long been known as an anti-inflammatory drug, while poor efficiency and large-dose treatment had limited its further application. A series of novel SIN derivatives 1–26 were designed and synthesized to improve its anti-inflammatory activity. The anti-inflammatory activity evaluation showed most of the derivatives exhibited enhanced anti-inflammatory activity in vitro compared to SIN. Compound 17 significantly inhibited LPS-induced secretion of pro-inflammatory factors NO (IC50 = 30.28 ± 1.70 μM), and suppressed the expression of iNOS, IL-6 and TNF-α in RAW264.7 cells. Moreover, compound 17 showed excellent anti-inflammatory in mouse paw edema. Immunohistochemistry results revealed that compound 17 exerted anti-inflammatory activity by inhibiting the pro-inflammatory cytokine TNF-α. Furthermore, compound 17 exhibited an analgesic effect in vivo. The results attained in this study indicated that compound 17 had the potential to be developed into an anti-inflammation and analgesic agent. A series of novel sinomenine derivatives were designed and synthesized. Among them, compound 17 showed strong anti-inflammatory and analgesic activities.![]()
Collapse
Affiliation(s)
- Feng Gao
- School of Chinese Pharmacy, Beijing University of Chinese MedicineBeijing102400China
| | - Ziqi Dai
- School of Chinese Pharmacy, Beijing University of Chinese MedicineBeijing102400China
| | - Tong Zhang
- School of Chinese Pharmacy, Beijing University of Chinese MedicineBeijing102400China
| | - Yuhao Gu
- School of Chinese Pharmacy, Beijing University of Chinese MedicineBeijing102400China
| | - Desheng Cai
- School of Chinese Pharmacy, Beijing University of Chinese MedicineBeijing102400China
| | - Mingjun Lu
- School of Chinese Pharmacy, Beijing University of Chinese MedicineBeijing102400China
| | - Zijie Zhang
- School of Chinese Pharmacy, Beijing University of Chinese MedicineBeijing102400China
| | - Qi Zeng
- School of Chinese Pharmacy, Beijing University of Chinese MedicineBeijing102400China
| | - Bingxian Shang
- School of Chinese Pharmacy, Beijing University of Chinese MedicineBeijing102400China
| | - Bing Xu
- School of Chinese Pharmacy, Beijing University of Chinese MedicineBeijing102400China
| | - Haimin Lei
- School of Chinese Pharmacy, Beijing University of Chinese MedicineBeijing102400China
| |
Collapse
|
22
|
Photoprotective effect of 18β-glycyrrhetinic acid derivatives against ultra violet (UV)-B-Induced skin aging. Bioorg Med Chem Lett 2022; 76:128984. [PMID: 36167293 DOI: 10.1016/j.bmcl.2022.128984] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/07/2022] [Accepted: 09/05/2022] [Indexed: 11/22/2022]
Abstract
Excessive exposure to sun can harm the skin, causing sunburn, photo-aging, and even skin cancer. Different benzylidene derivatives (A02-A18 and A19-A34) of 18β-Glycyrrhetinic acid (A01) were designed and synthesized in an effort to discover photo-protective compounds against UV-B -induced skin aging. The synthesized derivatives were subjected to cellular viability test using MTT assay in primary Human Dermal Fibroblasts (HDFs). The results indicate A01, A05, A15, A22, A23, A25, A26, A28, A29, A32, A33, and A34 significantly enhanced cell viability of HDFs. Compound A33 at 10 and 25 μM showed a significant photo-protective effect against UV-B (10 mJ/cm2) -induced damage in HDFs. A33 at 25 μM significantly restored the UV-B -induced damage via its potent anti-oxidant, anti-apoptotic effects and ability to prevent collagen degradation. These findings pave the way for further development of A33 as a photo-protective skin agent.
