1
|
Hu Y, Zhang Y, Guo J, Chen S, Jin J, Li P, Pan Y, Lei S, Li J, Wu S, Bu B, Fu L. Synthesis and anti-proliferative effect of novel 4-Aryl-1, 3-Thiazole-TPP conjugates via mitochondrial uncoupling process. Bioorg Chem 2024; 150:107588. [PMID: 38936051 DOI: 10.1016/j.bioorg.2024.107588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/18/2024] [Accepted: 06/22/2024] [Indexed: 06/29/2024]
Abstract
With the advent of mitochondrial targeting moiety such as triphenlyphosphonium cation (TPP+), targeting mitochondria in cancer cells has become a promising strategy for combating tumors. Herein, a series of novel 4-aryl-1,3-thiazole derivatives linked to TPP+ moiety were designed and synthesized. The cytotoxicity against a panel of four cancer cell lines was evaluated by CCK-8 assay. Most of these compounds exhibited moderate to good inhibitory activity over HeLa, PC-3 and HCT-15 cells while MCF-7 cells were less sensitive to most compounds. Among them, compound 12a exhibited a significant anti-proliferative activity against HeLa cells, and prompted for further investigation. Specifically, 12a decreased mitochondrial membrane potential and enhanced levels of reactive oxygen species (ROS). The flow cytometry analysis revealed that compound 12a could induce apoptosis and cell cycle arrest at G0/G1 phase in HeLa cells. In addition, mitochondrial bioenergetics assay revealed that 12a displayed mild mitochondrial uncoupling effect. Taken together, these findings suggest the therapeutic potential of compound 12a as an antitumor agent targeting mitochondria.
Collapse
Affiliation(s)
- Yixin Hu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Guo
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Shihao Chen
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Jie Jin
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Pengyu Li
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Yuchen Pan
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Shuwen Lei
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaqi Li
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Suheng Wu
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Buzhou Bu
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Lei Fu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China; Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China.
| |
Collapse
|
2
|
Vasileva L, Gaynanova G, Kuznetsova D, Valeeva F, Lyubina A, Amerhanova S, Voloshina A, Sibgatullina G, Samigullin D, Petrov K, Zakharova L. Mitochondria-Targeted Lipid Nanoparticles Loaded with Rotenone as a New Approach for the Treatment of Oncological Diseases. Molecules 2023; 28:7229. [PMID: 37894708 PMCID: PMC10609561 DOI: 10.3390/molecules28207229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/09/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023] Open
Abstract
This research is based on the concept that mitochondria are a promising target for anticancer therapy, including thatassociated with the use of oxidative phosphorylation blockers (mitochondrial poisons). Liposomes based on L-α-phosphatidylcholine (PC) and cholesterol (Chol) modified with cationic surfactants with triphenylphosphonium (TPPB-n, where n = 10, 12, 14, and 16) and imidazolium (IA-n(OH), where n = 10, 12, 14, and 16) head groups were obtained. The physicochemical characteristics of liposomes at different surfactant/lipid molar ratios were determined by dynamic/electrophoretic light scattering, transmission electron microscopy, and spectrophotometry. The hydrodynamic diameter of all the systems was within 120 nm with a polydispersity index of no more than 0.24 even after 2 months of storage. It was shown that cationization of liposomes leads to an increase in the internalization of nanocontainers in pancreatic carcinoma (PANC-1) and duodenal adenocarcinoma (HuTu 80) cells compared with unmodified liposomes. Also, using confocal microscopy, it was shown that liposomes modified with TPPB-14 and IA-14(OH) statistically better colocalize with the mitochondria of tumor cells compared with unmodified ones. At the next stage, the mitochondrial poison rotenone (ROT) was loaded into cationic liposomes. It was shown that the optimal loading concentration of ROT is 0.1 mg/mL. The Korsmeyer-Peppas and Higuchi kinetic models were used to describe the release mechanism of ROT from liposomes in vitro. A significant reduction in the IC50 value for the modified liposomes compared with free ROT was shown and, importantly, a higher degree of selectivity for the HuTu 80 cell line compared with the normal cells (SI value is 307 and 113 for PC/Chol/TPPB-14/ROT and PC/Chol/IA-14(OH)/ROT, respectively) occurred. It was shown that the treatment of HuTu 80 cells with ROT-loaded cationic liposomal formulations leads to a dose-dependent decrease in the mitochondrial membrane potential.