Collapse
|
23
|
Design and synthesis of mogrol derivatives modified on A ring with anti-inflammatory and anti-proliferative activities. Bioorg Med Chem Lett 2022; 74:128924. [DOI: 10.1016/j.bmcl.2022.128924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/17/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022]
|
24
|
Mohammed EAH, Peng Y, Wang Z, Qiang X, Zhao Q. Synthesis, Antiviral, and Antibacterial Activity of the Glycyrrhizic Acid and Glycyrrhetinic Acid Derivatives. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022; 48:906-918. [PMID: 35919388 PMCID: PMC9333650 DOI: 10.1134/s1068162022050132] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/28/2021] [Accepted: 12/31/2021] [Indexed: 11/28/2022]
Abstract
Glycyrrhizic acid and its primary metabolite glycyrrhetinic acid, are the main active ingredients in the licorice roots (glycyrrhiza species), which are widely used in several countries of the world, especially in east asian countries (China, Japan). These ingredients and their derivatives play an important role in treating many diseases, especially infectious diseases such as COVID-19 and hepatic infections. This review aims to summarize the different ways of synthesising the amide derivatives of glycyrrhizic acid and the main ways to synthesize the glycyrrhitinic acid derivatives. Also, to determine the main biological and pharmacological activity for these compounds from the previous studies to provide essential data to researchers for future studies. Supplementary Information The online version contains supplementary material available at 10.1134/S1068162022050132.
Collapse
Affiliation(s)
- E. A. H. Mohammed
- Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, 730000 Lanzhou, China
| | - Y. Peng
- Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, 730000 Lanzhou, China
| | - Z. Wang
- Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, 730000 Lanzhou, China
| | - X. Qiang
- Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, 730000 Lanzhou, China
| | - Q. Zhao
- Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, 730000 Lanzhou, China
| |
Collapse
|
25
|
18β-Glycyrrhetinic acid suppresses allergic airway inflammation through NF-κB and Nrf2/HO-1 signaling pathways in asthma mice. Sci Rep 2022; 12:3121. [PMID: 35210449 PMCID: PMC8873505 DOI: 10.1038/s41598-022-06455-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 01/28/2022] [Indexed: 02/06/2023] Open
Abstract
18β-Glycyrrhetinic acid (18β-GA), the main bioactive component of Glycyrrhizae Radix, is considered a promising anti-inflammatory and antioxidant agent. Here, we evaluated the anti-inflammatory and antioxidant effects of 18β-GA in an ovalbumin (OVA)-induced asthma mouse model, and examined the role of NF-κB and Nrf2/HO-1 signaling pathways. The histopathological changes of lung tissue in mouse were assessed by histochemical staining and counting of inflammatory cells. The levels of IgE and inflammatory cytokines in the bronchoalveolar lavage fluid of mice were detected by ELISA. In OVA-induced asthmatic mice, 18β-GA treatment can significantly improve lung function and reduce lung inflammation including infiltration of inflammatory cells. In addition, 18β-GA reduced the OVA-induced NF-κB phosphorylation in lungs of mice while increasing the expression of Nrf2 and HO-1. These results indicate that 18β-GA protects OVA-induced allergic inflammation of airway by inhibiting phosphorylation of NF-κB and enhancing the Nrf2/HO-1 pathway, and serves as a potential treatment option for allergic inflammation of airway.
Collapse
|
26
|
Liu Y, Sheng R, Fan J, Guo R. A Mini-Review on Structure-Activity Relationships of Glycyrrhetinic Acid Derivatives with Diverse Bioactivities. Mini Rev Med Chem 2022; 22:2024-2066. [PMID: 35081889 DOI: 10.2174/1389557522666220126093033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/09/2021] [Accepted: 11/16/2021] [Indexed: 11/22/2022]
Abstract
Pentacyclic triterpenoids, consisting of six isoprene units, are a kind of natural active substance. At present, numerous pentacyclic triterpene have been observed and classified into four subgroups of oleanane, ursane, lupane, and xylene on the basis of the carbon skeleton. Among them, oleanane is the most popular due to its rich backbone and diverse bioactivities. 18β-Glycyrrhetinic acid (GA), an oleanane-type pentacyclic triterpene isolated from licorice roots, possesses diverse bioactivities including antitumor, anti-inflammatory, antiviral, antimicrobial, enzyme inhibitor, hepatoprotective and so on. It has received more attention in medicinal chemistry due to the advantages of easy-to-access and rich bioactivity. Thus, numerous novel lead compounds were synthesized using GA as a scaffold. Herein, we summarize the structure-activity relationship and synthetic methodologies of GA derivatives from 2010 to 2020 as well as the most active GA derivatives. Finally, we anticipate that this review can benefit future research on structural modifications of GA to enhance bioactivity and provide an example for developing pentacyclic triterpene-based novel drugs.
Collapse
Affiliation(s)
- Yuebin Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ruilong Sheng
- CQM - Centro de Química da Madeira, Campus da Penteada, Universidade da Madeira, 9000-390 Funchal, Portugal
| | - Junting Fan
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Ruihua Guo
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China
| |
Collapse
|
27
|
Qing C, Ziyun L, Xuefei Y, Xinyi Z, Xindong X, Jianhua F. Protective Effects of 18β-Glycyrrhetinic Acid on Neonatal Rats with Hyperoxia Exposure. Inflammation 2022; 45:1224-1238. [PMID: 34989920 DOI: 10.1007/s10753-021-01616-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 11/05/2022]
Abstract
Bronchopulmonary dysplasia (BPD) is a common devastating pulmonary complication in preterm infants. Supplemental oxygen is a lifesaving therapeutic measure used for premature infants with pulmonary insufficiency. However, oxygen toxicity is a significant trigger for BPD. Oxidative stress disrupts lung development, accompanied by increased pro-inflammatory cytokines and chemokines expression and immune cells infiltration in lung tissue. Licorice, a typical traditional herbal medicine, is commonly used in the medicine and food industries. 18β-Glycyrrhetinic acid (18β-GA), a primary active ingredient of licorice, has powerful anti-oxidative and anti-inflammatory effects. This study aimed to determine whether 18β-GA has a protective effect on neonatal rats with hyperoxia exposure. Newborn Sprague-Dawley rats were kept in either 21% (normoxia) or 80% O2 (hyperoxia) continuously from postnatal day (PN) 1 to 14. 18β-GA was injected intragastrically at 50 or 100 mg/kg body weight once a day from PN 1 to 14. We examined the body weight and alveolar development and measured ROS level and the markers of pulmonary inflammation. Mature-IL-1β and NF-κB pathway proteins, and the NLRP3 inflammasome, were assessed; concurrently, caspase-1 activity was measured. Our results indicated that hyperoxia resulted in alveolar simplification and decreased bodyweight of neonatal rats. Hyperoxia increased ROS level and pulmonary inflammation and activated NF-κB and the NLRP3 inflammasome. 18β-GA treatment inhibited the activation of NF-κB and the NLRP3 inflammasome, decreased ROS level and pulmonary inflammation, improved alveolar development, and increased the bodyweight of neonatal rats with hyperoxia exposure. Our study demonstrates that 18β-GA has a protective effect on neonatal rats with hyperoxia exposure.
Collapse
Affiliation(s)
- Cai Qing
- Department of Pediatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, Liaoning, 110004, China
| | - Liu Ziyun
- Department of Pediatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, Liaoning, 110004, China
| | - Yu Xuefei
- Department of Pediatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, Liaoning, 110004, China
| | - Zhao Xinyi
- Department of Pediatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, Liaoning, 110004, China
| | - Xue Xindong
- Department of Pediatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, Liaoning, 110004, China
| | - Fu Jianhua
- Department of Pediatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, Liaoning, 110004, China.