Collapse
Affiliation(s)
- Leysan Vasileva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Str., Kazan 420088, Russia
| | - Gulnara Gaynanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Str., Kazan 420088, Russia
| | - Darya Kuznetsova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Str., Kazan 420088, Russia
| | - Farida Valeeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Str., Kazan 420088, Russia
| | - Anna Lyubina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Str., Kazan 420088, Russia
| | - Syumbelya Amerhanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Str., Kazan 420088, Russia
| | - Alexandra Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Str., Kazan 420088, Russia
| | - Guzel Sibgatullina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, 2/31 Lobachevsky Str., Kazan 420111, Russia
| | - Dmitry Samigullin
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, 2/31 Lobachevsky Str., Kazan 420111, Russia
| | - Konstantin Petrov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Str., Kazan 420088, Russia
| | - Lucia Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Str., Kazan 420088, Russia
| |
Collapse
|
3
|
Jiang RY, Fang ZR, Zhang HP, Xu JY, Zhu JY, Chen KY, Wang W, Jiang X, Wang XJ. Ginsenosides: changing the basic hallmarks of cancer cells to achieve the purpose of treating breast cancer. Chin Med 2023; 18:125. [PMID: 37749560 PMCID: PMC10518937 DOI: 10.1186/s13020-023-00822-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/16/2023] [Indexed: 09/27/2023] Open
Abstract
In 2021, breast cancer accounted for a substantial proportion of cancer cases and represented the second leading cause of cancer deaths among women worldwide. Although tumor cells originate from normal cells in the human body, they possess distinct biological characteristics resulting from changes in gene structure and function of cancer cells in contrast with normal cells. These distinguishing features, known as hallmarks of cancer cells, differ from those of normal cells. The hallmarks primarily include high metabolic activity, mitochondrial dysfunction, and resistance to cell death. Current evidence suggests that the fundamental hallmarks of tumor cells affect the tissue structure, function, and metabolism of tumor cells and their internal and external environment. Therefore, these fundamental hallmarks of tumor cells enable tumor cells to proliferate, invade and avoid apoptosis. Modifying these hallmarks of tumor cells represents a new and potentially promising approach to tumor treatment. The key to breast cancer treatment lies in identifying the optimal therapeutic agent with minimal toxicity to normal cells, considering the specific types of tumor cells in patients. Some herbal medicines contain active ingredients which can precisely achieve this purpose. In this review, we introduce Ginsenoside's mechanism and research significance in achieving the therapeutic effect of breast cancer by changing the functional hallmarks of tumor cells, providing a new perspective for the potential application of Ginsenoside as a therapeutic drug for breast cancer.
Collapse
Affiliation(s)
- Rui-Yuan Jiang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
- Zhejiang Chinese Medical University, NO. 548, Binwen Road, Binjiang District, Hangzhou, 310000, Zhejiang, China
| | - Zi-Ru Fang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
- Zhejiang Chinese Medical University, NO. 548, Binwen Road, Binjiang District, Hangzhou, 310000, Zhejiang, China
| | - Huan-Ping Zhang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
- Wenzhou Medical University, No. 270, Xueyuan West Road, Lucheng District, Wenzhou, 325027, Zhejiang, China
| | - Jun-Yao Xu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Jia-Yu Zhu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
- Zhejiang Chinese Medical University, NO. 548, Binwen Road, Binjiang District, Hangzhou, 310000, Zhejiang, China
| | - Ke-Yu Chen
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
- Zhejiang Chinese Medical University, NO. 548, Binwen Road, Binjiang District, Hangzhou, 310000, Zhejiang, China
| | - Wei Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
- Wenzhou Medical University, No. 270, Xueyuan West Road, Lucheng District, Wenzhou, 325027, Zhejiang, China
| | - Xiao Jiang
- Department of Basic Medical Sciences, Guangxi University of Chinese Medicine, NO. 13, Wuhe Road, Qingxiu District, Nanning, 530022, Guangxi, China.
| | - Xiao-Jia Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| |
Collapse
|
4
|
Li X, Cao D, Sun S, Wang Y. Anticancer therapeutic effect of ginsenosides through mediating reactive oxygen species. Front Pharmacol 2023; 14:1215020. [PMID: 37564184 PMCID: PMC10411515 DOI: 10.3389/fphar.2023.1215020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023] Open
Abstract
Dysregulation of reactive oxygen species (ROS) production and ROS-regulated pathways in cancer cells leads to abnormal accumulation of reactive oxygen species, displaying a double-edged role in cancer progression, either supporting transformation/proliferation and stimulating tumorigenesis or inducing cell death. Cancer cells can accommodate reactive oxygen species by regulating them at levels that allow the activation of pro-cancer signaling pathways without inducing cell death via modulation of the antioxidant defense system. Therefore, targeting reactive oxygen species is a promising approach for cancer treatment. Ginsenosides, their derivatives, and related drug carriers are well-positioned to modulate multiple signaling pathways by regulating oxidative stress-mediated cellular and molecular targets to induce apoptosis; regulate cell cycle arrest and autophagy, invasion, and metastasis; and enhance the sensitivity of drug-resistant cells to chemotherapeutic agents of different cancers depending on the type, level, and source of reactive oxygen species, and the type and stage of the cancer. Our review focuses on the pro- and anticancer effects of reactive oxygen species, and summarizes the mechanisms and recent advances in different ginsenosides that bring about anticancer effects by targeting reactive oxygen species, providing new ideas for designing further anticancer studies or conducting more preclinical and clinical studies.
Collapse
Affiliation(s)
- Xiaonan Li
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, China
| | - Donghui Cao
- Department of Clinical Research, The First Hospital of Jilin University, Changchun, China
| | - Siming Sun
- Department of Clinical Research, The First Hospital of Jilin University, Changchun, China
| | - Yuehui Wang
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Wang P, Zhu H, Liu J, Xie S, Xu S, Chen Y, Xu J, Zhao Y, Zhu Z, Xu J. Design, synthesis, and biological evaluation of novel protopanoxadiol derivatives based PROTACs technology for the treatment of lung cancer. Bioorg Chem 2023; 131:106327. [PMID: 36549254 DOI: 10.1016/j.bioorg.2022.106327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Protopanoxadiol is a key active ingredient derived from Panax ginseng that is well-known to exhibit anti-tumor activity. Previous research focused on the natural protopanaxadiol derivative AD-1 has demonstrated that it possesses broad spectrum anti-tumor activities in vitro and in vivo. However, its limited activity, selectivity, and cell permeability have impeded its therapeutic application. Herein, a series of novel AD-1 derivatives were designed and synthesized based on proteolysis-targeting chimera (PROTAC) technology by linking AD-1 at the C-3 and C-12 positions with pomalidomide through linkers of alkyl chain of differing lengths to achieve the goal of improving the efficacy of the parent compound. Among these synthesized PROTACs, the representative compound A05 exhibited the most potent anti-proliferative activity against A549 cells. Furthermore, mechanistic studies revealed that compound A05 was able to suppress MDM2 expression, disrupt interactions between p53 and MDM2 and readily induce apoptotic death via the mitochondrial apoptosis pathway. Moreover, the in vivo assays revealed that compound A05 exhibited both anti-proliferative and anti-metastatic activities in the zebrafish tumor xenograft model with A549 cells. Together, our findings suggest that AD-1 based PROTACs associated with the degradation of MDM2 may have promising effects for the treatment of lung cancer and this work provide a foundation for future efforts to develop novel anti-tumor agents from natural products.