| |
Collapse
|
28
|
Zhang Q, Xiong Y, Cheng J, Tan Y, Liao X, Wang J. Synthesis and biological evaluation of ruthenium polypyridine complexes with 18β-glycyrrhetinic acid as antibacterial agents against Staphylococcus aureus. Dalton Trans 2021; 51:1099-1111. [PMID: 34935812 DOI: 10.1039/d1dt02692e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Four new ruthenium(II) polypyridine complexes bearing 18β-glycyrrhetinic acid derivatives, [Ru(bpy)2L](PF6)2 (Ru1), [Ru(dmb)2L](PF6)2 (Ru2), [Ru(dtb)2L](PF6)2 (Ru3) and [Ru(phen)2L](PF6)2 (Ru4) (bpy = 2,2-bipyridine, dmb = 4,4'-dimethyl-2,2'-bipyridine, dtb = 4,4'-di-tert-butyl-2,2'-bipyridine, phen = 1,10-phenanthroline and L is the GA modified new ligand) were designed and synthesized. Their antimicrobial activities against Staphylococcus aureus (S. aureus) were evaluated and all complexes showed an obvious inhibitory effect, especially, the minimum inhibitory concentration (MIC) value of Ru2 was 3.9 μg mL-1. Moreover, Ru2 was found to significantly inhibit the formation of biofilms. The membrane-compromising action mode was suggested to be their potential antibactericidal mechanism. In hemolysis experiments, Ru2 hardly showed cytotoxicity to mammalian erythrocytes. Furthermore, the synergism between Ru2 and common antibiotics, such as ampicillin, chloramphenicol, tetracyclines and ofloxacin, against S. aureus was also detected using the checkerboard method. Finally, a mouse skin infection model was established to evaluate the antibacterial activity of Ru2in vivo, and the results showed that Ru2 could effectively promote wound healing in mice infected with S. aureus. Moreover, the results of histopathological research were consistent with the results of the hemolysis test, indicating that the Ru2 complex was almost non-toxic. Thus, it was demonstrated that the polypyridine ruthenium complexes modified with glycyrrhetinic acid (GA) are a promising strategy for developing interesting antibacterial agents.
Collapse
Affiliation(s)
- Qin Zhang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, People's Republic of China.
| | - Yanshi Xiong
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, People's Republic of China.
| | - Jianxin Cheng
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, People's Republic of China.
| | - Yanhui Tan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China
| | - Xiangwen Liao
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, People's Republic of China.
| | - Jintao Wang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, People's Republic of China.
| |
Collapse
|
29
|
Zhang Q, Wang Y, Wang Z, Mohammed EAH, Zhao Q, He D, Wang Z. Synthesis and anti-inflammatory activities of glycyrrhetinic acid derivatives containing disulfide bond. Bioorg Chem 2021; 119:105542. [PMID: 34902645 DOI: 10.1016/j.bioorg.2021.105542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 11/28/2021] [Accepted: 12/02/2021] [Indexed: 11/02/2022]
Abstract
A series of glycyrrhetinic acid (GA, aglycone of glycyrrhizic acid) derivatives containing disulfide bond were synthesized and their anti-inflammatory and anti-fibrosis activities were evaluated in vivo and in vitro. Among them, compound 7 displayed the highest toxicity to all the tested cell lines including macrophages. Compounds 3 and 4 showed higher activities than GA in the cell and animal model. In the anti-inflammatory tests, compounds 3 and 4 down-regulated the expressions of several inflammatory factors, such as HMGB1, TLR4, IL-1β, TNF-α and TGF-β1 in LPS-treated RAW264.7 cells in a dose-dependent manner. Compounds 3 and 4 at 30 µM respectively reduced the levels of HMGB1 in the LPS group to 42.7% and 38.2%. In addition, the level of TLR4 decreased to close to that of control group when treated by compound 4 at the concentration of 30 µM. In the process of anti-fibrosis tests using TGF-β1-induced A549 cell line as the model, compounds 3 and 4 also decreased the expression levels of Col1 and α-SMA in a dose-dependent manner. Compound 3 and 4 at 30 µM respectively reduced the expression of α-SMA level by 2.2-fold and 2.6-fold compared to the TGF-β1-treated control group. Moreover, they influenced the ROS level and mitochondrial membrane potential (MMP) in A549 cells. In the paraquat-induced pulmonary fibrosis mice model, the symptoms of inflammation and fibrosis of mice were alleviated after administration of compound 3 or 4. The above results suggest that compounds 3 and 4 may be promising candidates for inflammation and lung fibrosis treatment.