Collapse
Affiliation(s)
- Peng Wang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Huajian Zhu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Jianmin Liu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Shaowen Xie
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Shengtao Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Yu Chen
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jing Xu
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuqing Zhao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China.
| | - Zheying Zhu
- School of Pharmacy, The University of Nottingham, University Park Campus, Nottingham NG7 2RD, UK
| | - Jinyi Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
6
|
|
7
|
Li N, Song J, Li D. Synthesis and Antiproliferative Activity of Ester Derivatives of Mogrol through JAK2/STAT3 Pathway. Chem Biodivers 2021; 19:e202100742. [PMID: 34874105 DOI: 10.1002/cbdv.202100742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/16/2021] [Indexed: 11/08/2022]
Abstract
In attempt to enhance the antiproliferative activity of mogrol, two series of ester derivatives modified at C3 -OH and C11 -OH were designed and synthesized. The activity against human cancer cells including A549, NCI-H460 and CNE1 was screened by Cell Counting Kit-8 (CCK8) assay. According to the results, modifications of the mogrol core through introduction of different ester scaffolds drastically improved the cytotoxicity, and some of the derivatives exhibited even higher activity than the positive drug. Among them, compound M2h exhibited nearly 4 times more cytotoxic than 5-Fu against CNE1 cells, derivative M6c showed ten times higher activity with the IC50 value of 10.59 μM than mogrol against NCI-H460 cells, and compound M6a which contained one 1,2,3-triazole motif showed the strongest activity with an three folds lower IC50 value than mogrol. Furthermore, the most potent compound M2h could lead to cell cycle arrest at G2 phase on CNE1 cell lines and M6a induced G1 phase arrest on A549 cell lines. It was noteworthy that both M2h and M6a regulated signal transducer and activator of transcription 3 (STAT3) signal pathway through inhibiting phosphorylation of Janus Kinase 2 (JAK2) and STAT3, and simultaneously increasing the protein level of downstream cyclin p21.
Collapse
Affiliation(s)
- Na Li
- Guilin Medical University, Guilin, 541199, China.,Guangxi Institute of Botany, Chinese Academy of Sciences, Guangxi Key Laboratory of Functional Phytochemicals Research and Utilization, Guilin, 541006, China
| | - Jingru Song
- Guangxi Institute of Botany, Chinese Academy of Sciences, Guangxi Key Laboratory of Functional Phytochemicals Research and Utilization, Guilin, 541006, China
| | - Dianpeng Li
- Guilin Medical University, Guilin, 541199, China.,Guangxi Institute of Botany, Chinese Academy of Sciences, Guangxi Key Laboratory of Functional Phytochemicals Research and Utilization, Guilin, 541006, China
| |
Collapse
|
8
|
Zhang D, Hu Y, Hao Z, Zhang Y, Luo S, Dang X, Sun R, Duan S, Lv D, Jiang F, Fu L. Design, synthesis and antitumor activities of thiazole-containing mitochondrial targeting agents. Bioorg Chem 2021; 115:105271. [PMID: 34426155 DOI: 10.1016/j.bioorg.2021.105271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 10/20/2022]
Abstract
In this study, a novel batch of thiazole-containing mitochondrial targeting agents were designed and synthesized. Four kinds of mitochondrial targeting moieties and six kinds of linkers were designed. Their structures were confirmed by NMR and HR-MS. The screening of antiproliferative activity revealed that most compounds displayed cytotoxicity on HeLa cancer cell. In particular, D1 has an IC50 value of 35.32 μmol·L-1 against HeLa cell. In addition, cellular respiratory activities were also tested on HeLa cancer cells. D1 had a basal oxygen consumption rate of 8.84 pmol·s-1·mL-1. Also, D1 inhibited the mitochondrial respiration of HeLa cell significantly at 5 μmol·L-1, as well as a complete inhibitory of oxygen consumption for cellular ATP coupling. Furthermore, the pKa, logP, and logD under different pH conditions of all the compounds were calculated by the ACD/Percepta-PhysChem Suite, and the results manifested the correlation between physicochemical properties and chemical activity of compounds. The results identify D1 as a promising mitochondria inhibitor and anticancer agent with appropriate physicochemical properties.
Collapse
Affiliation(s)
- Dongdong Zhang
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd. Minhang District, Shanghai 200240, PR China
| | - Yixin Hu
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd. Minhang District, Shanghai 200240, PR China
| | - Zhiqiang Hao
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd. Minhang District, Shanghai 200240, PR China
| | - Yang Zhang
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd. Minhang District, Shanghai 200240, PR China
| | - Shuhua Luo
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd. Minhang District, Shanghai 200240, PR China
| | - Xin Dang
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd. Minhang District, Shanghai 200240, PR China
| | - Ran Sun
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd. Minhang District, Shanghai 200240, PR China
| | - Shixin Duan
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd. Minhang District, Shanghai 200240, PR China
| | - Dan Lv
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd. Minhang District, Shanghai 200240, PR China
| | - Faqin Jiang
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd. Minhang District, Shanghai 200240, PR China
| | - Lei Fu
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd. Minhang District, Shanghai 200240, PR China.
| |
Collapse
|
9
|
Design and synthesis of novel mitochondria-targeted CDDO derivatives as potential anti-cancer agents. Bioorg Chem 2021; 115:105249. [PMID: 34390971 DOI: 10.1016/j.bioorg.2021.105249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/03/2021] [Indexed: 12/20/2022]
Abstract
A large number of derivatives of natural pentacyclic triterpenoid oleanolic acid (OA) with various activities have been reported, including CDDO derivatives (CDDOs). CDDOs show potent antitumor activity, but they lack selectivity for tumor cells which causes serious side effects. In this study, based on the truth that tumor cells display higher mitochondrial membrane potential, to improve their mitochondrial-targeting ability, triphenylphosphine cations (TPP+) or tricyclohexylphosphine cations (TCP+) were linked to CDDO. Among these compounds, the TPP+ derivative 5b exhibited greater activity against the tumor cells than CDDO-Me, and the selectivity for the tumor cells was obviously improved. Further investigation revealed that the uptake of 5b in the mitochondria of MCF-7 cells was increased compared to CDDO-Me. In addition, 5b was able to cause mitochondrial membrane potential decline and cell cycle arrest. Furthermore, 5b caused apoptosis mainly through the mitochondria-mediated intrinsic pathway. Taken together, our study provides a possible solution to the poor selectivity of CDDOs, and regains confidence in the treatment of tumor with CDDOs.
Collapse
|
10
|
Xiao S, Wang X, Xu L, Miao D, Li T, Su G, Zhao Y. Novel ginsenoside derivatives have shown their effects on PC-3 cells by inducing G1-phase arrest and reactive oxygen species-mediate cell apoptosis. Bioorg Chem 2021; 112:104864. [PMID: 33819738 DOI: 10.1016/j.bioorg.2021.104864] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 02/09/2023]
Abstract
In this study, piperazine groups were introduced into ginsenoside to enhance its ability to induce Reactive Oxygen Species (ROS) production and apoptosis in cancer cells. In total, 27 ginsenoside piperazine derivatives were synthesized and tested for their anti-proliferative activity in cancer cell lines by MTT assay. The results showed that compounds 4a, 4g, 4f, 4i, 5g, 5i, 6a, 6g, 6f and 6i had significant inhibitory effects on cancer cell growth. Compound 6g showed the strongest anti-proliferative effect on PC-3 cells with an IC50 of 1.98 ± 0.34 μM. Compound 6g could also induce G1-phase arrest and apoptosis in PC-3 cells, with apoptosis rates of 8.1%, 41% and 56.1% observed at 5, 10 and 20 μM, respectively. Compound 6g also significantly enhanced the intracellular fluorescence of ROS sensitive substrates, with a fluorescence intensity ratio of 23.1% observed in treated cells, indicative of ROS production. Following N-acetylcysteine treatment, apoptotic rates of the cancer cell lines decreased from 38.9% to 7.3%, and the expression of Cl-PARP, Cl-Caspase-3 and Cl-Caspase-9 also decreased, confirming that compound 6g induced apoptosis through ROS induction. Compound 6g also stimulated the translocation of Bax from the cytoplasm to the mitochondria, which enhanced Cytochrome C (Cyt C) release, and increased the expression of the apoptotic markers Cl-PARP, Cl-Caspase-3, and Cl-Caspase-9 in PC-3 cells. Taken together, these data reveal the anti-cancer effects of compound 6g that enhance ROS production, and then induce apoptosis through mitochondrial pathway.
Collapse
Affiliation(s)
- Shengnan Xiao
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xude Wang
- Dalian University, Dalian 116622, China
| | - Lei Xu
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dongyu Miao
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tao Li
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Guangyue Su
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Yuqing Zhao
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; Key Laboratory of Structure-based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|