Collapse
Affiliation(s)
- Qiuping Zhang
- Materia Medica Development Group, Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, Lanzhou 730000, China
| | - Yanni Wang
- Materia Medica Development Group, Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, Lanzhou 730000, China
| | - Zongyuan Wang
- Materia Medica Development Group, Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, Lanzhou 730000, China
| | - Eyad Abdulwhab Hamoud Mohammed
- Materia Medica Development Group, Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, Lanzhou 730000, China
| | - Quanyi Zhao
- Materia Medica Development Group, Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, Lanzhou 730000, China.
| | - Dian He
- Materia Medica Development Group, Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, Lanzhou 730000, China.
| | - Zhen Wang
- Materia Medica Development Group, Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
30
|
Abruzzo A, Cappadone C, Sallustio V, Picone G, Rossi M, Nicoletta FP, Luppi B, Bigucci F, Cerchiara T. Development of Spanish Broom and Flax Dressings with Glycyrrhetinic Acid-Loaded Films for Wound Healing: Characterization and Evaluation of Biological Properties. Pharmaceutics 2021; 13:pharmaceutics13081192. [PMID: 34452153 PMCID: PMC8400884 DOI: 10.3390/pharmaceutics13081192] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 01/14/2023] Open
Abstract
The selection of an appropriate dressing for each type of wound is a very important procedure for a faster and more accurate healing process. So, the aim of this study was to develop innovative Spanish Broom and flax wound dressings, as alternatives to cotton used as control, with polymeric films containing glycyrrhetinic acid (GA) to promote wound-exudate absorption and the healing process. The different wound dressings were prepared by a solvent casting method, and characterized in terms of drug loading, water uptake, and in vitro release. Moreover, biological studies were performed to evaluate their biocompatibility and wound-healing efficacy. Comparing the developed wound dressings, Spanish Broom dressings with GA-loaded sodium hyaluronate film had the best functional properties, in terms of hydration ability and GA release. Moreover, they showed a good biocompatibility, determining a moderate induction of cell proliferation and no cytotoxicity. In addition, the wound-healing test revealed that the Spanish Broom dressings promoted cell migration, further facilitating the closure of the wound.
Collapse
Affiliation(s)
- Angela Abruzzo
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (A.A.); (C.C.); (V.S.); (G.P.); (M.R.); (B.L.); (F.B.)
| | - Concettina Cappadone
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (A.A.); (C.C.); (V.S.); (G.P.); (M.R.); (B.L.); (F.B.)
| | - Valentina Sallustio
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (A.A.); (C.C.); (V.S.); (G.P.); (M.R.); (B.L.); (F.B.)
| | - Giovanna Picone
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (A.A.); (C.C.); (V.S.); (G.P.); (M.R.); (B.L.); (F.B.)
| | - Martina Rossi
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (A.A.); (C.C.); (V.S.); (G.P.); (M.R.); (B.L.); (F.B.)
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata, Rende, Italy;
| | - Barbara Luppi
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (A.A.); (C.C.); (V.S.); (G.P.); (M.R.); (B.L.); (F.B.)
| | - Federica Bigucci
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (A.A.); (C.C.); (V.S.); (G.P.); (M.R.); (B.L.); (F.B.)
| | - Teresa Cerchiara
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (A.A.); (C.C.); (V.S.); (G.P.); (M.R.); (B.L.); (F.B.)
- Correspondence: ; Tel.: +39-051-2095615
| |
Collapse
|
31
|
Jaglal Y, Osman N, Omolo CA, Mocktar C, Devnarain N, Govender T. Formulation of pH-responsive lipid-polymer hybrid nanoparticles for co-delivery and enhancement of the antibacterial activity of vancomycin and 18β-glycyrrhetinic acid. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102607] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
32
|
Wang H, Zuo J, Zha L, Jiang X, Wu C, Yang YA, Tang W, Shi T. Design and synthesis of novel glycyrrhetin ureas as anti-inflammatory agents for the treatment of acute kidney injury. Bioorg Chem 2021; 110:104755. [PMID: 33652342 DOI: 10.1016/j.bioorg.2021.104755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/06/2021] [Accepted: 02/17/2021] [Indexed: 12/30/2022]
Abstract
To develop new anti-inflammatory drugs for the prevention and treatment of acute kidney injury, a series of novel glycyrrhetic ureas were designed, synthesized and evaluated for anti-inflammatory activity using RAW264.7 cells. Compounds 5r-5u (2.04, 2.50, 3.25 and 2.48 μM, respectively) with acidic or neutral amino acid showed potent anti-inflammatory activity (IC50 = 2-3 μM for NO inhibition), amongst them, compound 5r also inhibited tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in a dose-dependent manner. In cisplatin-induced AKI mice model, compound 5r significantly reduced the level of pro-inflammatory factors, ameliorated the pathological damage of kidney tissue, and maintained the normal metabolic capacity.
Collapse
Affiliation(s)
- Hongbo Wang
- Department of Pharmacy, Shandong Medical College, Linyi 276000, China
| | - Jiawei Zuo
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Liang Zha
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xia Jiang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Caixia Wu
- Department of Pharmacy, Shandong Medical College, Linyi 276000, China
| | - Yong-An Yang
- Elion Nature Biological Technology Co., Ltd, Nanjing 210038, China
| | - Wenjian Tang
- Department of Pharmacy, Shandong Medical College, Linyi 276000, China; School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| | - Tianlu Shi
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| |
Collapse
|
33
|
Grafting of 18β-Glycyrrhetinic Acid and Sialic Acid onto Chitosan to Produce a New Amphipathic Chitosan Derivative: Synthesis, Characterization, and Cytotoxicity. Molecules 2021; 26:molecules26020452. [PMID: 33467083 PMCID: PMC7829902 DOI: 10.3390/molecules26020452] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/08/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Chitosan is the only cationic polysaccharide found in nature. It has broad application prospects in biomaterials, but its application is limited due to its poor solubility in water. A novel chitosan derivative was synthesized by amidation of chitosan with 18β-glycyrrhetinic acid and sialic acid. The chitosan derivatives were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, and measurement of the zeta potential. We also investigated the solubility, cytotoxicity, and blood compatibility of chitosan derivatives. 18β-glycyrrhetinic acid and sialic acid could be grafted onto chitosan molecular chains. The thermal stability of the synthesized chitosan derivatives was decreased and the surface was positively charged in water and phosphate-buffered saline. After chitosan had been modified by 18 β-glycyrrhetinic acid and sialic acid, the solubility of chitosan was improved greatly in water and phosphate-buffered saline, and percent hemolysis was <5%. Novel amphiphilic chitosan derivatives could be suitable polymers for biomedical purposes.
Collapse
|
34
|
Guan R, Wang M, Guan Z, Jin CY, Lin W, Ji XJ, Wei Y. Metabolic Engineering for Glycyrrhetinic Acid Production in Saccharomyces cerevisiae. Front Bioeng Biotechnol 2020; 8:588255. [PMID: 33330420 PMCID: PMC7710550 DOI: 10.3389/fbioe.2020.588255] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/23/2020] [Indexed: 12/17/2022] Open
Abstract
Glycyrrhetinic acid (GA) is one of the main bioactive components of licorice, and it is widely used in traditional Chinese medicine due to its hepatoprotective, immunomodulatory, anti-inflammatory and anti-viral functions. Currently, GA is mainly extracted from the roots of cultivated licorice. However, licorice only contains low amounts of GA, and the amount of licorice that can be planted is limited. GA supplies are therefore limited and cannot meet the demands of growing markets. GA has a complex chemical structure, and its chemical synthesis is difficult, therefore, new strategies to produce large amounts of GA are needed. The development of metabolic engineering and emerging synthetic biology provide the opportunity to produce GA using microbial cell factories. In this review, current advances in the metabolic engineering of Saccharomyces cerevisiae for GA biosynthesis and various metabolic engineering strategies that can improve GA production are summarized. Furthermore, the advances and challenges of yeast GA production are also discussed. In summary, GA biosynthesis using metabolically engineered S. cerevisiae serves as one possible strategy for sustainable GA supply and reasonable use of traditional Chinese medical plants.
Collapse
Affiliation(s)
- Ruobing Guan
- State Key Laboratory of Wheat and Maize Crop Science, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Mengge Wang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhonghua Guan
- School of Basic Medical Sciences (Zhongjing School), Henan University of Chinese Medicine, Zhengzhou, China
| | - Cheng-Yun Jin
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wei Lin
- Department of Microbiology and Immunology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Yongjun Wei
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|